
1

Alon Efrat
Computer Science Department

University of Arizona

Tries and suffixes trees

2

Trie: A data-structure for a set of words

All words over the alphabet Σ={a,b,..z}.
In the slides, let say that the alphabet is only {a,b,c,d}
S – set of words = {a,aba, a, aca, addd}
Need to support the operations
•  insert(w) – add a new word w into S.
•  delete(w) – delete the word w from S.
•  find(w) is w in S ?

• Future operation:
• Given text (many words) where is w in the text.

• The time for each operation should be O(k), where k is
the number of letters in w

• Usually each word is associated with addition info –
not discussed here.

3

Trie (Tree+Retrive) for S

n  A tree where each node is a struct consist
n  Struct node {

n  char[4] *ar;
n  char flag ; /* 1 if a word ends at this node.

Otherwise 0 */
}

b c d a

ar

flag

1

b c d a
ar

flag
1

Rule:
 Each node corresponds to a word w
 (w which is in S iff the flag is 1) 4

A trie - example

b c d a

b c d a b c d a
b c d a

b c d a

b c d a

a b d

b

b

1 1 0

0

0

1

S={a,b,dbb}

Corr. To w=“db”
(not in S, flag=0)

Note: The label of an edge is the label of
the cell from which this edge exits p->ar[‘b’-’a’]

p

Corr. to w=“dbb”
In S, so flag=1

Corresponding to w=“d”

2

5

Finding if word w is in the tree

p=root; i =0
While(1){
n  If w[i] == ‘\0’ // we scanned all letters of w

n  then return the flag of p ; // True/False
n  If the entry of p correspond to w[i] is NULL

 return false;
n  Set p to be the node pointed by this entry, and set i++;
}

6

Inserting a word w

Recall – we need to modify the tree so find(w) would return
TRUE.

n Try to perform find(w).
n  If runs into a NULL pointers, create new node(s) along

the path.
n  The flag fields of all new node(s) is 0.

n Set the flag of the last node to 1

7

Inserting “cbb”

b c d a

b c d a b c d a
b c d a

b c d a

b c d a

a b d

b

b

1 1 0

0

0

1

S={a,b,dbb, cbb}

Corr. to w=“db”

Note: The label of an edge is the label of
the cell from which this edge exits p->ar[‘b’-’a’]

p

Corr. to w=“dbb”
In S, so flag=1

Corr. to w=“d”

Try to perform find(cbb).
If runs into a NULL pointers, create
new node(s) along the path.
The flag fields of all new node(s)=0.
Set the flag of the last node to 1

7

0

b

b

b c d a
0

b c d a
w=“cb”

b c d a
1 w=“cbb” 8

Deleting a word w

n  Find the node p corresponding to w (using `find’
operation).

n  Set the flag field of p to 0.

n  If p is dead (I.e. flag==0 and all pointers are NULL)
then free(p), set p=parent(p) and repeat this check.

3

9

Space requirements

n  Let m be is the sum of characters of all words in S

n  The space required might be Θ(|Σ | m)
n  (for each letter of each words of S, we need an array of size

|Σ |
(Might be an issue by itself, and might slow down
performances)

p
a flag b z

Note – the letters are not stores explicit ally

10

Heuristics for space saving

n  To save some space, if Σ is larger, there are a few
heuristics we can use. Assume Σ={a,b..z} .

n  We use two types of nodes

n  Type “A”, which is used when the number of children of a
node is more than 3

p
type a flag b z

Note – the letters are not stores explicit ally

11

Heuristics for space saving

n  Type “B” is used if there are 3 or less children:
n  The “letter” of the child is also stored:

p
type letter pointer letter pointer letter pointer flag

B F R

• The rule of the flag is the same as in type “A” nodes.
• We only store the 3 pointers, but we need to know to which
letters they corresponds to

Another Heuristics – path compression

n  Replace a long sequence of nodes that
happens to have only a single child, with
a single node (of type “pointer to string”)
that keeps a point to the next node, and a
point to a string.

b c d a

b c d a

b c d a

b c d a

“bbac\0”
b c d a type

b c d a

4

13

Suffix tree.

n  Assume B (for book) is a long text.
n  Want to preprocess B, so when a word w is given, we could

quickly find if it is in B. (incremental search)

n  (as well as locations, how many etc)

n  We can find it in O(|w|).

n  Idea:
n  Consider B as a long string.
n  Create a trie T of all suffixes of B.
n  In addition to the flag (specifying if a word ends at node),

we also stored the index in B where this word begins.
n  Example B=“aabab”

 S={“aabab”, “abab”, “bab”, “ab”, “b”} 14

Suffix tree.

Example B=“aabab” S={“aabab”, “abab”, “bab”, “ab”, “b”}

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

1

1

1

1

1

To know where a word
appear in B, we store with
each node the index of the
beginning of the suffix in B.

(we can store only the first
appearance of the word in
the text)

15

Size of suffix tree

Example B=“aabab” S={“aabab”, “abab”, “bab”, “ab”, “b”}

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

1

1

1

1

1

Assume n=|B|.
Total length of all string Θ(n2)
Size of a node is |Σ|
So size of the tree is Θ(n2 |Σ|).

Time to construct the tree Θ(n2)

Rather than a flag, we store the
first index where the suffix
appear

Example B=“aabab”
S={“aabab”, “abab”, “bab”, “ab”, “b”}

16

Size of suffix tree

Example B=“aabab” S={“aabab”, “abab”, “bab”, “ab”, “b”}

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

b c d a

1

1

1

1

1

Assume n=|B|.
Total length of all string Θ(n2)
Size of a node is |Σ|
So size of the tree is Θ(n2 |Σ|).

Time to construct the tree Θ(n2)

In addition to the flag, we store
the first index (in the book)
where the suffix starts (in red)

Example B=“aabab”
S={“aabab”, “abab”, “bab”, “ab”, “b”}

1

1

2

2

2

1

1

1

1

3

12345

3

3

5

17

Suffix tries on a diet
Def: a shred is a path from node u to node v in the

trie, consisting of nodes of outdegree 1 (except
maybe the last one) and flag=0.

Obs: There is a contiguous part of B, identical to the
string the shred represents. We call this part the
shred-string

We stores B itself as an array.
We use a new type of nodes, called shred-nodes,

that maintain only the indexes of the first (id1)
and last (id2) letters of the shred-string in B.

b c d a

b c d a

b c d a

b c d a

b c d a

B=“cadbdaadbd

b c d a type flag id1 id2
10 7 7 10 1

Example for shred of “adbd”
18

Suffix tries on a diet - cont

Algorithm for constructing a “thin” trie:

Given B – create an empty trie T, and insert all n
suffixes of B into T --- generating a trie of size
Θ(n2).

Traverse the tries, and each time that a shred is
seen, replace all nodes of the shred with a
single shred-node.

b c d a

b c d a

b c d a

b c d a

b c d a

19

Suffix tries on a diet - cont

Clearly the use of shred nodes saves some-but
can we prove something ?

Observations: The # number of leaves of T is
at most ≤ n

(every leaf is the end of one prefix).

In addition there are nodes have a single child,
but their flag=1 (a suffixed have ended). We
call them special nodes.

Observations: There are ≤ n special nodes.

b c d a

b c d a

b c d a

b c d a

b c d a

20

n  Thanks for patience.

n  See you at the review

6

21

Suffix tries on a diet - cont

Lemma: Let T be a tree where each internal node has
outdegree 2 or more, and m leaves. Then T has at
most m internal nodes.

Back to thin suffix tries: T does not have exactly this
property, but it is very close (no long shreds), so a
“massaged” lemma still works, so

 #internal_nodes is ≤ #leafs_nodes+#special_nodes,

But #leafs_nodes + #special_nodes ≤

 #suffixes_of_B = n

So the size of the trie is only a constant more than the
size of the book.

22

Proof of lemma (just FYI)
Lemma: Let T be a tree where each internal node

 has outdegree 2 or more, and m leaves and k
 internal nodes. Then k≤m

Proof: Assume true for all trees with strictly less
than m leaves, and assume T has m leaves.

Find a leaf u whose distance from root is maximum.
Assume it has has exactly one sibling v. Note that v is a

leaf (why ?). Let w be their common parent.
Remove both u and v from T. Let T’ be the resulting tree.
Let k’, m’ denote # internal nodes and leaves in T’. Now in T’

①  w is a leaf.
②  m’=m-2+1=m-1.
③  k’=k-1.
④  The outdegree of every internal node ≥2

 From induction, k’ ≤ m’. Hence k≤m

u v

w

