Searching a key x in a sorted linked list

1. cell $p = \text{head}$
2. while ($p->key < x$) $p = p->next$
3. return p; // (which is either equal or larger than x)

Note:
- The $-\infty$ and ∞ elements are not "real" keys.
- They are in the list to prevent checking special cases
- Sometimes we prefer to return the element proceeding the one containing x. Then line 2 is replaced with
 while ($p->next->key < x$) $p = p->next$

Inserting a key into a Sorted linked list

To insert 35 -
- $p = \text{find}(35)$; // find the proceeding element – the next one is > 35
- CELL *$p1$ = (CELL *) malloc(sizeof(CELL));
- $p1->key = 35$;
- $p1->next = p->next$;
- $p->next = p1$;
To delete 37 -
- p = find(37); // Again find proceeding element
- CELL *p1 = p->next;
- p->next = p1->next;
- free(p1);

SKIP LIST - A data structure for maintaining keys in a sorted order

Rules:
- Consists of several levels.
- All keys appear in level 1.
- Each level is a sorted list.
- If key x appears in level i, then it also appears in all levels below level i.
- First element in each level has key $-\infty$.
- Last element has key $+\infty$.
- First element in upper level is pointed to by variable top.

More rules
- An element in level $i \geq 1$ points (via down pointer) to the element with the same key in the level below.
- Elements in the lowest level have down-pointer = NULL.
- Also maintain a counter specifying the number of levels.
Finding an element with key x

```c
while(1){
    while (p->next->key <= x) p=p->next;
    if (p->down == NULL) return p;
    p=p->down;
}
```

If the key x is in SL, we return a pointer to the lowest element contain x. If x is not in SL, return pointer to lowest predecessor.

A “perfect” SkipList

Scheme for creation a well-performing SL

- Start from Level 1 (lowers level)
- For $i = 2, 3, ...$
 - Generating of Level i, we scan the keys in level $i-1$
 - Each second key is "promoted" to participate in level i as well.
A "perfect" SkipList

Most SL are not perfect.
Hard to maintain

A SL is Perfect if between every two consecutive keys of level \(i \) there is exactly one key of level \(i-1 \).

Scheme for creation a well-performing SL

- Start from Level 1 (lowest level)
- For \(i = 2, 3, \ldots \)
 1. Generation of Level \(i \):
 - we scan the keys in level \(i-1 \)
 - Each second key is "promoted" to participate in level \(i \) as well.

Most SL are not perfect.

Another example

```plaintext
p = top;
while(1){
  while (p -> next -> key ≤ x)
    p = p -> next;
  if (p -> down == NULL) return p;
  p = p -> down;
}
```

Example - inserting 119, \(k=2 \)

- Determine \(k \geq 1 \) defined as the number of levels in which \(x \) participates (explained later how)
- Perform \(\text{find}(x) \), but once the search path is in one of the lowest \(k \) levels:
 - \(x \) is inserted after the elements at which the search path branches down or terminates.
 - The next-pointer behave like a "standard" linked list
 - The down-pointer(s) point between themselves.
Inserting an element - cont.

- If \(k \) is larger than the current number of levels, add new levels (and update top, and num_of_levels counter)
- Example - insert(119) when \(k=4 \)
- Heuristic: Add at most one new level (not needed for the analysis)

Determining \(k \)

- \(k \) - the number of levels at which an element \(x \) participate.
- Use a random function OurRnd() --- returns 1 or 0 (True/False) with equal probability.
 - \(k=1 ; \)
 - While(OurRnd()==1) \(k++ ; \)

Deleting a key \(x \)

- Find \(x \) in all the levels it participates, using find(\(x \)).
- During the “find”, delete \(x \) from each level it participates using the standard “delete from a linked list” method.
- If one or more of the upper levels become empty, remove them (and update top and num_of_levels)
“expected” space requirement

- **Claim:** The expected number of elements is $O(n)$.
- The term “expected” here refers to the experiments we do while tossing the coin (or calling `OurRand()`). No assumption about input distribution.
- So imagine a given set, given set of operations insert/ del/find, but we repeat many times the experiments of constructing the SL, and count the #elements.

Facts about SL

- **Def:** The height of the SL is the number of levels
- **Claim:** The expected number of levels is $O(\log n)$
 - (here n is the number of keys)
 - **Proof**
 - The number of elements participate in the lowest level is n.
 - Since the probability of an element to participates in level 2 is $1/2$, the expected number of elements in level 2 is $n/2$.
 - Since the probability of an element to participates in level 3 is $1/4$, the expected number of elements in level 3 is $n/4$.
 - ...
 - The probability of an element to participate in level j is $(1/2)^{j-1}$ so number of elements in this level is $n/(2^{j-1})$.
 - So after $\log(n)$ levels, no element is left.

- **Claim:** The expected number of elements is $O(n)$.
 - (here n is the number of keys)
 - **Proof** (a rigorous proof requires the use of random variables)
 - The total number of elements is $n+n/2+n/4+n/8... \leq n(1+1/2+1/4+1/8...)$ = $2n$
 - To reduce the worst case scenario, we verify during insertion that k (the number of levels that an element participates in) is $\leq \log n$
 - **Conclusion:** The expected storage is $O(n)$.
More facts

- **Thm**: The expected time for `find/insert/delete` is $O(\log n)$

- **Proof** For all Insert and Delete, the time is \leq expected #elements scanned during `find(x)` operation.

- Will show: Need to scan expected $O(\log n)$ elements.

Thm: Expected time for `find` operation is $O(\log n)$

- **Proof** – we know that there are $O(\log n)$ levels. Will show that we spend $O(1)$ time in each level.

- Assume during `find(x)`, we scanned t elements, (for $t > 8$) in level r. Assume first that r is not the upper level.

- (The search visited b_1, branched down to b_2 and then visited b_3, b_4, b_7 (not sure what happened before or after)

- Level $r+1$:

- Level r:

- All smaller than x None of these 7 elements reached level $r+1$ (why?)

- The probability that none of these 7 elements reached level $r+1$ is $1/2^7$. For larger value of 7 – very slim.

Bounding time for insert/delete/find

- Putting it together: The expected number of elements scanned in each level is $O(1)$

- There are $O(\log n)$ levels

- Total time is $O(\log n)$

- As stated, getting bounds for time for insert/delete are similar
How likely is that the SL is too tall?

- Let's ask how likely it is that the \#levels is \(\log_2 n\), where \(Z=1,2,3,\ldots\)
- That is, we estimate the probability that the height of the SL is
 - \(\log_2 n\)
 - \(2 \log_2 n\)
 - \(3 \log_2 n\)
 - \(4 \log_2 n\)
 - \(\ldots\)

Reminder from probability

- Assume that \(A,B\) are two events. Let
 - \(\Pr(A)\) be the probability that \(A\) happens,
 - \(\Pr(B)\) be the probability that \(B\) happens
 - \(\Pr(A \cap B)\) is the probability that either event \(A\) happens or event \(B\) happens (or both).
- So probably that at least one of them happened is
 \[\Pr(A)+\Pr(B)-\Pr(A \cap B) \leq \Pr(A)+\Pr(B)\]
- Similarly, for 3 Events \(A_1,A_2,A_3\), the probability that at least one of them happens is
 \[\Pr(A_1 \cup A_2 \cup A_3) \leq \Pr(A_1)+\Pr(A_2)+\Pr(A_3)\]
- Example: In a roulette, we pick a number \(k\) between 1..38
 - Event \(A\): \(k\) is even. \(\Pr(A)=\Pr(k\text{ is even}) = 19/38 = 0.5\)
 - Event \(B\): \(k\) is divided by 3. \(\Pr(B)=12/38=0.315\)
 - \(\Pr(A \text{ or } B) = \Pr(k\text{ divided by 2}) + \Pr(k\text{ divided by 3})\)
 \[= 0.5 + 0.315 = 0.8\]

But how likely is that the SL is too tall?

- Assume the keys in the SL are \(\{x_1, x_2, \ldots, x_n\}\)
- The probability that \(x_j\) participates in at least \(k\) levels is \(2^{-k}\)
 - (same probability for all \(x_i\)).
- Define: \(A_j\) is the event that \(x_j\) participates in \(\geq k\) levels.
 - \(\Pr(A_j) \leq 2^{-k}\)
- Define: \(A_j\) is the event that \(x_j\) participates in \(\geq k\) levels
 - \(\Pr(A_j) \leq 2^{-k}\)
- If the height of SL \(\geq k\) then
 - at least one of the \(x_i\) participate in \(\geq k\) levels.
- The probability that any \(x_i\) participates in \(\geq k\) levels is \(\leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_n) = n \times 2^{-k}\)
- This is the probability that the height of the SL is \(\geq k\)
But how likely is that the SL is tall?

The probability that any x participates in at least k levels is $\leq n2^{-k}$. Then the height of the SL $\geq k$.

Recall $\gamma(ab) = (\gamma^a)^b$.

Write $k = z \log n$, and recall that $2^{\log n} = n$.

Want to find: The probability that the height is z times $\log n$.

Twice, 3 time, 4 times...

Then $2^k = 2^{(z \log n)} = (2^{\log n})^z = n^z = 1/n^z$

So $n2^k \leq n/z = 1/n^z$

This is the probability that the height of SL $\geq z \log n$

Example: $n = 1000$.

The probability that the height $\geq 7 \log n$ is $\leq 1/1000$.

The prob. that the height $\geq 10 \log n$ is $\leq 1/1000^2 = 1/10^{22}$

In other words (and with some hand-waving)

Assume we have a set of $n \geq 1000$ keys, and we keep rebuilding Skiplists for them.

Call a SL bad if its height $> 7 \log n$

First build SL_1

Then build SL_2 (for the same keys)

Then ...

Then SL_M where $M = 10^{20}$

Then less than 100 of them are bad.

Using Similar techniques we can also bound the probability that the search takes more than $z \log n$