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String Matching 

•  Input: Two strings T[1…n] and P[1…m], 
containing symbols from alphabet Σ 

•  Goal: find all “shifts” 0≤ s ≤n-m such that  
  T[s+1…s+m]=P 

•  Example:  
– Σ={ ,a,b,…,z} 
– T[1…18]=“to be or not to be” 
– P[1..2]=“be” 
– Shifts: 3, 16 

Simple Algorithm 

    for s ← 0 to n-m 
    Match ← 1 
    for  j ← 1 to m 
        if T[s+j] ≠P[j] then 
            Match ← 0 
            exit loop 
    if Match=1 then output s 



Results 

•  Running time of the simple algorithm: 
– Worst-case: O(nm) 
– Average-case (random text): O(n) 

•  Is it possible to achieve O(n) for any input ? 
– Knuth-Morris-Pratt’77: deterministic 
– Karp-Rabin’81: randomized 

Karp-Rabin Algorithm 

•  A very elegant use of an idea that we have encountered 
before, namely… 

HASHING ! 
•  Idea:  

–  Hash all substrings T[1…m], T[2…m+1], T[3…m+2], 
etc. 

–  Hash the pattern P[1…m] 
–  Report the substrings that hash to the same value as P 

•  Problem: how to hash n-m substrings, each of length m, in 
O(n) time ? 

Implementation 
•  Attempt I: 

– Assume Σ={0,1} 
– Think about each Ts=T[s+1…s+m] as a 

number in binary representation, i.e., 
ts=T[s+1]20+T[s+2]21+…+T[s+m]2m-1 

T=111010010111  ; P=101=5  
 

(note that the most significant digit is the rightmost one)  
– Find a fast way of computing ts+1 given ts 
–  t0=111=7 ;  t1=110=3 ;  t2=101=5 ;  
–  t3=100=1; t4=010=2 ; t5=100=1 ; t6=001=4 ;      
– Output all s such that ts is equal to the number 

p represented by P 



Warning  

•  In this lecture, p is for “pattern”, not for 
“prime”.  

•  All primes are denoted by q  

The great formula 

•  How to transform 
ts=T[s+1]20+T[s+2]21+T[s+3]22+…+T[s+m]2m-1  

   into 
       ts+1=           T[s+2]20+T[s+3]21+…+T[s+m]2m-2+T[s+m+1]2m-1  

 
e.g. T=111010010111–need to transform 111 =>110 => 101    
•  Three steps: 

– Subtract T[s+1]20 

– Divide by 2 (i.e., shift the bits by one position) 
– Add T[s+m+1]2m-1 

•  Therefore:   ts+1= (ts- T[s+1]20)/2 + T[s+m+1]2m-1  

Algorithm 

•  Can compute ts+1 from ts using 3 arithmetic 
operations 

•  Therefore, we can compute all t0,t1,…,tn-m 
using O(n) arithmetic operations 

•  We can compute a number corresponding to 
P using O(m) arithmetic operations 

•  Are we done ? 



Problem 

•  To get O(n) time, we would need to perform 
each arithmetic operation in O(1) time 

•  However, the arguments are m-bit long ! 
•  It is unreasonable to assume that operations 

on such big numbers can be done in O(1) 
time 

•  We need to reduce the number range to 
something more managable 

Recall 

•  For any integers a,b,q 

•  (ab) mod q = ((a mod q) ( b mod q)) mod q  

•  (a+b) mod q = ((a mod q) + ( b mod q)) mod q  

The great formula (revised) 
•  How to transform 
t's= ( T[s+1]20+T[s+2]21+T[s+3]22+…+T[s+m]2m-1  ) mod q  
   into 

t’s+1=  (T[s+2]20+T[s+3]21+…+T[s+m]2m-2+T[s+m+1]2m-1) mod q  
  

 
e.g. T=111010010111–need to transform 111 =>110 => 101    

•  Four steps: 
– Subtract T[s+1]20  (either 0 or 1) 

– Divide by 2 (i.e., shift the bits by one position) 
– Add T[s+m+1]( 2m-1 mod q)  
– Compute mod q of the result 

•  Therefore: t’s+1= {(t’s- T[s+1]20)/2 + T[s+m+1]2m-1 } mod q 



Hashing 
•  We will  instead compute  

t’s=T[s+1]20+T[s+2]21+…+T[s+m]2m-1 mod q 
   where q is an “appropriate” prime number 
•  One can still compute t’s+1 from t’s : 

t’s+1= (t’s- T[s+1]20)*2-1+T[s+m+1]2m-1 mod q 

•  If q is not large, i.e., has O(log n) bits, we can 
compute all  t’s  (and p’) in O(n) time 

•  Recall  t’s= ts mod q.   
•  Only if t’s= p mod q we check if Ts=P (takes 

O(m) ). Might be a false positive  

Algorithm 

•  Let ∏ be a set of 2nm primes, each having 
O(log n) bits 

•  Choose q uniformly at random from ∏ 
•  Compute t’0, t’1, …., and p’ 
•  If t’s=p’ check if  T[s+1…s+m-1]=P 

(might be a false positive.)  

We will show that with high probability we 
have no false positive  

False positives 
•  Consider any ts≠p. We know that both 

numbers are in the range {0…2m-1} 
•  How many primes q are there such that      

ts mod q = p mod q   that is,    
(ts-p) mod q    =   0 mod q  

ts-p = Kq for some integer K, and q is a divisor of ts-p  
•  Such prime has to divide xs= ts-p   
•  Recall  xs ≤ 2m 
•  Represent x=q1

e1q2
e2…qk

ek, qi prime, ei≥1 
•  Since 2 ≤ qi , we have 2k ≤ xs ≤ 2m → k ≤ m 
•  There are ≤ m primes dividing xs 



Analysis  
•  Call a prime q  a “bad prime” for xs if q divides  ts-p . 

                that is, ts mod q = p mod q (false positive)  
Lemma: q is a bad prime with probability ≤½ 
•  Let ∏ be a set of 2nm primes, each having O(log n) bits 
•  We Choose q uniformly at random from ∏,   and compute  

  t’
0 , t’

1, …., t’
n-m and p’ 

•  Pretend that we are crossing out from ∏ all the bad primes.  
•  Cross out the divisors of ts-q,  for s=0,1,2,…n-m  
•  At most mn primes are crossed out.  
•  So at least mn are left in ∏  
•  We picked q at random, so with probability ≥½ it is not a bad 

prime.  QED 
 ∏={2   3   5   7   11  13  17  19 

  23  29  31  37  41    43   47  53}       Example m=2, n=4, |∏| =16 
 x1=15, x2=12, x3=26 , x4=49 

Conclusion 

•  With probability ≥½ we don’t have any 
false positives   

•  Also, the expected number of false positive 
is small, so the expected running time is 
O(n).   

 “Details” 

•  How do we know that such ∏ exists ? 
•  How do we choose a random prime from ∏ 

in O(n) time ? 



Prime density 

•  Primes are “dense”. I.e., if PRIMES(N) is 
the set of primes smaller than N, then 
asymptotically  

|PRIMES(N)|/N ~ 1/log N 
•  If N large enough, then 

|PRIMES(N)| ≥ N/(2log N)  

Prime density continued 

•  If we set N=9mn log n, and N large enough, 
then  

|PRIMES(N)| ≥ N/(2log N) ≥ 2mn 
•  All elements of PRIMES(N) are  

 log N = O(log n) bits long 


