
1

L1.1

Introduction to algorithms

! In this course, we will discuss problems, and
algorithms for solving these problems.

! There are so many algorithms – why focus on the

ones in the syllabus ?

Why study algorithms and performance?

• Performance often draws the line between what is
feasible and what is impossible.

• Algorithmic mathematics provides a language for
talking about program behavior.

• (e.g., by using big-O –notation)
•  In real life, many algorithms, though different from

each other, fall into one of several paradigms
(discussed shortly).

• These paradigms can be studied, and applied for new
problems

Why these algorithms (cont.)
1.  Main paradigms:

a)   Greedy algorithms
b)  Divide-and-Conquers
c)   Dynamic programming
d)  Brach-and-Bound (mostly in AI)
e)   Etc etc.

2.  Other reasons:
a)   Relevance to many areas:

•  E.g., networking, internet, search engines…
b)  Coolness

2

The problem of sorting

Input: sequence 〈a1, a2, …, an〉 of numbers.

Example:
Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Output: permutation 〈a'1, a'2, …, a'n〉 such
that a'1 ≤ a'2 ≤ … ≤ a'n .

L1.5

Insertion sort
i j

key sorted

A:
1 n

Invariants: A[1..j-1] is sorted

1 5 7 10 12 18 9 100 200

Consider A[j]=9. Not in the correct place.
Need to make room for 9.
We shift all elements right, starting from 10.

1 5 7 10 12 18 100 200

1 5 7 9 10 12 18 100 200

Insertion sort
INSERTION-SORT (A, n) //input: A[1 . . n]

 for j ← 2 to n //outer loop
 do key ← A[j]
 i ← j – 1
 while i > 0 and A[i] > key //inner loop
 do { A[i+1] ← A[i]
 i ← i – 1}
 A[i+1] = key

“pseudocode”

i j

key sorted

A:
1 n

3

L1.7

Example of insertion sort
8 2 4 9 3 6

Example of insertion sort
8 2 4 9 3 6

L1.9

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

4

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

5

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

L1.15

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

6

L1.16

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

L1.17

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done

L1.18

Running time

• The running time depends on the input: an
already sorted sequence is easier to sort.

• Parameterize the running time by the
size of the input n
• Seek upper bounds on the running time
T(n) for the input size n, because
everybody likes a guarantee.

7

Kinds of analyses
Worst-case: (usually)

• T(n) = maximum time of algorithm
on any input of size n.

Average-case: (sometimes)
• T(n) = expected time of algorithm

over all inputs of size n.
• Need assumption of statistical

distribution of inputs.
Best-case: (bogus)

• Cheat with a slow algorithm that
works fast on some input.

Machine-independent time

What is insertion sort’s worst-case time?
• It depends on the speed of our computer:

• relative speed (on the same machine),
• absolute speed (on different machines).

BIG IDEA:
• Ignore machine-dependent constants.
• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”

n

T(n)

n0

•  We shouldn’t ignore
asymptotically slower
algorithms, however.

•  Real-world design situations
often call for a careful
balancing of engineering
objectives.

•  Asymptotic analysis is a
useful tool to help to
structure our thinking.

Ο(g(n))
(e.g. n2)

we say that T(n)= Ο(g(n)) iff
 there exists positive constants c1, and n0 such that
 0 ≤ T(n) ≤ c1 g(n) for all n ≥ n0

Usually T(n) is running time, and n is size of input

Ο-notation – cont.

8

Ο-notation – cont.

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Ο(n3)

L1.23

Ω-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Ω (n3)

We say that T(n)= Ω(g(n)) iff
 there exists positive constants c2, and n0
such that
 0 ≤ c1 g(n) ≤ T(n) for all n ≥ n0

Engineering:

Math:

n

T(n)

n0

Ω (g(n))

L1.24

Notation - cont

So if T(n)= Ο(n2) then we are also sure that
 T(n)= Ο(n3) and that
 T(n)= Ο(n3.5) and
 T(n)= Ο(2n)

But it might or might not be true that T(n)= Ο(n 1.5).

However, if T(n)= Ω(n2) then it is not true that

 T(n)= Ο(n 1.5)

9

Θ-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3)

Math:
we say that T(n)= Θ(g(n)) iff
 there exist positive constants c1, c2, and n0 such that
 0 ≤ c1 g(n) ≤ T (n) ≤ c2 g(n) for all n ≥ n0

In other words
T(n)= Θ(g(n)) iff T(n)= Ο(g(n)) and T(n)= Ω(g(n))

Engineering:

n

T(n)

n0

When n gets large enough, a Θ(n2) algorithm
always beats a Θ(n3) algorithm.

Θ(n3)

Θ(n2)

Insertion sort analysis
Worst case: Input reverse sorted.

()∑
=

Θ=Θ=
n

j
njnT

2

2)()(

Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.

[arithmetic series]

T(n)=c+2c+3c+4c+…+c(n-1) = cn(n-1)/2

10

Merge sort
(divide-and-conquer algorithm)

MERGE-SORT A[1 . . n]
1.  If n = 1, done.
2.  Recursively sort A[1 . . ⎡n/2⎤]

and A[⎡n/2⎤+1 . . n] .
3.  “Merge” the 2 sorted lists.

Key subroutine: MERGE

Merging two sorted arrays

20

13

7

2

12

11

9

1

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

11

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

L1.32

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

12

L1.34

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

L1.35

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

L1.36

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

13

L1.37

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

L1.38

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

14

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

L1.41

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time = Θ(n) to merge a total
of n elements (linear time).

Analyzing merge sort

MERGE-SORT A[1 . . n]
1.  If n = 1, done.
2.  Recursively sort A[1 . . ⎡n/2⎤]

and A[⎡n/2⎤+1 . . n] .
3. “Merge” the 2 sorted lists

T(n)
Θ(1)
2T(n/2)

Θ(n)
Abuse

Sloppiness: Should be T(⎡n/2⎤) + T(⎣n/2⎦) ,
but it turns out not to matter asymptotically.

15

Recurrence for merge sort

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• We shall usually omit stating the base
case when T(n) = Θ(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

• CLRS provides several ways to find a
good bound on T(n).

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

L1.45

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

16

L1.46

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/2) T(n/2)

cn

L1.47

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

L1.48

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

17

L1.49

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log2 n

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log n

cn

L1.51

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log n

cn

cn

18

L1.52

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log n

cn

cn

cn

…

L1.53

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log n

cn

cn

cn

#leaves = n Θ(n)

…

L1.54

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log n

cn

cn

cn

#leaves = n Θ(n)
Total = Θ(n log n)

…

19

L1.55

Conclusions

•  Θ(n log n) grows more slowly than Θ(n2).
• Therefore, merge sort asymptotically beats

insertion sort in the worst case.
• In practice, merge sort beats insertion sort

for n > 30 or so.
• Go test it out for yourself!

L1.56

More examples (not in textbook)–
iterative method (1)

NoNeed(n){

•  If (n<1) return ;
•  Print(‘*’)
•  NoNeed(n-1)

}

Recursion formula: T(n)=c+T(n-1), where T(1)=c. We can solve
it using the iteration method:
T(n)= c+T(n-1)=

 c+{c+T(n-2)} = 2c+T(n-2) =
 2c+{ c+T(n-3) } = 3c+T(n-3) =… = (pick k<n)
 kc+T(n-k) = (setting k = n-1) …
 (n-1)c+T(1)=nc

L1.57

More examples (2)

NoNeed(n){
if (n<1) return ;
for(i=1 ; i<n ; i++) print(*)
NoNeed(n-1)

}
Recursion formula: T(n)=cn+T(n-1), where T(1)=c. We can solve it
using the iteration method:
T(n)= cn+T(n-1)=

 cn+{c(n-1)+T(n-2)} =
 c[n+(n-1)]+{c(n-2)+T(n-3)}
 =c[n+n-1+n-2+n-3]+T(n-3) =… = (pick k<n)
 =c[n+n-1+n-2+ n-3+…+n-k]+T(n-k-1) =
 (setting k = n-1) …

c[n+ n-1+n-2 + n-3+…+1]+T(1)=
c[1+2+3+… +n]+T(1)= cn(n+1)/2 = Θ(n2).

20

L1.58

More examples (3)

•  Read(n); k=1 ;
•  while(k ≤ n) k=2k ;

• We know that each iteration takes O(1) times. Need to find the
number of iterations.

• After the first iteration k=2=21
• After the 2nd iteration k=4=22

• After the 3rd iteration k=8=2 3
• ….

• After the j’th iteration k=2 j
• Assume j iterations occurs until the loop exits. After the last one we

 have that k=2 j <2n.
• Taking log2 from both sides, we have that

 log2 k = log2(2j) < log2(2n) or..
 j log2 2< log2(2) + log2(n) or..

 j< log2n +1 or j=O (log2 n). T(n)=O(log n)
• Homework: Prove T(n)= Θ(log n)

Recall: log(ab)=log(a)+log(b)
log(a b) = b log a
loga (x) = logb (x) / logba

More examples (a bit tricky)
read(n)
for(i=1 ; i < n ; i++)
 for(j=i ; j <n ; j += i)

 print(“*”) ;
• Naïve analysis:

• The outer loop (on i) runs exactly n-1 times
• The inner loop (on j) runs O(n) times.
• Together O(n 2) times.

• More “sensitive” analysis:
• For i=1 we run through j=1,2,3,4...n, total n times.
• For i=2 we run through j=2,4,6,8,10…n, total n/2 times.
• For i=3 we run through j=3,6,9,12…n, total n/3 times .
• For i=4 we run through j=4,8,12,16…n, total n/4 times.
• For i=n we run through j=n, total n/n=1 time.

• Summing up: T(n)=n+n/2+n/3+n/4+…n/n =
 n(1+1/2+1/3+1/4+...1/n) ≈ n ln n

 Harmonic sum

More examples: Geometric sum

read(n) ; a=0.31415926
while(n>1) {

For(j=1; j<n ; j++) print(“*”)
n=a*n ; }

• The first time the outer loop is called, the “print” is called n times.
• The 2nd time the outer loop is called, the “print” is called an times.
• The 3rd time the outer loop is called, the “print” is called a2n
times…
• The k’th time the outer loop is called, the “print” is called ak n times

• Let t be the number of iterations of the outer loop. Then the total time
 = n + an + a2n+ a3n+…atn = n(1 + a + a2+ a3+…at) <

 n(1 + a + a2+ a3+…a t +…)=n / (1-a) = O(n).

• Same analysis holds for any a<1
Recall:1+a+a2+…+at= (1-a t+1)/(1-a).
If a<1 then 1+a+a2+…+ at +… = 1/(1-a)

21

Properties of big-O
•  Claim: if T1(n)=O(g 1(n)) and T2(n)=O(g2(n)) then

 T1(n)+T2(n)=O(g1(n) + g2(n))

•  Example: T1(n)=O(n2), T2(n)=O(n log n) then
 T1(n)+T2(n)=O(n2 + n log n) =O(n2)

•  Proof: We know that there are constants n1, n2, c1, c2 s.t.
•  for every n>n1 T1(n) < c1 g1(n). (definition of big-O)
•  for every n>n2 T2(n) < c2 g2(n). (definition of big-O)

•  Now set n’ =max{ n1, n2 }, and c’=c1+c2, then
•  for every n>n’ we have that
•  T1(n)+T2(n) < c1 g1(n) + c2 g2(n) ≤

 c’ g1(n) + c‘g2(n) =
 c’ (g1(n) + g2(n))

More properties of big-O
• Claim: if T1(n)=O(g 1(n)) and T2(n)=O(g2(n)) then

 T1(n) T2(n)=O(g1(n) g2(n))

• Example: T1(n)=O(n2), T2(n)=O(n log n) then

 T1(n) T2(n)=O(n3 log n)

• Similar properties hold for Θ, Ω	

