String Matching

\qquad
\qquad
\qquad
\qquad

Thanks to \qquad
Piotr Indyk

String Matching

\qquad

- Input: Two strings T[1...n] and P[1...m], containing symbols from alphabet Σ
\qquad

Goal: find all "shifts" $0 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{m}$ such that
$\mathrm{T}[\mathrm{s}+1 \ldots \mathrm{~s}+\mathrm{m}]=\mathrm{P}$
\qquad

Example:
$-\Sigma=\{, \mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$
$-\mathrm{T}[1 \ldots 18]=$ "to be or not to be"

- P[1..2]="be"
- Shifts: 3, 16

Simple Algorithm

for $s \leftarrow 0$ to $n-m$
Match $\leftarrow 1$
for $j \leftarrow 1$ to m
if $\mathrm{T}[s+j] \neq \mathrm{P}[j]$ then
Match $\leftarrow 0$
exit loop
if Match=1 then output s

Results

- Running time of the simple algorithm:
- Worst-case: O(nm)
- Average-case (random text): O(n)
- Is it possible to achieve $\mathrm{O}(\mathrm{n})$ for any input?
- Knuth-Morris-Pratt' 77: deterministic
- Karp-Rabin' 81: randomized

Karp-Rabin Algorithm

\qquad

- A very elegant use of an idea that we have encountered before, namely..

HASHING !

- Idea:
- Hash all substrings $\mathrm{T}[1 \ldots \mathrm{~m}], \mathrm{T}[2 \ldots \mathrm{~m}+1], \mathrm{T}[3 \ldots \mathrm{~m}+2]$, etc.
- Hash the pattern P[1...m]
- Report the substrings that hash to the same value as P
- Problem: how to hash $n-m$ substrings, each of length m, in $\mathrm{O}(\mathrm{n})$ time ?

Implementation

\qquad

- Attempt I:
- Assume $\Sigma=\{0,1\}$
- Think about each $\mathrm{T}^{\mathrm{s}}=\mathrm{T}[\mathrm{s}+1 \ldots \mathrm{~s}+\mathrm{m}]$ as a number in binary representation, i.e.,
\qquad $\mathrm{t}_{\mathrm{s}}=\mathrm{T}[\mathrm{s}+1] 2^{0}+\mathrm{T}[\mathrm{s}+2] 2^{1}+\ldots+\mathrm{T}[\mathrm{s}+\mathrm{m}] 2^{\mathrm{m}-1}$
$\mathrm{T}=111010010111 ; \mathrm{P}=101=5$
(note that the most significant digit is the rightmost one) \qquad
- Find a fast way of computing t_{s+1} given t_{s} $-\mathrm{t}_{0}=111=7 ; \mathrm{t}_{1}=110=3 ; \mathrm{t}_{2}=101=5$;
$-\mathrm{t}_{3}=100=1 ; \mathrm{t}_{4}=010=2 ; \mathrm{t}_{5}=100=1 ; \mathrm{t}_{6}=001=4$;
- Output all s such that t_{s} is equal to the number p represented by P

Warning

- In this lecture, p is for "pattern", not for "prime".
- All primes are denoted by q

The great formula

- How to transform
$\mathrm{t}_{\mathrm{s}}=\mathrm{T}[\mathrm{s}+1] 2^{2}+\underline{T[\mathrm{~s}+2] \mathbf{2}^{1}+\mathrm{T}[\mathrm{s}+3] \mathbf{2}^{2}+\ldots+\mathrm{T}[\mathrm{s}+\mathrm{m}] \mathbf{2}^{\mathrm{m}-1}}$
into

e.g. $T=111010010111$-need to transform $111=>110=>101$
- Three steps:
- Subtract T[s+1]2 ${ }^{0}$
- Divide by 2 (i.e., shift the bits by one position)
- Add T[s+m+1]2 ${ }^{\mathrm{m}-1}$
- Therefore: $\mathrm{t}_{\mathrm{s}+1}=\left(\mathrm{t}_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] 2^{0}\right) / 2+\mathrm{T}[\mathrm{s}+\mathrm{m}+1] 2^{\mathrm{m}-1}$

Algorithm

- Can compute $\mathrm{t}_{\mathrm{s}+1}$ from t_{s} using 3 arithmetic operations
- Therefore, we can compute all $\mathrm{t}_{0}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}-\mathrm{m}}$ using $\mathrm{O}(\mathrm{n})$ arithmetic operations
- We can compute a number corresponding to P using $\mathrm{O}(\mathrm{m})$ arithmetic operations
- Are we done?

Problem

- To get $\mathrm{O}(\mathrm{n})$ time, we would need to perform each arithmetic operation in $\mathrm{O}(1)$ time
- However, the arguments are m-bit long !
- It is unreasonable to assume that operations on such big numbers can be done in $\mathrm{O}(1)$ time
- We need to reduce the number range to something more managable

Recall

- For any integers a, b, q
- $(a b) \bmod q=((a \bmod q)(b \bmod q)) \bmod q$
- $(\mathrm{a}+\mathrm{b}) \bmod \mathrm{q}=((\mathrm{a} \bmod \mathrm{q})+(\mathrm{b} \bmod \mathrm{q})) \bmod \mathrm{q}$

The great formula (revised)

- How to transform
 $\mathrm{t}_{\mathrm{s}}=\left(\mathrm{T}[\mathrm{s}+1] 2^{0}+\mathrm{T}[\mathrm{s}+2] 2^{1}+\mathrm{T}[\mathrm{s}+3] 2^{2}+\ldots+\mathrm{T}[\mathrm{s}+\mathrm{m}] 2^{\mathrm{m}-1}\right) \bmod \mathrm{q}$

into
$\mathrm{t}^{\prime}{ }_{\mathrm{s}+1}=\left(\underline{\left.\mathrm{T}[\mathrm{s}+2] 2^{0}+\mathrm{T}[\mathrm{s}+3] 2^{1+}+\ldots+\mathrm{T}[\mathrm{s}+\mathrm{m}] 2^{\mathrm{m}-2}+\mathrm{T}[\mathrm{s}+\mathrm{m}+1] 2^{\mathrm{m}-1}\right) \bmod \mathrm{q}}\right.$
e.g. $\mathrm{T}=111010010111$-need to transform $111 \Rightarrow>110=>101$

- Four steps:
- Subtract T[s $\left.{ }^{+1} 1\right] 2^{0}$ (either 0 or 1)
- Divide by 2 (i.e., shift the bits by one position)
- Add $\mathrm{T}[\mathrm{s}+\mathrm{m}+1]\left(2^{\mathrm{m}-1} \bmod \mathrm{q}\right)$
- Compute mod q of the result
- Therefore: $\mathrm{t}_{\mathrm{s}+1}=\left\{\left(\mathrm{t}^{\prime} \mathrm{s}^{-} \mathrm{T}[\mathrm{s}+1] 2^{\circ}\right) / 2+\mathrm{T}[\mathrm{s}+\mathrm{m}+1] 2^{\mathrm{m}-1}\right\} \bmod \mathrm{q}$

Hashing

- We will instead compute $\mathrm{t}^{\prime}{ }_{\mathrm{s}}=\mathrm{T}[\mathrm{s}+1] 2^{2}+\mathrm{T}[\mathrm{s}+2] 2^{1}+\ldots+\mathrm{T}[\mathrm{s}+\mathrm{m}] 2^{\mathrm{m}-1} \bmod \mathrm{q}$ \qquad where q is an "appropriate" prime number
- One can still compute $\mathrm{t}^{\prime}{ }_{\mathrm{s}+1}$ from $\mathrm{t}^{\prime}{ }_{\mathrm{s}}$: $\mathrm{t}^{\prime}{ }_{\mathrm{s}+1}=\left(\mathrm{t}^{\prime}{ }_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] 2^{0}\right)^{*} 2^{-1}+\mathrm{T}[\mathrm{s}+\mathrm{m}+1] 2^{\mathrm{m}-1} \bmod \mathrm{q}$
- If q is not large, i.e., has $\mathrm{O}(\log n)$ bits, we can compute all $\mathrm{t}^{\prime}{ }_{\mathrm{s}}$ (and p') in $\mathrm{O}(\mathrm{n})$ time \qquad
- Recall $t^{\prime}{ }_{s}=t_{s} \bmod q$.
- Only if $t^{\prime}{ }_{s}=p \bmod q$ we check if $\mathrm{T}^{\mathrm{s}}=\mathrm{P}$ (takes $\mathrm{O}(\mathrm{m})$). Might be a false positive

Algorithm

\qquad

Let Π be a set of 2 nm primes, each having $\mathrm{O}(\log \mathrm{n})$ bits

- Choose q uniformly at random from Π
- Compute $\mathrm{t}^{\prime}{ }_{0}, \mathrm{t}^{\prime}{ }_{1}, \ldots$, and $\mathrm{p}{ }^{\prime}$
- If $\mathrm{t}^{\prime}{ }_{\mathrm{s}}=\mathrm{p}^{\prime}$ check if $\mathrm{T}[\mathrm{s}+1 \ldots \mathrm{~s}+\mathrm{m}-1]=\mathrm{P}$ (might be a false positive.)

We will show that with high probability we
\qquad
\qquad
\qquad
\qquad
\qquad have no false positive

False positives

- Consider any $\mathrm{t}_{\mathrm{s}} \neq \mathrm{p}$. We know that both numbers are in the range $\left\{0 \ldots 2^{\mathrm{m}}-1\right\}$
- How many primes q are there such that $\mathrm{t}_{\mathrm{s}} \bmod \mathrm{q}=\mathrm{p} \operatorname{modq}$ that is, $\left(\mathrm{t}_{\mathrm{s}}-\mathrm{p}\right) \bmod \mathrm{q}=0 \bmod \mathrm{q}$
$\mathrm{t}_{\mathrm{s}}-\mathrm{p}=\mathrm{Kq}$ for some integer K , and q is a divisor of $\mathrm{t}_{\mathrm{s}}-\mathrm{p}$
- Such prime has to divide $\mathrm{x}_{\mathrm{s}}=\mathrm{t}_{\mathrm{s}}-\mathrm{p}$ \qquad
- Recall $\mathrm{x}_{\mathrm{s}} \leq 2^{\mathrm{m}}$
- Represent $x=q_{1}{ }^{e 1} \mathrm{q}_{2}{ }^{\mathrm{e} 2} \ldots \mathrm{q}_{\mathrm{k}}{ }^{\mathrm{ek}}, \mathrm{q}_{\mathrm{i}}$ prime, $\mathrm{e}_{\mathrm{i}} \geq 1$ \qquad
- Since $2 \leq q_{i}$, we have $2^{\mathrm{k}} \leq \mathrm{x}_{\mathrm{s}} \leq 2^{\mathrm{m}} \rightarrow \mathrm{k} \leq \mathrm{m}$
- There are $\leq m$ primes dividing x_{s}

Analysis - Call a prime q a "bad prime" for x_{s} if q divides t_{s} - p that is, $\mathrm{t}_{\mathrm{s}} \bmod \mathrm{q}=\mathrm{p} \bmod \mathrm{q}$ (false positive)	
Lemma: q is a bad prime with probability $\leq 1 / 2$	
- Let Π be a set of 2 nm primes, each having $\mathrm{O}(\log \mathrm{n})$ bits	
- We Choose q uniformly at random from Π, and compute $\mathrm{t}_{0}^{\prime}, \mathrm{t}_{1}^{\prime}, \ldots, \mathrm{t}_{\mathrm{n}-\mathrm{m}}^{\prime}$ and p^{\prime}	
- Pretend that we are crossing out from Π all the bad primes. - Cross out the divisors of $\mathrm{t}_{\mathrm{s}}-\mathrm{q}$, for $\mathrm{s}=0,1,2, \ldots \mathrm{n}-\mathrm{m}$	
- At most mn primes are crossed out.	
- So at least $\boldsymbol{m n}$ are left in Π	
- We picked q at random, so with probability $\geq 1 / 2$ it is not a bad prime. QED	
	$\Pi=\left\{\begin{array}{llllllllll}2 & 3 & 5 & 7 & 11 & 13 & 17 & 19\end{array}\right.$
$\begin{aligned} & \text { Example } \mathrm{m}=2, \mathrm{n}=4,\|\Pi\|=16 \\ & x_{1}=15, x_{2}=12, x_{3}=26, x_{4}=49 \end{aligned}$	$\begin{array}{lllllllll}23 & 29 & 31 & 37 & 41 & 43 & 47 & 5\end{array}$

\qquad
\qquad

- Let Π be a set of $2 n m$ primes, each having $O(\log n)$ bits
- We Choose quiformly at random from П, and compute

$$
\mathrm{t}_{0}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}-\mathrm{m}} \text { and } \mathrm{p}^{\prime}
$$

- Pretend that we are crossing out from Π all the bad primes.

Cross out the divisors of $\mathrm{t}-\mathrm{q}$, for $\mathrm{s}=0,1,2, \ldots \mathrm{n}-\mathrm{m}$

- At most min pins

So at least $m n$ are left in 11 prime. QED

Example $\mathrm{m}=2, \mathrm{n}=4,|\Pi|=16$
$\left.\begin{array}{llllllll}23 & 29 & 31 & 37 & 41 & 43 & 47 & 53\end{array}\right\}$

Conclusion

- With probability $\geq 1 / 2$ we don't have any false positives
- Also, the expected number of false positive is small, so the expected running time is $\mathrm{O}(\mathrm{n})$.

"Details"

- How do we know that such Π exists ?
- How do we choose a random prime from Π in $\mathrm{O}(\mathrm{n})$ time?

Prime density

- Primes are "dense". I.e., if PRIMES(N) is the set of primes smaller than N, then asymptotically
|PRIMES(N)| $\mathrm{N} \sim 1 / \log \mathrm{N}$
- If N large enough, then
$|\operatorname{PRIMES}(\mathrm{N})| \geq \mathrm{N} /(2 \log \mathrm{~N})$

Prime density continued

- If we set $\mathrm{N}=9 \mathrm{mn} \log \mathrm{n}$, and N large enough, then
\mid PRIMES $(\mathrm{N}) \mid \geq \mathrm{N} /(2 \log \mathrm{~N}) \geq 2 \mathrm{mn}$
- All elements of PRIMES(N) are
$\log \mathrm{N}=\mathrm{O}(\log \mathrm{n})$ bits long

