
Cs445 — Homework #5

Due: 11/26/2015 midnight

Instructions.

1. Solution could not be submitted by students in pairs.

2. You could submit a pdf of the homework, either printed or hand-written and scanned, as
long as it is easily readable.

3. If your solution is not clearly written, it might not be graded.

4. Prove the correctness of your answer. A correct answer without a proof might not be
accepted.

5. If you have discussed the solution with other students, mention their names clearly on the
homework. These discussions are not forbidden and are actually encouraged. However,
you must write your whole solution yourself.

6. All questions have same weight.

7. You could refer to a data structure studied in class, and just mention briefly their guar-
anties. For example “It is known that a Red-Black tree could support the insert/delete/find
operations on a set of n elements in time O(log n).

8. If your answer uses one of the data structures or algorithms that were studied in class, you
could refer to it without having to repeat details studied in class. If you answer requires only
modifications of one of the algorithm, it is enough to mention the required modifications,
and what’s the effect (if any) on the running time and on other operations that the algorithm
performs.

9. In general, a complete answer should contain the following parts:

(a) High level description of the data structures (if needed). E.g. We use a binary balanced
search tree. Each node contains, a key and pointers to its children. We augment the
tree so each node also contains a field...

(b) High level description of the algorithms

(c) Proof of correctness (why your algorithm provides what is required).

(d) A claim about the running time, and a proof showing this claim.

1

In all questions, h is given and known to you. Typical examples are h = 10 or h = 20.

1. The question refers to a quad tree T built on a green-red image, as shown in the slide
2 and 3. All pixels of the image are taken from a 2h × 2h integers grid, where h is an
arbitrary integer. Give an example of image, for which T has 4h leaves.

2. Consider a quadtree T , built for storing a set S of n points in the plane, all taken
from the 2h× 2h integers grid, where h is an arbitrary integer. Assume that each leaf
of T contains ≤ 1 points.

Describe the pseudo-code of a algorithm that receives a node v of T (initially root(T))
and a new point p, and insert p into T . The algorithm should be as efficient as possible.
What is its worst running time (as a function of h) ? What is its best running time ?

The algorithm could be recursive, but this is not a requirement.

3. Under the assumptions of question 2, suggest an input set S containing only 2 points,
such that the height of the resulting quad tree T is ≥ h− 1. Specify the coordinates
of the points of S. To describe S, specify the coordinates of each point in S. E.g., if
you are considering pixels on the display, the coordinates of a pixel (i, j) is its row
and column.

4. The question refers to a Quadtree constructed for for storing a set of points (as
discussed in the slides). Let S be a set of points, all from the 2h × 2h grid. Let T be
a quadtree built on S, as shown in the slides.

Let Q be a query disk (given to you by its center and radius). The operation
count(T,Q) reports |Q ∩ S| (the number of points of S which are also inside Q).

Suggest a slight modification of T , such that when a new query disk Q is given, you
could compute count(T,Q) efficiently.

Write a recursive peudocode for the operation count(v,Q), where v is a node of T .
The first call to this function is with count(root(v), Q)

Note that we are interested in which points of S are there in Q. Only in their number.
Your code should be as efficient as possible (and would not be accepted otherwise).

5. Let G(A ∪· B,E) be a given undirected bipartite graph (A and B and disjoint sets of
vertices, and each edge of E connects a vertex of A to a vertex of B). We say that
a subset M ⊆ E is called a matching if each vertex of V is adjacent to at most one
edge of M .

To find a maximum-cardinality matching, we convert the problem into a maximum-
flow problem in the graph G′(V ′, E′), as discussed in class (and on the slides):

(a) We set E′ = E. We assign directions to the edges. An edge (ai, bj) is directed
from ai to bj .

(b) Add vertex s and ∀ai ∈ A add an edge (s, ai).

(c) Add vertex t and ∀bj ∈ B add an edge (bj , t).

(d) Assign capacity 1 to all edges.

As always, if a 0/1 flow is given on this network, the edges of E that carries flow
are the ones in M and vice versa: If a matching M ⊆ E is given, there is a single
assignment of flow to the edges of G′ such that M consists only of the of E that carry
flow. Here is a quick reminder how: For every edge (ai, bj) ∈ E

(ai, bj) ∈M ⇒

f(s, ai) = f(ai, bj) = f(bj , t) = 1 ; f(ai, s) = f(bj , ai) = f(t, bj) = −1

while
(ai, bj) /∈M ⇒ f(ai, bj) = 0

The flow across the other edges of G′ are uniquely determined by these rules.

Let π be an augmenting path in G′f . What is the minimum number of edges in π ?

You could assume that π s simple - no vertex appears twice along π

6. Under the same assumptions as previous questions - what is the maximum number of
edges of π, when |A| = |B| = n.

7. Under the same assumptions as previous questions - assume π has k edges. So π =
e1, e2 . . . ek. Consider the edges of π without their direction. So if (u, v) ∈ π then
(v, u) ∈ π. (Intuitively, this means that we remove the arrow-heads from the edges,
so they don’t have direction anymore)

Which edges of π are in M , and which are not in M ?

8. Give an example of a network G(V,E) for which at least 2(n/2)−3 minimum cuts
exist. What are these cuts ? Prove.

As usual, n is an arbitrary large number.

9. Let G(V,E) be a network flow. Explain how to find a maximum positive flow p in the
network, such that the flow that goes through each vertex is ≤ 17.

Formally, the flow that goes through a vertex u (which is neither s nor t) is
∑

v∈V p(v, u).

10. Assume G(V,E) is a network flow where the capacity of each edge is 1. Consider the
Ford-Fulkerson Algorithm for finding a maximum flow in G(V,E). As you recall, in
each iteration, a new augmenting path is found, and the flow along it is augmented.

(a) What is the maximum number of iterations (as a function of n = |V | and m =
|E|) ?

(b) What is the minimum number of iterations (as a function of n and m) ?

You could assume that there are no parallel edges. That is, for every u, v ∈ V , there
is at most one edge connecting u to v.

