
String Matching

Thanks to
 Piotr Indyk

String Matching

•  Input: Two strings T[1…n] and P[1…m],
containing symbols from alphabet Σ

•  Goal: find all “shifts” 0≤ s ≤n-m such that
 T[s+1…s+m]=P

•  Example:
– Σ={ ,a,b,…,z}
– T[1…18]=“to be or not to be”
– P[1..2]=“be”
– Shifts: 3, 16

Simple Algorithm

 for s ← 0 to n-m
 Match ← 1
 for j ← 1 to m
 if T[s+j] ≠P[j] then
 Match ← 0
 exit loop
 if Match=1 then output s

Results

•  Running time of the simple algorithm:
– Worst-case: O(nm)
– Average-case (random text): O(n)

•  Is it possible to achieve O(n) for any input ?
– Knuth-Morris-Pratt’77: deterministic
– Karp-Rabin’81: randomized

Karp-Rabin Algorithm

•  A very elegant use of an idea that we have encountered
before, namely…

HASHING !
•  Idea:

–  Hash all substrings T[1…m], T[2…m+1], T[3…m+2],
etc.

–  Hash the pattern P[1…m]
–  Report the substrings that hash to the same value as P

•  Problem: how to hash n-m substrings, each of length m, in
O(n) time ?

Implementation
•  Attempt I:

– Assume Σ={0,1}
– Think about each Ts=T[s+1…s+m] as a

number in binary representation, i.e.,
ts=T[s+1]20+T[s+2]21+…+T[s+m]2m-1

T=111010010111 ; P=101=5

(note that the most significant digit is the rightmost one)
– Find a fast way of computing ts+1 given ts
–  t0=111=7 ; t1=110=3 ; t2=101=5 ;
–  t3=100=1; t4=010=2 ; t5=100=1 ; t6=001=4 ;
– Output all s such that ts is equal to the number

p represented by P

Warning

•  In this lecture, p is for “pattern”, not for
“prime”.

•  All primes are denoted by q

The great formula

•  How to transform
ts=T[s+1]20+T[s+2]21+T[s+3]22+…+T[s+m]2m-1

 into
 ts+1= T[s+2]20+T[s+3]21+…+T[s+m]2m-2+T[s+m+1]2m-1

e.g. T=111010010111–need to transform 111 =>110 => 101
•  Three steps:

– Subtract T[s+1]20

– Divide by 2 (i.e., shift the bits by one position)
– Add T[s+m+1]2m-1

•  Therefore: ts+1= (ts- T[s+1]20)/2 + T[s+m+1]2m-1

Algorithm

•  Can compute ts+1 from ts using 3 arithmetic
operations

•  Therefore, we can compute all t0,t1,…,tn-m
using O(n) arithmetic operations

•  We can compute a number corresponding to
P using O(m) arithmetic operations

•  Are we done ?

Problem

•  To get O(n) time, we would need to perform
each arithmetic operation in O(1) time

•  However, the arguments are m-bit long !
•  It is unreasonable to assume that operations

on such big numbers can be done in O(1)
time

•  We need to reduce the number range to
something more managable

Recall

•  For any integers a,b,q

•  (ab) mod q = ((a mod q) (b mod q)) mod q

•  (a+b) mod q = ((a mod q) + (b mod q)) mod q

The great formula (revised)
•  How to transform
t's= (T[s+1]20+T[s+2]21+T[s+3]22+…+T[s+m]2m-1) mod q
 into

t’s+1= (T[s+2]20+T[s+3]21+…+T[s+m]2m-2+T[s+m+1]2m-1) mod q

e.g. T=111010010111–need to transform 111 =>110 => 101

•  Four steps:
– Subtract T[s+1]20 (either 0 or 1)

– Divide by 2 (i.e., shift the bits by one position)
– Add T[s+m+1](2m-1 mod q)
– Compute mod q of the result

•  Therefore: t’s+1= {(t’s- T[s+1]20)/2 + T[s+m+1]2m-1 } mod q

Hashing
•  We will instead compute

t’s=T[s+1]20+T[s+2]21+…+T[s+m]2m-1 mod q
 where q is an “appropriate” prime number
•  One can still compute t’s+1 from t’s :

t’s+1= (t’s- T[s+1]20)*2-1+T[s+m+1]2m-1 mod q

•  If q is not large, i.e., has O(log n) bits, we can
compute all t’s (and p’) in O(n) time

•  Recall t’s= ts mod q.
•  Only if t’s= p mod q we check if Ts=P (takes

O(m)). Might be a false positive

Algorithm

•  Let ∏ be a set of 2nm primes, each having
O(log n) bits

•  Choose q uniformly at random from ∏
•  Compute t’0, t’1, …., and p’
•  If t’s=p’ check if T[s+1…s+m-1]=P

(might be a false positive.)

We will show that with high probability we
have no false positive

False positives
•  Consider any ts≠p. We know that both

numbers are in the range {0…2m-1}
•  How many primes q are there such that

ts mod q = p mod q that is,
(ts-p) mod q = 0 mod q

ts-p = Kq for some integer K, and q is a divisor of ts-p
•  Such prime has to divide xs= ts-p
•  Recall xs ≤ 2m
•  Represent x=q1

e1q2
e2…qk

ek, qi prime, ei≥1
•  Since 2 ≤ qi , we have 2k ≤ xs ≤ 2m → k ≤ m
•  There are ≤ m primes dividing xs

Analysis
•  Call a prime q a “bad prime” for xs if q divides ts-p .

 that is, ts mod q = p mod q (false positive)
Lemma: q is a bad prime with probability ≤½
•  Let ∏ be a set of 2nm primes, each having O(log n) bits
•  We Choose q uniformly at random from ∏, and compute

 t’
0 , t’

1, …., t’
n-m and p’

•  Pretend that we are crossing out from ∏ all the bad primes.
•  Cross out the divisors of ts-q, for s=0,1,2,…n-m
•  At most mn primes are crossed out.
•  So at least mn are left in ∏
•  We picked q at random, so with probability ≥½ it is not a bad

prime. QED
 ∏={2 3 5 7 11 13 17 19

 23 29 31 37 41 43 47 53} Example m=2, n=4, |∏| =16
 x1=15, x2=12, x3=26 , x4=49

Conclusion

•  With probability ≥½ we don’t have any
false positives

•  Also, the expected number of false positive
is small, so the expected running time is
O(n).

 “Details”

•  How do we know that such ∏ exists ?
•  How do we choose a random prime from ∏

in O(n) time ?

Prime density

•  Primes are “dense”. I.e., if PRIMES(N) is
the set of primes smaller than N, then
asymptotically

|PRIMES(N)|/N ~ 1/log N
•  If N large enough, then

|PRIMES(N)| ≥ N/(2log N)

Prime density continued

•  If we set N=9mn log n, and N large enough,
then

|PRIMES(N)| ≥ N/(2log N) ≥ 2mn
•  All elements of PRIMES(N) are

 log N = O(log n) bits long

