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L1.1 

Introduction to algorithms  

! In this course, we will discuss problems, and 
algorithms for solving these problems. 

 
! There are so many algorithms – why focus on the 

ones in the syllabus ?  

Why study algorithms and performance? 

• Performance often draws the line between what is 
feasible and what is impossible. 

• Algorithmic mathematics provides a language for 
talking about program behavior.  

• (e.g., by using big-O –notation) 
•  In real life, many algorithms, though different from 

each other, fall into one of several paradigms 
(discussed shortly).   

• These paradigms can be studied, and applied for new 
problems 

Why these algorithms (cont.)  
1.  Main paradigms: 

a)   Greedy algorithms 
b)  Divide-and-Conquers 
c)   Dynamic programming 
d)  Brach-and-Bound (mostly in AI ) 
e)   Etc etc.  

2.  Other reasons:  
a)   Relevance to many areas: 

•  E.g., networking, internet, search engines… 
b)  Coolness   
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The problem of sorting 

Input: sequence  〈a1, a2, …, an〉  of numbers. 

Example: 
Input:  8  2  4  9  3  6 

Output:  2  3  4  6  8  9 

Output: permutation  〈a'1, a'2, …, a'n〉  such 
that  a'1 ≤ a'2 ≤ … ≤ a'n . 

L1.5 

Insertion sort 
i j 

key sorted 

A: 
1 n 

Invariants:  A[ 1..j-1 ] is sorted  

1  5  7  10  12  18 9 100  200  

Consider A[j]=9. Not in the correct place.  
Need to make room for 9.   
We shift all elements right, starting from 10. 

1  5  7       10  12  18  100 200  

1  5  7  9  10  12  18  100 200  

Insertion sort 
INSERTION-SORT (A, n)  //input:  A[1 . . n]   

 for  j ← 2 to n    //outer loop 
  do  key ← A[ j]   
   i ← j – 1 
   while  i > 0 and A[i] > key //inner loop 
    do  { A[i+1] ← A[i] 
     i ← i – 1} 
   A[i+1] = key 

“pseudocode” 

i j 

key sorted 

A: 
1 n 
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Example of insertion sort 
8 2 4 9 3 6 

Example of insertion sort 
8 2 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 



5 

Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 

L1.17 

Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 

2 3 4 6 8 9 done 

L1.18 

Running time 

• The running time depends on the input: an 
already sorted sequence is easier to sort. 

• Parameterize the running time by the 
size of the input n  
• Seek upper bounds on the running time 
T(n) for the input size n, because 
everybody likes a guarantee. 
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Kinds of analyses 
Worst-case: (usually) 

• T(n) = maximum time of algorithm 
on any input of size n. 

Average-case: (sometimes) 
• T(n) = expected time of algorithm 

over all inputs of size n. 
• Need assumption of statistical 

distribution of inputs. 
Best-case: (bogus) 

• Cheat with a slow algorithm that 
works fast on some input. 

Machine-independent time 

What is insertion sort’s worst-case time? 
• It depends on the speed of our computer: 

• relative speed (on the same machine), 
• absolute speed (on different machines). 

BIG IDEA: 
• Ignore machine-dependent constants. 
• Look at growth of T(n) as n → ∞ . 

“Asymptotic Analysis” 

n 

T(n) 

n0 

•  We shouldn’t ignore 
asymptotically slower 
algorithms, however. 

•  Real-world design situations 
often call for a careful 
balancing of engineering 
objectives. 

•  Asymptotic analysis is a 
useful tool to help to 
structure our thinking. 

Ο(g(n))  
(e.g. n2 ) 

     

we say that T(n)= Ο( g(n) )   iff  
    there exists  positive constants c1, and n0 such that  
    0 ≤  T(n) ≤ c1 g(n)  for all n ≥ n0 
  
Usually T(n) is running time, and n is size of input 

Ο-notation – cont. 
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Ο-notation – cont. 

• Drop low-order terms; ignore leading constants. 
• Example: 3n3 + 90n2 – 5n + 6046 = Ο(n3) 

L1.23 

Ω-notation 

• Drop low-order terms; ignore leading constants. 
• Example: 3n3 + 90n2 – 5n + 6046 = Ω (n3) 

We say that T(n)= Ω( g(n) )   iff  
    there exists positive constants c2, and n0  
such that  
    0 ≤ c1 g(n) ≤ T(n)  for all n ≥ n0  

Engineering: 

Math: 

n 

T(n) 

n0 

Ω (g(n))     
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Notation - cont 

So if  T(n)= Ο( n2 )   then we are also sure that  
 T(n)= Ο( n3 )  and that  
 T(n)= Ο( n3.5 )   and 
 T(n)= Ο( 2n ) 

 
But it might or might not be true that  T(n)= Ο( n 1.5 ). 
 
However, if T(n)= Ω(n2 ) then it is not true that  

 T(n)= Ο( n 1.5 ) 
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Θ-notation 

• Drop low-order terms; ignore leading constants. 
• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3) 

Math: 
we say that T(n)= Θ(g(n))   iff  
    there exist positive constants c1, c2, and n0 such that  
    0 ≤ c1 g(n) ≤ T (n) ≤ c2 g(n)  for all n ≥ n0 
 
In other words  
T(n)= Θ(g(n))  iff           T(n)= Ο(g(n))  and T(n)= Ω(g(n))  
 
 
 
Engineering: 

n 

T(n) 

n0 

When n gets large enough, a Θ(n2) algorithm 
always beats a Θ(n3) algorithm. 

Θ(n3) 

Θ(n2 ) 

Insertion sort analysis 
Worst case: Input reverse sorted. 

( )∑
=

Θ=Θ=
n

j
njnT

2

2)()(

Is insertion sort a fast sorting algorithm? 
• Moderately so, for small n. 
• Not at all, for large n. 

[arithmetic series] 

T(n)=c+2c+3c+4c+…+c(n-1) = cn(n-1)/2  
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Merge sort 
(divide-and-conquer algorithm) 

MERGE-SORT  A[1 . . n] 
1.  If n = 1, done. 
2.  Recursively sort A[ 1 . . ⎡n/2⎤ ] 

and A[ ⎡n/2⎤+1 . . n ] . 
3.  “Merge” the 2 sorted lists. 

Key subroutine: MERGE 

Merging two sorted arrays 

20 

13 

7 

2 

12 

11 

9 

1 

Merging two sorted arrays 

20 
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11 
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1 

1 
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Merging two sorted arrays 

20 

13 
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11 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Time = Θ(n) to merge a total 
of n elements (linear time). 

Analyzing merge sort 

MERGE-SORT A[1 . . n] 
1.  If n = 1, done. 
2.  Recursively sort A[ 1 . . ⎡n/2⎤ ] 

and A[ ⎡n/2⎤+1 . . n ] . 
3. “Merge” the 2 sorted lists 

T(n) 
Θ(1) 
2T(n/2) 

Θ(n)   
Abuse 

Sloppiness: Should be T( ⎡n/2⎤ ) + T( ⎣n/2⎦ ) , 
but it turns out not to matter asymptotically. 
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Recurrence for merge sort 

T(n) = 
Θ(1) if n = 1; 
2T(n/2) + Θ(n) if n > 1. 

• We shall usually omit stating the base 
case when T(n) = Θ(1) for sufficiently 
small n, but only when it has no effect on 
the asymptotic solution to the recurrence. 

• CLRS provides several ways to find a 
good bound on T(n). 

Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

L1.45 

Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

T(n) 



16 

L1.46 

Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

T(n/2) T(n/2) 

cn 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

T(n/4) T(n/4) T(n/4) T(n/4) 

cn/2 cn/2 

L1.48 

Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

…
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

…
 

h = log2 n 

Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

…
 

h = log n 

cn 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

…
 

h = log n 

cn 

cn 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

…
 

h = log n 

cn 

cn 

cn 

…
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

…
 

h = log n 

cn 

cn 

cn 

#leaves = n Θ(n) 

…
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

…
 

h = log n 

cn 

cn 

cn 

#leaves = n Θ(n) 
Total = Θ(n log n) 

…
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Conclusions 

•  Θ(n log n) grows more slowly than Θ(n2). 
• Therefore, merge sort asymptotically beats 

insertion sort in the worst case. 
• In practice, merge sort beats insertion sort 

for n > 30 or so. 
• Go test it out for yourself! 

L1.56 

More examples (not in textbook)–  
iterative method  (1) 

  
NoNeed(n){ 

•  If (n<1) return ;  
•  Print(‘*’) 
•  NoNeed(n-1) 

}  

Recursion formula: T(n)=c+T(n-1), where T(1)=c. We can solve 
it using the iteration method: 
T(n)=  c+T(n-1)= 

 c+{c+T(n-2)} =     2c+T(n-2) = 
 2c+{ c+T(n-3) } = 3c+T(n-3) =… = (pick k<n)  
 kc+T(n-k) =   (setting k = n-1) … 
 (n-1)c+T(1)=nc 
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More examples (2)  

  

NoNeed(n){ 
if (n<1) return ;  
for( i=1 ; i<n ; i++)   print(*) 
NoNeed(n-1) 

}  
Recursion formula: T(n)=cn+T(n-1), where T(1)=c. We can solve it 
using the iteration method: 
T(n)= cn+T(n-1)=  

 cn+{c(n-1)+T(n-2)} = 
 c[n+(n-1)]+{c(n-2)+T(n-3)}  
  =c[n+n-1+n-2+n-3]+T(n-3)  =… = (pick k<n)  
  =c[n+n-1+n-2+ n-3+…+n-k]+T(n-k-1) =    
   (setting k = n-1) … 

c[ n+ n-1+n-2 + n-3+…+1]+T(1)= 
c[ 1+2+3+… +n]+T(1)= cn(n+1)/2 = Θ(n2).  
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More examples (3)  

  

•  Read(n);   k=1 ;    
•  while( k ≤ n )   k=2k ;   

• We know that each iteration takes O(1) times. Need to find the 
number of iterations.  

• After the first iteration k=2=21 
• After the 2nd iteration k=4=22 

• After the 3rd iteration k=8=2 3 
• …. 

• After the j’th iteration k=2 j 
• Assume  j iterations occurs until the loop exits. After the last one we    

 have that k=2 j <2n.   
• Taking log2 from both sides, we have that 

 log2 k = log2( 2j ) < log2(2n )   or.. 
 j log2 2<  log2( 2 ) + log2( n )    or..  

      j< log2n +1   or  j=O ( log2 n ).     T(n)=O(log n) 
• Homework: Prove T(n)= Θ(log n) 

 

  

Recall: log(ab)=log(a)+log(b) 
log( a b ) = b log a   
loga (x) = logb (x) / logba 

More examples (a bit tricky) 
read(n) 
for(i=1 ; i < n ;  i++)  
  for( j=i ; j <n ; j += i )  

 print( “*” ) ; 
• Naïve analysis:  

• The outer loop (on i) runs exactly n-1 times 
• The inner loop (on j) runs O(n) times.  
• Together O(n 2 ) times. 

• More “sensitive” analysis: 
• For i=1 we run through    j=1,2,3,4...n,       total  n  times.  
• For i=2 we run through   j=2,4,6,8,10…n,  total n/2  times.  
• For i=3 we run through   j=3,6,9,12…n,     total n/3  times . 
• For i=4 we run through   j=4,8,12,16…n,   total n/4  times. 
• For i=n we run through  j=n,                      total   n/n=1 time.  

• Summing up: T(n)=n+n/2+n/3+n/4+…n/n =  
            n(1+1/2+1/3+1/4+...1/n)  ≈  n ln n  

  Harmonic sum 

More examples: Geometric sum 

  

read(n) ; a=0.31415926    
while( n>1)  {  

For( j=1; j<n ; j++ )  print(“*”)   
n=a*n ; } 

• The first time the outer loop is called, the “print” is called  n times. 
• The 2nd  time the outer loop is called, the “print” is called  an times.  
• The 3rd  time the outer loop is called, the “print” is called  a2n 
times… 
• The k’th time the outer loop is called, the “print” is called  ak n times 

• Let t be the number of iterations of the outer loop. Then the total time  
 = n + an + a2n+ a3n+…atn = n(1 + a + a2+ a3+…at) <  

  n(1 + a + a2+ a3+…a t +…)=n / (1-a ) = O(n). 

• Same analysis holds for any a<1  
Recall:1+a+a2+…+at= (1-a t+1 )/(1-a). 
If a<1 then 1+a+a2+…+ at +… =  1/(1-a) 
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Properties of big-O 
•  Claim: if   T1(n)=O(g 1(n))  and  T2(n)=O(g2( n ))    then  

  T1(n)+T2(n)=O(g1(n) + g2(n) )  
 

•  Example: T1(n)=O(n2),  T2(n)=O(n log n) then 
 T1(n)+T2(n)=O(n2 + n log n ) =O( n2 ) 
 

•  Proof:  We know that there are constants n1, n2, c1, c2  s.t. 
•  for every n>n1   T1(n) < c1 g1(n).    (definition of big-O ) 
•  for every n>n2   T2(n) < c2 g2(n).    (definition of big-O ) 

•  Now set n’ =max{ n1, n2 }, and c’=c1+c2, then  
•  for every n>n’  we have that  
•   T1(n)+T2(n) < c1 g1(n) + c2 g2(n) ≤  

  c’ g1(n) + c‘g2(n) =  
  c’ ( g1(n) + g2(n) ) 

  

More properties of big-O 
• Claim: if   T1(n)=O(g 1(n))  and  T2(n)=O(g2( n ))    then  

  T1(n) T2(n)=O( g1(n)  g2(n) )  
 

• Example: T1(n)=O(n2), T2(n)=O(n log n) then 

 T1(n) T2(n)=O(n3 log n ) 
 

 
• Similar properties hold for Θ, Ω	



