Finding Nearby Neighbors and Locality-Sensitive Hashing

A problem commonly appearing in multiple areas of data analysis is the problem of finding neighbors in high dimensional data. Consider a set $S = \{p_1 \ldots p_n\}$, of points, where each point, all taken from a high-dimensional space. Let R be a given parameter. After preprocessing the points, we would like to answer queries such as

1. given a query point q, find the nearest point of S. That is, the point $p_i \in S$ whose distance from q is the smallest.
2. given a query point q, find all the points of S which are of distance $\leq R$.
3. etc

Two useful techniques, commonly used together are projections on small number of lines, and bucketing (hashing) on each line.

Rather than working in \mathbb{R}^d, it is of course much more convenient to work with points on a one-dimensional line. Let ℓ be a line (we discuss later how to pick it). Let $p'_i = \pi_\ell(p_i)$ be the orthogonal projection of p_i on ℓ and let $S' = \{p'_1 \ldots p'_n\}$. Now let q be a query point, and let $q' = \pi_\ell(q)$. Consider points to be “near” q if their distance is $\leq R$ and far otherwise. Obviously $\|p - q\| \geq \|p' - q'\|$. Meaning that if $\|p'_i - q'\| \geq R$ (their projection are far), then we are assume that $\|p_i - q\| \geq R$ (the original point is far, and p_i is filter out from further consideration. However, using more than a single line (ℓ_1 and ℓ_2 in this example), we could filter out a point p_i because its projection on one of the lines ℓ_1 or ℓ_2 are too far from the projection of q on these lines. For example, the projections on ℓ_2 of p_4, p_5 and q are close to each other. However, when projected on ℓ_1, we see that q must be quite far from p_4, since their projections on ℓ_1 are distant.

To expedite the search for nearby points near q's projection on each of the lines, a standard bucketing and hashing techniques could be used for each line. Namly, for each line ℓ, we assign disjoint ‘buckets’ on ℓ. The length of each bucket is R. (See Fig 1). For each bucket, we store which points of S are projected to this bucket. For example, on ℓ_2, both p_4 and p_5 are stored in bucket b_3. Since the number of buckets is unbounded, we must use hashing to map each location on ℓ to a bucket, using the same hashing technique we used in the closest-pair algorithm.

An obvious questions is how frequently do we have ‘false negative’ where points which are far from each other while their projections are close. Homework 4 indicates that the answer is ‘not too frequently’. If we pick the orientation of the line ℓ at random, and declare a pair of points p, q to be ‘near’ (with respect to ℓ) if the distance $\|\pi_\ell(p) - \pi_\ell(q)\|$ between their projections on ℓ is $\geq \|p - q\|/2$. The homework indicates that a random line will preserve these far and near relationships for many of the pairs of the points (and formal discussion here is outside the focus of the course).
Computing the projection of a point on a line. (this part is not required for the exam).

Finally, assume a a line ℓ is given, and assume the points \vec{p}_0 and \vec{p}_1 are on ℓ. See Figure 2 Right. For simplicity, assume that \vec{p}_0 is the origin $(0,0)$. We are also given another point $\vec{q} \not\in \ell$. Then we could find the point $\vec{p}^* \in \ell$ which is the closest point to \vec{q}. This is exactly the orthogonal projection of \vec{q} on ℓ. Note that the the vectors \vec{p}^* (the vector emerging from \vec{p}_0 toward \vec{p}^*) and the vectors $\vec{q} - \vec{p}^*$ (the vector emerging from \vec{p}^* toward \vec{q}) are orthogonal to each other.

We know that each point \vec{p} on ℓ could bd described as $\vec{p} = t \cdot \vec{p}_1$, for some scalar t (time). You could imaging a car driving from \vec{p}_0 toward \vec{p}_1, moving at speed of $|\vec{p}_1|$ (the distance between \vec{p}_0 and \vec{p}_1) miles per hour. After one hour ($t = 1$) this car would be at \vec{p}_1. After 2 hours ($t = 2$) this car would be on ℓ, and its distance from \vec{p}_0 is 2 times $|\vec{p}_1|$ and so on. Hence, to find \vec{p}^*, we only need to find at which time t^* this car would be at \vec{p}^*. Then $\vec{p}^* = t^* \cdot \vec{p}_0$.

![Figure 2:](image)

Note that for any pair of non-zero vectors \vec{v}, \vec{u}, it is known that

$$\vec{v} \cdot \vec{u} = |\vec{v}| \cdot |\vec{u}| \cos(\beta)$$

Where $\vec{v} \cdot \vec{u}$ is the dot product of \vec{v} and \vec{u}, and β is the angle between them. See Fig 2 left. Hence, $\vec{v} \cdot \vec{u} = 0$ iff $\vec{u} \perp \vec{v}$. So $t^* \cdot \vec{p}_1$ is orthogonal to $\vec{q} - t^* \vec{p}_1$. Or

$$(t^* \cdot \vec{p}_1) \cdot (\vec{q} - t^* \vec{p}_1) = 0 \quad \text{or} \quad t^* = \left\{ \frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}} \right\}$$