Tries and suffixes trees

Alon Efrat
Computer Science Department
University of Arizona

Trie: A data-structure for a set of words

All words over the alphabet $\Sigma = \{a,b,..z\}$.
In the slides, let say that the alphabet is only $\{a,b,c,d\}$
S – set of words = $\{a,aba, a, aca, adds\}$
Need to support the operations
• $\text{insert}(w)$ – add a new word w into S.
• $\text{delete}(w)$ – delete the word w from S.
• $\text{find}(w)$ is w in S ?
• Future operation:
 - Given text (many words) where is w in the text.
 - The time for each operation should be $O(k)$, where k is
 the number of letters in w
 - Usually each word is associated with addition info –
 not discussed here.

Trie (Tree+Retrieve) for S

A tree where each node is a struct consist
Struct node {
 char[4] *ar;
 char flag ; /* 1 if a word ends at this node.
 Otherwise 0 */
}

Rule: Each node corresponds to a word.
(which is in S if the flag is 1)
A trie - example

Finding if word \(w \) is in the tree

Inserting a word \(w \)
Deleting a word w

- Find the node p corresponding to w (using 'find' operation).
- Set the flag field of p to 0.
- If p is dead (i.e. flag==0 and all pointers are NULL) then free(p), set p=parent(p) and repeat this check.

Heuristics for space saving

- The space required is $\Theta(|\Sigma||S|)$.
- To save some space, if Σ is larger, there are a few heuristics we can use. Assume $\Sigma=$\{a,b,..z\}.
- We use two types of nodes
 - Type "A", which is used when the number of children of a node is more than 3.
 - Type "B" is used if there are 3 or less children: The "letter" of the child is also stored:

type	a	b	letter pointer	flag
A				
B			letter pointer	flag

 Note – the letters are not stores explicitly.

- The rule of the flag is the same as in type "A" nodes.
- We only store the 3 pointers, but we need to know to which letters they correspond to.
Another Heuristics – path compression

- Replace a long sequence of nodes that happens to have only one child, with a single node (of type “pointer to string”) that keeps a point to the next node, and a point to a string.

Suffix tree.

- Assume \(B \) (for book) is a long text.
- Want to preprocess \(B \), so when a word \(w \) is given, we could quickly find if it is in \(B \).
 - (as well as locations, how many etc)
- We can find it in \(O(|w|) \).
- Idea:
 - Consider \(B \) as a long string.
 - Create a trie \(T \) of all suffixes of \(B \).
 - In addition to the flag (specifying if a word ends at node), we also stored the index in \(B \) where this word begins.
- Example \(B=\text{"aabab"} \)
 - \(S=\{\text{"aabab"}, \text{"abab"}, \text{"bab"}, \text{"ab"}, \text{"b"}\} \)
 - To know where a word appear in \(B \), we store with each node the index of the beginning of the suffix in \(B \).
 - (we can store only the first appearance of the word in the text)
Size of suffix tree

Example \(B = \text{"aabab"} \) \(S = \{ \text{"aabab"}, \text{"abab"}, \text{"bab"}, \text{"ab"}, \text{"b"} \} \)

Assume \(n = |B| \).
Total length of all string \(\Theta(n^2) \)
Size of a node is \(|\Sigma| \)
So size of the tree is \(\Theta(n^2 |\Sigma|) \).
Time to construct the tree \(\Theta(n^2) \)

Rather than a flag, we store the first index where the suffix appear

Size of suffix tree

Example \(B = \text{"aabab"} \) \(S = \{ \text{"aabab"}, \text{"abab"}, \text{"bab"}, \text{"ab"}, \text{"b"} \} \)

Assume \(n = |B| \).
Total length of all string \(\Theta(n^2) \)
Size of a node is \(|\Sigma| \)
So size of the tree is \(\Theta(n^2 |\Sigma|) \).
Time to construct the tree \(\Theta(n^2) \)

In addition to the flag, we store the first index (in the book) where the suffix starts (in red)

Suffix tries on a diet

Def: a shred is a path from node \(u \) to node \(v \) in the trie, consisting of nodes of outdegree 1 (except maybe the last one) and flag=0.

Obs: There is a contiguous part of \(B \), identical to the string the shred represents. We call this part the shred-string

We stores \(B \) itself as an array.
We use a new type of nodes, called shred-nodes, that maintain only the indexes of the first (\(id_1 \)) and last (\(id_2 \)) letters of the shred-string in \(B \).
Algorithm for constructing a "thin" trie:
Given B – create an empty trie T, and insert all n suffixes of B into T --- generating a trie of size $\Theta(n^2)$.
Traverse the tries, and each time that a shred is seen, replace all nodes of the shred with a single shred-node.

Clearly the use of shred nodes saves some—but can we prove something?

Observations: The number of leaves of T is at most $\leq n$ (every leaf is the end of one prefix).
In addition there are nodes have a single child, but their flag=1 (a suffixed have ended). We call them special nodes.

Observations: There are $\leq n$ special nodes.

Lemma: Let T be a tree where each internal node has outdegree 2 or more, and m leaves. Then T has at most m internal nodes.

Back to thin suffix tries: T does not have exactly this property, but it is very close (no long shreds), so a "massaged" lemma still works, so

$\#\text{internal}_\text{nodes} \leq \#\text{leafs}_\text{nodes} + \#\text{special}_\text{nodes}$

But $\#\text{leafs}_\text{nodes} + \#\text{special}_\text{nodes} \leq \#\text{suffixes}_\text{of}_B = n$

So the size of the trie is only a constant more than the size of the book.
Proof of lemma

Lemma: Let T be a tree where each internal node has outdegree 2 or more, and m leaves and k internal nodes. Then $k \leq m$.

Proof: Assume true for all trees with strictly less than m leaves, and assume T has m leaves.

Find a leaf u whose distance from root is maximum. Assume it has exactly one sibling v. Note that v is a leaf (why?). Let w be their common parent.

Remove both u and v from T. Let T' be the resulting tree. Let k', m' denote # internal nodes and leaves in T'. Now in T':

1. w is a leaf.
2. $m' = m - 2 + 1 = m - 1$.
3. $k' = k - 1$.
4. The outdegree of every internal node ≥ 2.

From induction, $k' \leq m'$. Hence $k \leq m$.

\[\text{Proof of lemma} \]