Introduction to algorithms

- In this course, we will discuss problems, and algorithms for solving these problems.
- There are so many algorithms why focus on the ones in the syllabus ?

L1.1

Why study algorithms and performance?

- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a *language* for talking about program behavior.
 - •(e.g., by using big-*O* –notation)
- In real life, many algorithms, though different from each other, fall into one of several *paradigms* (discussed shortly).
- These paradigms can be studied, and applied for new problems

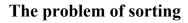
Why these algorithms (cont.)

1. Main paradigms:

- a) Greedy algorithms
- b) Divide-and-Conquers
- c) Dynamic programming
- d) Brach-and-Bound (mostly in AI)
- e) Etc etc.

2. Other reasons:

- a) Relevance to many areas:
 - E.g., networking, internet, search engines...
- b) Coolness



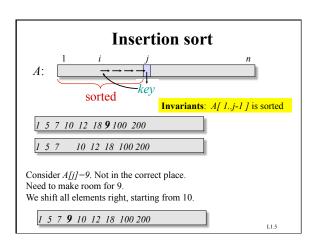
Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.

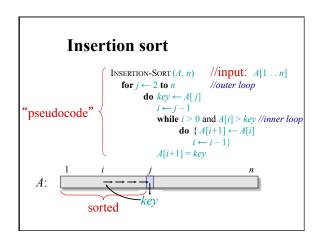
Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

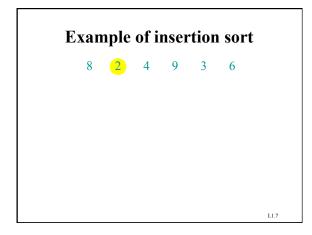
Example:

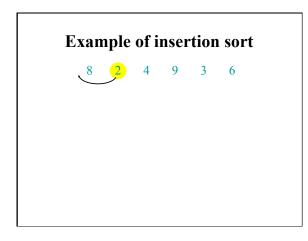
Input: 8 2 4 9 3 6

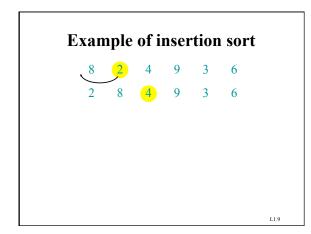
Output: 2 3 4 6 8 9



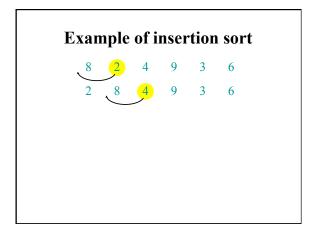


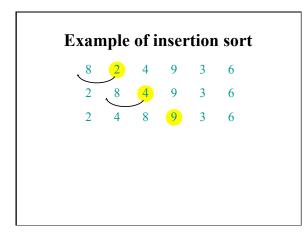


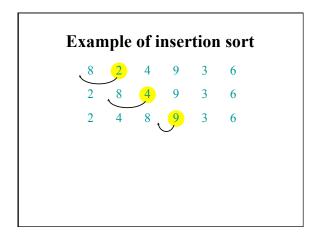


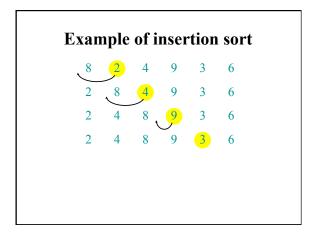


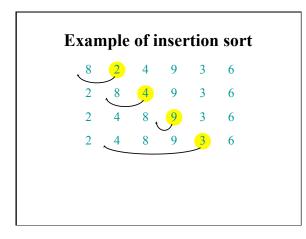


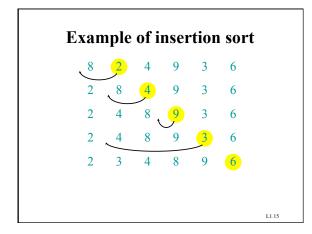


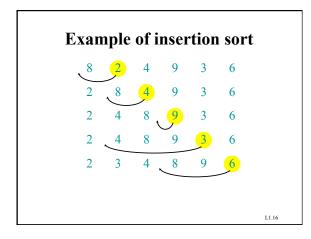


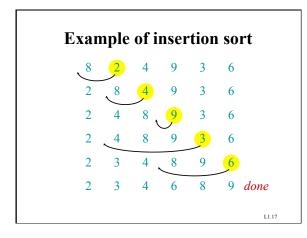


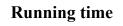










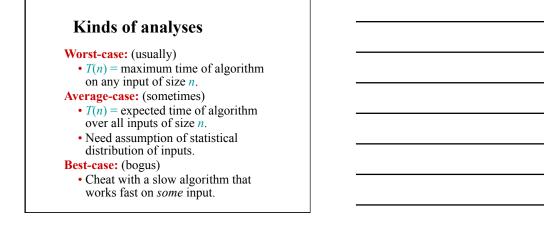


• The running time depends on the input: an already sorted sequence is easier to sort.

•Parameterize the running time by the size of the input *n*

•Seek upper bounds on the running time T(n) for the input size n, because everybody likes a guarantee.

L1.18



Machine-independent time

What is insertion sort's worst-case time?

• It depends on the speed of our computer:

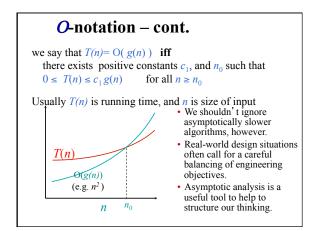
- relative speed (on the same machine),
- absolute speed (on different machines).

BIG IDEA:

• Ignore machine-dependent constants.

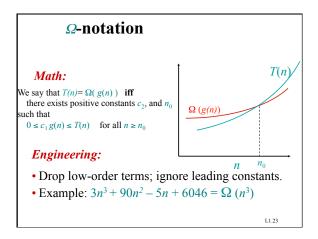
• Look at *growth* of T(n) as $n \to \infty$.

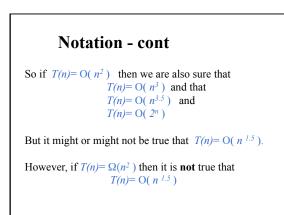
"Asymptotic Analysis"



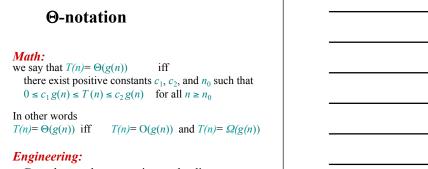
O-notation – cont.

• Drop low-order terms; ignore leading constants. • Example: $3n^3 + 90n^2 - 5n + 6046 = O(n^3)$

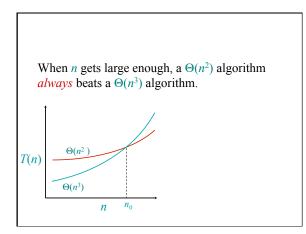




L1.24



- Drop low-order terms; ignore leading constants.
- Example: $3n^3 + 90n^2 5n + 6046 = \Theta(n^3)$



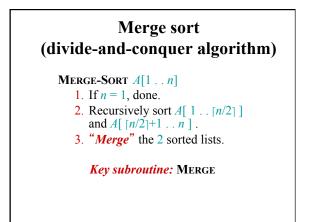
Insertion sort analysis

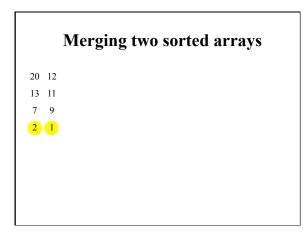
Worst case: Input reverse sorted.

$$T(n) = c + 2c + 3c + 4c + \dots + c(n-1) = cn(n-1)/2$$

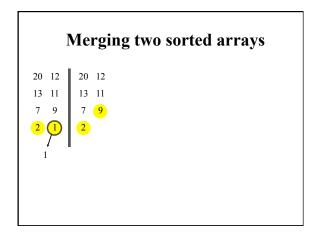
$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$$
 [arithmetic series]

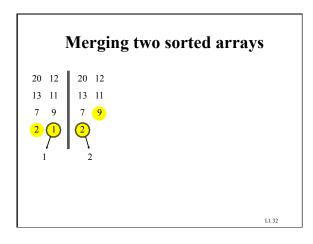
- *Is insertion sort a fast sorting algorithm?* • Moderately so, for small *n*.
- Not at all, for large *n*.

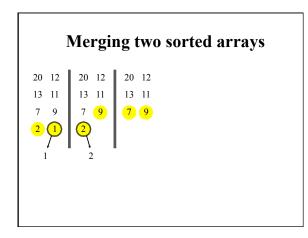


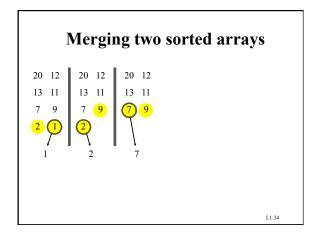


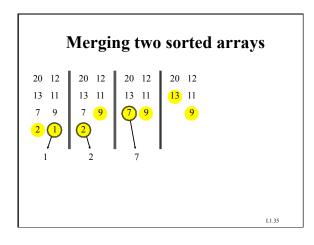
Merging two sorted arrays		
20 12		
13 11		
79		
2 (1)	,	
/		
1		

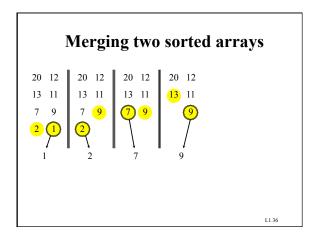


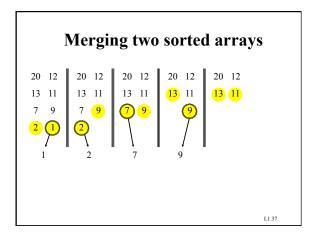


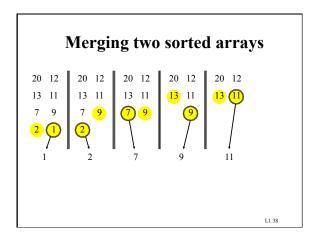


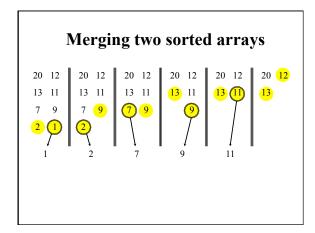


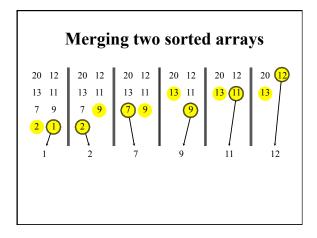


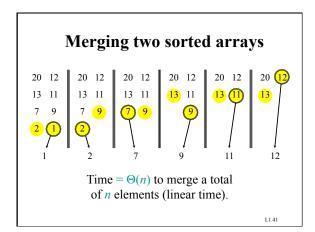


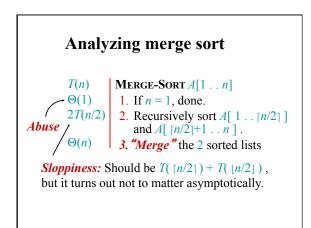












Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

- We shall usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small *n*, but only when it has no effect on the asymptotic solution to the recurrence.
- CLRS provides several ways to find a good bound on *T*(*n*).

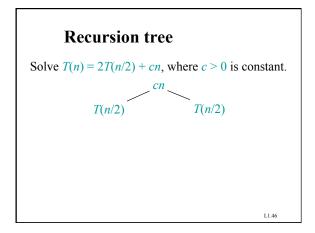
Recursion tree

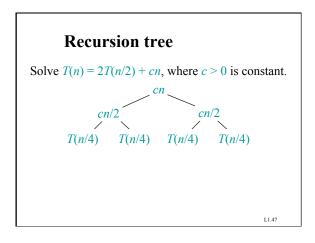
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

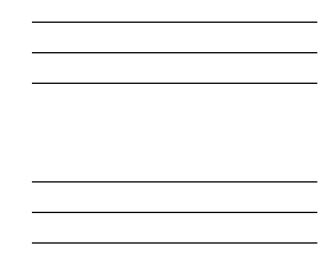
Recursion tree

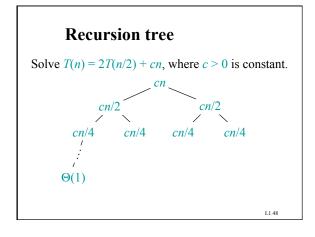
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n)

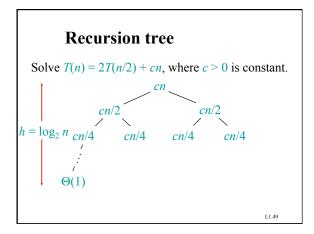
L1.45

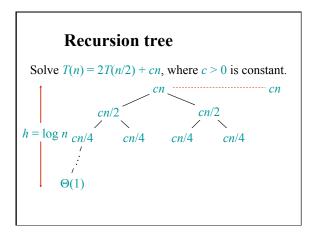


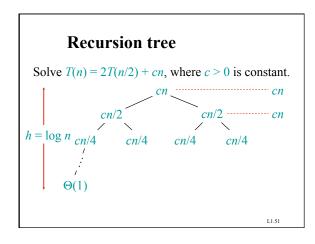


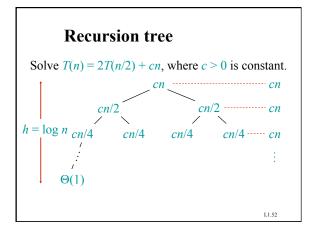


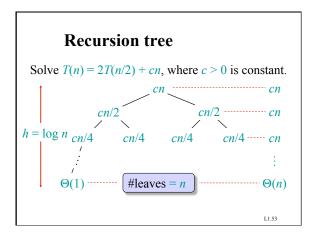


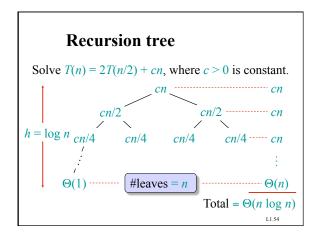












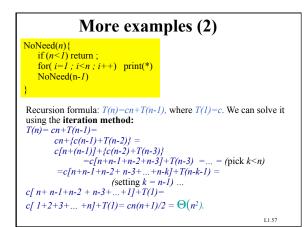
Conclusions

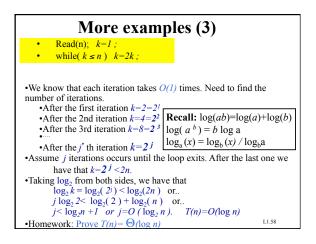
- $\Theta(n \log n)$ grows more slowly than $\Theta(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for n > 30 or so.

L1.55

• Go test it out for yourself!

More examples (not in textbook)– iterative method (1) NONeed(n){ • If (n<1) return ; • Print(**) • NoNeed(n-1) } Recursion formula: T(n)=c+T(n-1), where T(1)=c. We can solve it using the iteration method: T(n)= c+T(n-1)= $c+\{c+T(n-2)\}= 2c+T(n-2)=$ $2c+\{c+T(n-2)\}= 3c+T(n-3)=...=(pick k< n)$ kc+T(n-k)= (setting k = n-1) ... (n-1)c+T(1)=nc





More examples (a bit tricky)					
$\begin{array}{l} {\rm read}(n) \\ {\rm for}(i=l\;;\; i < n\;;\; i^{++}) \\ {\rm for}(\; j=i\;;\; j < n\;;\; j^{+=}\; i\;) \\ {\rm print}("_*"\;)\;; \end{array}$,			
Naïve analysis:					
•The outer loop (on <i>i</i>) runs exactly <i>n</i> -1 times					
•The inner loop (on <i>j</i>) runs O(<i>n</i>) times.					
•Together $O(n^2)$ times.					
•More "sensitive" analysis:					
•For $i=1$ we run through $j=1,2,3,4n$,	total n	times.			
•For $i=2$ we run through $j=2,4,6,8,10n$,	total n/2	times.			
•For $i=3$ we run through $j=3,6,9,12n$,	total n/3	times .			
•For $i=4$ we run through $j=4,8,12,16n$,	total n/4	times.			
•For $i=n$ we run through $j=n$,	total n/n=	l time.			
•Summing up: $T(n) = n + n/2 + n/3 + n/4 + n/n =$					
n(1+1/2+1/3+1/4+1/n)	$\approx n \ln n$				
Harmonic sum					

More examples: Geometric sum				
read(n); $a=0.31415926$ while($n > 1$) { For(j=1; j < n; j++) print("*") $n=a^*n; ;$				
•The first time the outer loop is called, the "print" is called <i>n</i> times. •The 2nd time the outer loop is called, the "print" is called <i>an</i> times. •The 3rd time the outer loop is called, the "print" is called a^2n times				
•The k' th time the outer loop is called, the "print" is called $a^k n$ times				
•Let t be the number of iterations of the outer loop. Then the total time = $n + an + a^2n + a^3n +a^4n = n(1 + a + a^2 + a^3 +a^4) < n(1 + a + a^2 + a^3 +a^4) +a^4 $				
•Same analysis holds for any <i>a</i> <1				
Recall : $I + a + a^2 + \dots + a^t = (I - a^{t+1})/(I - a)$.				
If $a < 1$ then $1 + a + a^2 + + a^t + = 1/(1-a)$				

Properties of big-O

- Claim: if $T_1(n)=O(g_1(n))$ and $T_2(n)=O(g_2(n))$ then $T_1(n) + T_2(n) = O(g_1(n) + g_2(n))$
- **Example**: $T_1(n) = O(n^2)$, $T_2(n) = O(n \log n)$ then $T_1(n) + T_2(n) = O(n^2 + n \log n) = O(n^2)$
- **Proof:** We know that there are constants n₁, n₂, c₁, c₂ s.t.
 for every n>n₁ T₁(n) < c₁ g₁(n). (definition of big-O)
 for every n>n₂ T₂(n) < c₂ g₂(n). (definition of big-O)

 - Now set $n' = \max\{n_1, n_2\}$, and $c' = c_1 + c_2$, then for every n > n' we have that $T_1(n) + T_2(n) < c_1 g_1(n) + c_2 g_2(n) \le c' g_1(n) + c' g_2(n) = c' (g_1(n) + g_2(n))$

More properties of big-O

•**Claim:** if $T_1(n) = O(g_1(n))$ and $T_2(n) = O(g_2(n))$ then $T_1(n) T_2(n) = O(g_1(n) g_2(n))$

•Example: $T_1(n) = O(n^2)$, $T_2(n) = O(n \log n)$ then

 $T_1(n) T_2(n) = O(n^3 \log n)$

•Similar properties hold for Θ , Ω