
CSc445
Brief Class Notes

In this note, I will provide some brief descriptions and pointers to the
material discussed in class, and note coved in the slides handouts. I will try
to give some useful information, but these notes cannot replace being in class
and/or read the text.

Asympthotic notations and recursive formulas After a brief introduc-
tion, we discussed the assymptotic running time notations: big-O, Ω
and Θ. We showed seval examples. This material is well covered in the
text-book, and hence we do not provide more details here. We analysed
the running time of a few examples. One, of particular interset, is the
following

read(n)
for( i = 1 ; i ≤ n ; i + + )

for( j = 1 ; j ≤ n ; j+ = i )
print( “*” ) ;

We showed that its running time is
∑n

1 1/i = O(n log n).

Next we moved to recursive formulas. We analyzed using the itera-
tive method (see details below) simple recursions, such as the function
NoNeed(n) .

NoNeed(n)
read(n)
for( i = 1 ; i ≤ n ; i + +

Whose reursion formula is T (n) = cn+T (n− 1), (for some constant c)
and T (1) = c. Here as easily seen,

T (n) = cn + T (n) =

Tcn + (c(n− 1) + T (n− 1)) =

cn + c(n− 1) + c(n− 2) + T (n− 2) = . . . after k stages



c(n+(n−1)+(n−2)+(n−3)+(n−k))+T (n−k) = setting k = n− 1

c(n + (n− 1) + (n− 2) + · · ·+ 2) + T (1) = c

n∑
i=1

i = cn(n + 1)/2

Hence T (n) = Θ(n2).

Stable Marriage Algorithm – please check the slides handout.

SkipList I taught a version of the skip list at which each element is a single
cell. See slides handouts. In class we have also discussed briefly a
slightly different version, at which each element is represented as a
small array. If more details are needed, you could check the textbook
“ Structures & Their Algorithms, (Lewis & Denenberg).”

Some facts about the first version:

1. The expected number of levels in the SL is O(log n).

2. The expected size (memory used) is O(n).

3. The expected search time is O(log n). This dominates the ex-
pected time for insertion and deletion operations, and also of
successor operation. The operations succ(x) finds the smallest
element in the data structure which is strictly larger than x.

Augmenting data structures We demonstrated this structure on binary
search trees. The idea was to assign extra information (to augment
the tree) so each node v of contains some extra information — in the
example shown in class v also stores the number of keys in v’s subtree.

These fields can also help is find the k’th smallest element in the list,
in time O(log n), or to report the rank of any key x in O(log n).

Details about this implementation in search trees can be find the chap-
ter on augmented data structures in the textbook.

Quicksort and median selection in an array A[1..n]. Defined a good
pivot p as a pivot that at least %10 of the keys in A are smaller than
p, and at least %10 of the keys in A are larger than p. Discuss the 5-
random-elements method, and the probability that a pivot picked using
this method is a good one. Saw the applications to the expected time
of quick sort and of median selection.

Rigorous Analyzing the running time of QuickSort (not covered in the
sylibous, and not required for the exam). Consider sorting the keys
{k1 . . . kn}. Assume that We assume that we use a version of Quick-
Sort at which all elements are different, and the probability of each



element to be picked as a pivot is uniform. We showed that the run-
ning time is proportional to the number of pairs of elements which are
compared to each other (which happens when one of these elements is
the pivot). We define a random variable Xij which is 1 is at some point
at the course of the algorithm ki and kj are compared, and 0 otherwise.
Note that E(Xij), the expected value of Xij is

E(Xij) = 1 · Pr(Xij = 1) + 0 · Pr(Xij = 0) = Pr(Xij = 1) .

Note that the running time is O(
∑

1≤i<j≤nXij), and the expected run-
ning time is

E

( ∑
1≤i<j≤n

Xij

)
=

∑
1≤i<j≤n

E (Xij) =
∑

1≤i<j≤n

Pr(Xij = 1).

To evaluate Pr(Xij = 1), we only need to note that the algorithm
compares ki and kj if and only if either ki or kj were the first key to be
picked as pivot, from the set {ki, ki+1 . . . kj}. Since each of them has
the same probability to be picked, and there are j−1 + 1 keys between
(and including) ki and kj, we figure that Pr(Xij = 1) = 2

j−i+1
. Thus

E

( ∑
1≤i<j≤n

Xij

)
=

∑
1≤i<j≤n

2

j − i + 1
.

Since from the Harmonic sum formula we know that 1+ 1
2

+ 1
3

+ . . . 1
n

=
O(log n), we conclude that

E

( ∑
1≤i<j≤n

Xij

)
=

∑
1≤i<j≤n

2

j − i + 1
= n ·O(log n) = O(n log n)

Hashing (from the slides). We discussed the common applications to stor-
age items in a hash table. Chain hashing vs. Open addressing — pros
and cons of each.

On the whiteboard, we discussed the ‘obsession’ for primes. Analyse
the behavior of the sequence ((i · a) mod m) where i = 0, 1 . . . ,m− 1,
0 < a ≤ m− 1 is an integer and m is a prime.

We will see usages of hashing to generating random numbers, Bloom
Filter and string matching.


