
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- There are n males and n females
- Each female has her own ranked preference list of all the males \qquad - E.g., women \#1 most prefers male \#3 over any other male

Each male has his own ranked preference list of the females - How should we match them (1-to-1) \qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Rogue Couples

-Consider a given matching M. Now suppose that some pair (male, female) who are not married to each other, actually prefer each other over their partners.
-They will be called a rogue couple.
-They both would gain from dumping their mates and marrying each other.

- A matching is called stable if it does not contains no rogue couples.

The study of stability will be the subject of the entire lecture.

We will: Analyze various mathematical properties of an algorithm that looks a lot like 1950's dating.

Given a set of preference lists, how do we find a stable pairing?

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad


```
    Traditional Marriage Algorithm (TMA)
1) repeat{
    - Morning
    - Each male to the best female whom he has not yet
        crossed off
    - Afternoon (for each females with at least one
    proposal)
        - To today` s best offer: "Maybe, come back
        tomorrow" (putting him on a string)
        - All other proposals are rejected.
    = Evening
        - Any rejected male crosses the rejecting female off his
        list.
}Until all males are on strings.
2) Each female marries the last male she just said "maybe"
Note: Each male proposes to females in decreasing order
on his list.
```

Lemma: If a female has a male bon a string, then she will either marry him, or marry someone she prefers over him.

Proof:

- She would only let go of b in order to "maybe" b' which she prefers over b
- She would only let go of b ' for someone b ' she prefers over b' etc.
When the process terminates, she is left with someone she prefers over b.

Corollary: Each female will marry her absolute favorite of the males who visit her during the Traditional Marriage Algorithm (TMA)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lemma: No male can be rejected by all the females

-Proof by contradiction.
-Suppose male b is rejected by all the females. At that point:

- Each female must have a suitor other than \boldsymbol{b} (By previous Lemma, once a female has a suitor she will always have at least one)
- The \boldsymbol{n} females have \boldsymbol{n} suitors, \boldsymbol{b} not among them. Thus, there are at least $\boldsymbol{n}+\mathbf{1}$ males.

Contradiction

Theorem:

The TMA always terminates after at most \boldsymbol{n}^{2} days

Proof

- The total length of the lists of all males is

$$
n \times n=n^{2} \text {. }
$$

- Each day at least one male gets a "No", so at least one female is deleted from one of the lists.
- Therefore, the number of days is bounded by the original size of the master list $=n^{2}$.

Great! We know that TMA will terminate and produce a pairing.
\qquad
\qquad
\qquad

But is it stable?

Theorem: TMA. Produces a stable pairing.

1. Let m_{1} and f_{1} be any couple in T.
2. Suppose m_{1} prefers f_{2} over f_{1}.
3. We will argue that f_{2} prefers her husband over m_{1}.
4. During TMA, male m_{1} proposed to f_{2} before he proposed to f_{1}
5. Hence, at some point f_{2} rejected \boldsymbol{m}_{1} for someone she preferred.
6. By the Improvement lemma, the man she married was also preferable to m_{1}
7. Thus, every male will be rejected by any female he prefers to his wife.
8. T is stable. QED.

Forget TMA for a moment

-How should we define what we mean when we say "the optimal female for male b "?

Flawed Attempt:
"The female at the top of b's list"

The Optimal female

- A male's optimal female is the highest ranked female for whom there is some stable matching in which they are married.
-(note - this is not always the highest female on his list).
- She is the best female he can conceivably get in a stable world. Presumably, she might be better than the female he gets in the stable pairing output by TMA.
\qquad

\qquad
\qquad

Thm: TMA in a sequential way

Assume: At each time stamp, (every 'tick' of the clock) there is exactly one event:

- Event: a single man proposes, and if got rejected, his next proposal will be in next time stamp)

Note: The exact order is not crucial:

- If both $\boldsymbol{m}_{\boldsymbol{l}}, \boldsymbol{m}_{2}$ are proposing to \boldsymbol{f}, the result is the same independent of whom proposed first.

[^0]\qquad

The Pessimal male

- A female's pessimal male is the lowest ranked male for whom there is some stable matching which the female gets him.
- He is the worst male she can conceivably get in a stable world.

Thm: The TMA is female-pessimal.

Proof: We know it is male-optimal. $\left(\boldsymbol{m}_{l,} f_{l}\right)$ is a couple in $\boldsymbol{T M A},=>f_{1}$ is \boldsymbol{m}_{1} optimal female.
Suppose there is a stable pairing S where some female f_{1} does worse than in TMA.

- Let \boldsymbol{m}_{I} be $\boldsymbol{f}_{\boldsymbol{I}}$ husband in TMA.
- Let \boldsymbol{m}_{2} be \boldsymbol{f}_{1} husband in S
($\boldsymbol{m}_{2}, \boldsymbol{f}_{1}$) is a couple in \boldsymbol{S} (\boldsymbol{m}_{2} is worse than \boldsymbol{m}_{1})
- By assumption, \boldsymbol{m}_{I} prefers f_{1} over his wife f_{2} in S
- (since f_{1} is his optimal female)
- So ($\left.\boldsymbol{m}_{1}, \boldsymbol{f}_{\boldsymbol{l}}\right)$ is a rogue couple. \qquad
- Therefore, S is not stable. QED

REFERENCES

-D. Gale and L. S. Shapley, College admissions and the stability of marriage, American Mathematical Monthly 69 (1962), 9-15
-Dan Gusfield and Robert W. Irving, The Stable Marriage Problem: Structures and Algorithms, MIT Press, 1989 \qquad
\qquad

[^0]: Thm: TMA produces a male-optimal pairing
 Proof: Suppose, for a contradiction, that some male gets rejected by his optimal female during TMA.

 - Let \boldsymbol{t} be the earliest time at which a male \boldsymbol{m}_{l} got rejected by his optimal female \boldsymbol{f} (Florence)
 - Florence rejected $\boldsymbol{m}_{\boldsymbol{l}}$ because she said "maybe" a preferred male \boldsymbol{m}_{2}
 \boldsymbol{m}_{2} had not yet been rejected by his optimal female (by the definition of t).
 - Therefore \boldsymbol{f} is either the optimal female of \boldsymbol{m}_{2} Or f is higher the optimal female in his list.

 That is, in any stable world, \boldsymbol{m}_{2} would either be married to \boldsymbol{f}, or to somebody lower on his list (definition of opt)
 -Let \boldsymbol{S} be the matching at which ($\boldsymbol{m}_{1, \boldsymbol{f}} \boldsymbol{f}$) are married
 (\boldsymbol{S} is NOT the result of the TMA)
 -Now consider $\left(\boldsymbol{m}_{2,} \boldsymbol{f}\right)$ - they are a rouge couple. QED

