String Matching

ALGORITHMS

Thanks to
Piotr Indyk

String Matching

Input: Two strings T[1...n] and P[1...m],
containing symbols from alphabet =

Goal: find all “shifts” 0< s <n-m such that
T[s+1...stm]=P
Example:
>={ab,...,z}
— T[1...18]="“to be or not to be”
P[1.2]=“be”
— Shifts: 3, 16

Simple Algorithm

for s <— 0 to n-m
Match <1
for j<— 1tom
if T[s+/] #P[/] then
Match < 0
exit loop
if Match=1 then output s

Results

* Running time of the simple algorithm:

— Worst-case: O(nm)

— Average-case (random text): O(n)

Is it possible to achieve O(n) for any input ?
— Knuth-Morris-Pratt’ 77: deterministic

— Karp-Rabin’ 81: randomized

Karp-Rabin Algorithm

* A very elegant use of an idea that we have encountered
before, namely...

HASHING !
e Idea:
— Hash all substrings T[1...m], T[2...m+1], T[3...m+2],
etc.

— Hash the pattern P[1...m]
— Report the substrings that hash to the same value as P

Problem: how to hash n-m substrings, each of length m, in
O(n) time ?

Implementation
o Attempt [:

— Assume >={0,1}

— Think about each T*=T[s+1...s+m] as a
number in binary representation, i.e.,

t=T[s+1]20+T[s+2]2'+.. +T[s+m]2™!

T=111010010111 ; P=101=5
)

—00—0
(note that the most significant digit is the rightmost one)
—Find a fast way of computing t_., given t,
t=111=7; t,=110=3 ; t,=101=5;
— t,=100=1; t,=010=2 ; t;=100=1 ; t,;=001=4 ;

— Output all s such that t_ is equal to the number
p represented by P

Warning

¢ In this lecture, p is for “pattern”, not for
“prime”.

 All primes are denoted by ¢

The great formula

* How to transform
t=T[s+1 120+ T[s+2]121+T[s+3]22+.. . +T[s+m]2™!
into
to = T[s+2]2%4+T[s+3]21+. . +T[s+m]2™2+T[s+m+1]2m!

e.g. T=111010010111-need to transform 111 =>110 => 101
* Three steps:

— Subtract T[s+1]2°

— Divide by 2 (i.e., shift the bits by one position)

— Add T[s+m+1]2m!
¢ Therefore: t = (t- T[s+1]2°)/2 + T[stm+1]2™!

Algorithm

+ Can compute t,, from t, using 3 arithmetic
operations

* Therefore, we can compute all t,t,,...t
using O(n) arithmetic operations

* We can compute a number corresponding to
P using O(m) arithmetic operations

* Are we done ?

Problem

* To get O(n) time, we would need to perform
each arithmetic operation in O(1) time

» However, the arguments are m-bit long !

* [t is unreasonable to assume that operations
on such big numbers can be done in O(1)
time

* We need to reduce the number range to
something more managable

Recall

 For any integers a,b,q

¢ (ab) mod q = ((a mod q) (b mod q)) mod q

¢ (atb) mod q = ((a mod q) + (b mod q)) mod q

The great formula (revised)
* How to transform
t'= (T[s+1]20+T[s+2]24+T[s+3]22+. .. +T[s+m]2™!) mod q
into
= (T[s+2]204+T[s+3]21+. . +T[s+m]2™2+T[s+m+1]2"!) mod q

e.g. T=111010010111-need to transform 111 =>110=> 101
» Four steps:
— Subtract T[s+1]2" (either 0 or 1)
— Divide by 2 (i.e., shift the bits by one position)
— Add T[s+m+1](2™ mod q)
— Compute mod q of the result
* Therefore: t’_,,= {(t';- T[s+1]2%)/2 + T[s+m+1]2™" } mod q

Hashing
* We will instead compute
t" =T[s+1]204+T[s+2]2'+.. +T[s+m]2™ ! mod q
where q is an “appropriate” prime number
¢ One can still compute t’ ., from t’ :
t' = (" - T[s+1]20)*2 4+ T[s+m+1]2™" mod q

* If q is not large, i.e., has O(log n) bits, we can
compute all t' (and p") in O(n) time

* Recall 7" = mod g.

* Only if t” .= p mod ¢ we check if T>=P (takes
O(m)). Might be a false positive

Algorithm

» Let [] be a set of 2nm primes, each having
O(log n) bits

* Choose q uniformly at random from [|
« Compute t’ o, t",,and p’

« Ift" =p’ check if T[s+1...s+m-1]=P
(might be a false positive.)

We will show that with high probability we
have no false positive

False positives

* Consider any t#p. We know that both
numbers are in the range {0...2"-1}

* How many primes q are there such that

t;mod q=pmod q thatis,
(t-p)modq = Omodq
t.-p = Kq for some integer K, and q is a divisor of t.-p

¢ Such prime has to divide x.= t;-p

» Recall x,<2m

¢ Represent x=q,°'q,**...q, %, g, prime, e>1

* Since 2 <q;, we have 2k <x <2"— k<m

* There are < m primes dividing x

Analysis
+ Call a prime q a “bad prime” for x_ if q divides t-p .
that is, t, mod q = p mod q (false positive)

Lemma: q is a bad prime with probability <>
» Let [] be a set of 2nm primes, each having O(log n) bits
* We Choose q uni’formly at random fr,0m [], and compute

to,t,.ost and p
 Pretend that we are crossing out from [all the bad primes.
* Cross out the divisors of t.-q, for s=0,1,2,...n-m
* At most mn primes are crossed out.
* So at least mn are left in [|
* We picked q at random, so with probability >/ it is not a bad

ime. QED
prime. Q M={2 3 57 11 13 17 19
2329 31 37 41 43 47 53}

n-m

Example m=2, n=4, |[]| =16
X, =15, x,=12, x;=26 , x,=49

Conclusion

* With probability > we don’t have any
false positives

* Also, the expected number of false positive
is small, so the expected running time is
O(n).

“Details”

* How do we know that such [] exists ?

* How do we choose a random prime from [|
in O(n) time ?

Prime density

Primes are “dense”. Le., if PRIMES(N) is
the set of primes smaller than N, then
asymptotically

[PRIMES(N)|/N ~ 1/log N
If N large enough, then

[PRIMES(N)| > N/(2log N)

Prime density continued

If we set N=9mn log n, and N large enough,
then

[PRIMES(N)| > N/(2log N) > 2mn
All elements of PRIMES(N) are
log N = O(log n) bits long

