
Approximation Algorithm
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Approximation Ratios and optimizations problems 
We are trying to minimize (or maximize) some cost 

function c(S)  for an optimization problem.  E.g. 
◆Finding a minimum spanning tree of a graph. 

■ Cost function – sum of weights of edges in the 
graph 

◆Finding a cheapest traveling salesperson tour (TSP) in 
a graph.  
◆Finding a smallest vertex cover of a graph 

■ Given G(V,E), find a smallest set of vertices so that 
each edge touches at least one vertex of the set.
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Approximation Ratios

An approximation produces a solution T 
■ T is a δ-approximation to  a minimization problem if  

c(T) ≤ δ· OPT 
■ We assume δ>1 
■ Examples:  
■ Will show how to find a p path in a graph, that visits 

all vertices, and w(p) ≤ δ w(p*).  Here p* is the 
cheapest TSP path. 
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Vertex Cover
A vertex cover of graph G=(V,E) is a subset  of vertices, such that, for every (u,v) ∈ E,  
either  
Application:  

Given graph of Facebook friends, find set of influencers - vertices that cover all edges of 
the graph.  
Given maps of roads, find junctions to place monitoring cameras, so we could monitor the 
whole traffic. 

OPT-VERTEX-COVER: Given an graph G, find a vertex cover of  G with smallest size. 

OPT-VERTEX-COVER is NP-hard.

C ⊆ V
u ∈ C  or  v ∈ C  (or both ∈ C )
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A 2-Approximation for Vertex Cover
• Analysis: How large could C be, comparing to OPT ? 
• Let OPT be the opt solution.  
• Every chosen edge e has both ends in C.  
• But e must be covered by at least one vertex of 

OPT.  So, one end of e must be in OPT. 
• |C| ≤ 2 |OPT|.  
• (there are ≤ 2  vertices of  C for each vertex of 

OPT.) 
• That is, C  is a 2-approx. of OPT 
• Running time: O(|E|)

Algorithm VertexCoverApprox(G) 
 Input graph G 
 Output a vertex cover C for G 
 C ← empty set ;  H ← E 
   /* H – what is left to be covered */ 

while H  has edges (not empty){ 
 (u,v) ← An edge of  H.  
 Add both  u and  v to  C 
 for each edge  f of H  incident  
     to v or w  
  Remove  f  from H 
} 
return C

Approximating the Traveling Salesperson Problem (TSP)
• OPT-TSP: Given a weighted graph , find a cycle of minimum cost that visits each 

vertex at least once.  

•  OPT-TSP is NP-hard 

• However, it is very easy to find a tour that costs  twice opt. 

• First Step: Compute the Minimum Spanning Tree MST(G)   (for example, using Kruskal 

algorithm)  

• Just to remind ourself: MST(G) is a set of edges which are  

1. Contains every vertex of V 

2. Connected (a path from every vertex to every other vertex). That is, it spans G.  

3. Among all the graphs satisfying (1) +(2), has the smallest sum of weights of edges.  

• Observation: The edges of TSP, they also span G 

G(V, E )

≤
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From MST to cycles

Given a MST of G,  a traversal T of MST is constructed by picking 
a source vertex s, and visit the nodes of the graph in a DFS order. 

• Let w(MST) and   be the sum of weights of edges of MST and of OPT-TSP. (an edge is 
counted once, even if appearing multiple times).  

• Cost(OPT-TSP) , since possibly the same edge was used more than once.  
• Claim:  

• (explanation: Both OPT-TSP and MST spans G, but OPT-TSP optimize other parameter, which MST 
minimizes sum of weights.   

•  T is a tour that uses twice every edge of MST. so  . 
• OPT-TSP is a spanning graph (graph that connects all vertices of ) 

 Obviously  . However  

 

Conclusion: Traversing MST gives a factor 2 approx to TSP.

w(OPT-TSP)

≥ w(OPT − TSP)
w(OPT-TSP) ≥ w(MST )

w(T ) = 2w(MST )
V .

Cost(T ) ≥ cost(OPT-TSP)

cost(OPT-TSP) ≥ w(OPT-TSP) ≥ w(MST )
2cost(OPT-TSP) ≥ 2 ⋅ w(OPT-TSP) ≥ 2 ⋅ w(MST ) = cost(T )

MST T

Approximation Algorithm for Set Cover  

 
Dave's Mount Lecture Notes: 

Dorit S. Hochbaum and  Anu Pathria. Analysis of the Greedy Approach in Problems 
of Maximum k-Coverage.  Naval Research Logistics, Vol. 45 (1998)

https://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect09-set-cover.pdf


Set-Cover Problems
Facility location problems: Given: A map 
of Tucson, place min number of charging 
station, so every house is at distance  
miles from a charging station,  

Budget Set Cover. With a budget of  
stations, cover as much of Tucson as 
possible. 
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≤ k

• Given - a polygon domain  D, and a set  of 
potential guard - we might place a camera at  .   

• Each potential guard  sees some region  of the 
polygon, but could not see through  walls.  

• Formally,  sees every point  for which the segment  is 
fully in D.  

• Art Gallery Problem - find the smallest set of guards (all 
from P) that together see the whole D. 

• Budget Art Gallery - with at most  guards, see as much as 
possible.

P = {p1…pn}
pi

pi Vis(pi)

pi q pi q

k

 
D

q

p1

p2
Vis(p1)

pi , q

• Set cover is NP-hard (and extremely practical)  
•   the area (in meters^2) that it sees. ai = Area(Vis(pi))

Visibility in a polygon. The art Gallery Problem

 • Given - a polygon domain  D, and a set 
 of potential guards.   

• Each potential guard  sees some region 
 of the polygon, but could not see 

through  walls.  
• Formally,  sees every point  for which 

the segment  is fully in D.  
• Art Gallery Problem - find the smallest 

set of guards (all from P) that together 
see the whole D. 

• NP-hard (and extremely practical)  
•   the area (in 

meters^2) that it sees.  
• Budget Art-Gallery Problem: Given a 

number  (`budget’), find a set G of  
guards from P, that sees together the 
maximum area.  

P = {p1…pn}
pi

Vis(pi)

pi q
pi q

μi = Area(Vis(pi))

k ≤ k

D

q

p1

p2

“Standard” Art Gallery:  
Find the smallest set  

s.t  
 

Budget Art Galley:  
Given k, find   

Maximize  

{g1, g2…gr} ⊆ P

D = Vis(g1) ∪ Vis(gi) ∪ . . Vis(gr)

{g1, g2…gk} ⊆ P

Area( Vis(g1) ∪ Vis(g2) ∪ . . Vis(gk))

Vis(p1)
pi , q

• Greedy Approach. The first camera is located at the the point of P that sees 
maximum area 

• The second camera   is located where it sees the maximum area that   
does not see  

•  sees the max area not seen by neither  nor ,  etc… 
• Stop when either P is covered, or (in the budget case) when used  cameras.

g2 g1

g3 g1 g2
k
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g2 g1

g3 g1 g2
k
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• Greedy Approach. The first camera is located at the the point of P that sees 
maximum area 

• The second camera   is located where it sees the maximum area that   
does not see  

•  sees the max area not seen by neither  nor ,  etc… 
• Stop when either P is covered, or (in the budget case) when used  cameras.

g2 g1

g3 g1 g2
k

This is a set cover problem

Vis(p1)

 
p1

• Given - a polygon domain  D, and a set  of potential guards.  

• Every potential guard   defines a set. This set is . A set cover problem is to 
find a collection of sets that together covers the whole domain. 

• Greedy Approach. The first guard is the point that sees maximum area 
 

• The second guard  sees the maximum area that   does not see  

•  sees the max area not seen by neither  nor ,  etc…

P = {p1…pn}

pi Vis(pi)

g1 = arg max
p∈P

μ(p)

g2 g1

g3 g1 g2

D



Set Cover Problems - terminology 
General problem: Given a universe , each  is an atoms. 
Also given a range space (also called set system). It is a collection of subsets 
of X.   a collection of subsets of X.  ( )    

X = {x1…xm} xi

R = {S1, S2…} Si ⊆ X

Examples:  

1. In a polygon , the atoms are all points of D.  Each possible guard   
defines .     

2. Given a graph ,  we could treat V as the universe. Each edge 
is a set of two atoms. (edge-cover)  

3. In a graph , the atoms are the edges.  Each vertex  
defines the set  of all the edges that  is adjacent to. (vertex cover)   

D pi
Vis(pi) R = {Vis(pi) | pi ∈ P}

G(V, E)

G(V, E) vi ∈ V
Si vi

Vis(p1)
p1

Set Cover Problems 
General problem: Given a universe , each  is an atoms. 
Also given R=  a collection of subsets of X.  ( )    

X = {x1…xm} xi
{S1, S2…} Si ⊆ X

Examples:  
1. In a polygon , the atoms are all points of D.  Each possible guard   

define  which is the region of   that  sees.   
2. Given a graph ,  we could treat V as the universe. Each edge is a 

set of two atoms. (edge-cover)  
3. In a graph , the atoms are the edges.  Each vertex  defines 

the set  of all the edges that  is adjacent to.  

D pi
Vis(pi) D pi

G(V, E )

G(V, E ) vi ∈ V
Si vi

Vis(p1)

p1

•  We say that    covers  if  , (that is, each 
atom is contained in at least one set of .)  

• Set cover problem: Find the collection  of min number of sets 
that covers X.  That is, minimize .  

• In the case of the art-gallery problem, find a min-cardinality set of guards that 
see all the polygon .   

• Budget Set cover problem: Given an integer   (budget).   
• Find a collection  of no more than  sets from  such that the 

number of atoms in   is as large as possible.  
• In the case of the art gallery, find a set of   guards that see as much as possible. 

C = {S′ 1, S′ 2…S′ k} X X = S′ 1 ∪ S′ 2 ∪ … ∪ S′ k
C
C = {S′ 1, S′ 2…S′ k}

|C |

k > 1
C = {S′ 1, S′ 2…S′ k} k R

S′ 1⋃S′ 2⋃…⋃S′ k
k

Greedy for art-gallery

Vis(p1)

 
p1

1. Pick the guard  maximizing the area of  
2. Pick the guard  maximizing the area not seen by .  

 
3. Pick the guard  maximizing the area not seen by .  

 

Etc until either seeing all D, or until using k guards.  

g1 g1 = argg∈D area(Vis(g))
g2 g1

g2 = argg∈D area(Vis(g)∖Vis(g1))
g3 g1

g3 = argg∈D area(Vis(g) ∖(Vis(g1) ∪ Vis(g2)))

Greedy Algorithm for the budget case:  

 
For i=1 to k {  

Let  be the set   that maximizing . 
   //Only care for uncovered atoms  

}  
Return 

X′ = X = {x1…xm}

S′ i S ∈ R |S⋂X′ |
X′ ← X′ ∖ S′ i

[S′ 1, S′ 2…S′ k]

Dorit S. Hochbaum and  Anu Pathria. Analysis of the Greedy Approach in Problems 
of Maximum k-Coverage.  Naval Research Logistics, Vol. 45 (1998)

For standard set cover, the stoping condition is 
that  Algorithm for the budget case:  X′ = ∅



Greedy could be far away from opt, if we insist of covering X   

• It is known that it could be much worse than opt. 
• In the opt problem above,  (two sets) 
• Greedy might start from , then pick  … could be  
• Approximation factor:  

•  

• This is actually a tight bound (we will see shortly)  

• However, greedy is doing much better for the budget case (number of 
sets is given k - maximize the area / the number of atoms

Opt = {s7, s8}
s1 s2 ≥ log2 n

Approximation factor =
Numer of sets that greedy finds
Numer of sets that OPT finds

=
log2 n

2
= Ω(log n)

n/2n/4n/8

Analysis of greedy algorithm for  
the budget set-cover problem

Consider a range space (atoms and subsets)  

Let k (the budget) be a given fixed positive integer.  

Let OPT be the maximum number of atoms that we can cover with 
 sets  

Theorem:  Greedy algorithm will produces a solution that covers 

 

≤ k

≥ OPT(1 −
1
e ) ≈ 0.64 ⋅ OPT

Before we start  -  useful inequalities  

If    then    

Conclusion 

k ≥ 1 (1 −
1
k )

k
≤

1
e

1 − (1 −
1
k )

k
≥ 1 −

1
e

Proof: Analysis of the Greedy Algorithm (for the budget case) 

• Let OPT be the maximum area that k guards could see.  
…(or the max number of atoms that k sets could contain)  

• Let  be the gain from adding the  set (for ). How much area did the  add. 

• Let  be the total area guard by that the first  guards that greedy 
picked.  

Claim:  . 

Lemma 1 :  .  (this is the heart of the proof.)  

Lemma 2:  

Lets assume that the lemma is proven. 
This will implies that greedy, after picking the k’th set, covers area which is at least

   
  
That is, greedy reaches 64% of what OPT could reach. 

al l′ s 1 ≤ l ≤ k l′ th

s(l) = a1 + a2 + …al l

a1 ≥ OPT / k

al ≥
OPT − s(l − 1)

k
s(l) ≥ OPT ⋅ {1 − (1 − 1

k )
l }

s(k) ≥ OPT {1 − (1 − 1/k)k } ≥ OPT ⋅ (1 − 1
e ) ≈ 0.64 ⋅ OPT

 (1 − 1/k)k ≤ 1
e



Let  be the gain from adding the  set (for ).  Let  be the 
number of atoms of the first  sets that greedy picks.  So  is the gain from adding the  set (the 
atoms that were not covered by previous sets)  
   

Proof Lemma 2 by induction on .   
The base case  is just Lemma 1, since      Let .  
Induction hypothesis claims that   

Need to show                               . 

Proof:  

 

       .  QED 

al l′ s 1 ≤ l ≤ k s(l) = a1 + a2 + …al
l al l′ s

l
l = 1 s(0) = 0. Q = (1 − 1/k)

s(l) ≥ (1 − Ql)OPT .
s(l + 1) ≥ (1 − Ql+1)OPT

s(l + 1) def= s(l)+al+1
Lemma 1

≥ s(l)+
OPT−s(l)

k
=

= s(l)(1 − 1
k ) + OPT

k = s(l)Q + OPT
k

Induction
≥

Q(1 − Ql)OPT+
OPT

k
= (1− 1

k )OPT−Ql+1 OPT+
OPT

k
= (1 − Ql+1)OPT

Claim: a1 ≥
OPT

k
Lemma 1:   al+1 ≥

OPT − s(l)
k

Lemma2: s(l) ≥ OPT(1 − (1 − 1/k)l )

Another attempt to prove the theorem, possibly in a simpler way 

• Let  be the gain from adding the  set (for ).  Let  
be the number of atoms of the first  sets that greedy picks.  So  is the gain from adding 
the  set (the atoms that were not covered by previous sets)  

• Let  denote the gap between OPT and what greedy gained till the 
i’th step.  Note:  

  

  

ai i′ s 1 ≤ i ≤ k s(l) = a1 + a2 + …al
l al

l′ s

Δ(i) = OPT − s(i)
Δ(0) = OPT

Claim: a1 ≥
OPT

k
Lemma 1:   al+1 ≥

OPT − s(l)
k

 

Using the fact that   

Hence      
 Thus :      QED 

Δ(k) ≤ Δ(k − 1)(1 −
1
k ) ≤

≤ {Δ(k − 2)(1 −
1
k )}(1 −

1
k ) = Δ(k − 2)(1 −

1
k )

2

≤ {Δ(k − 3)(1 −
1
k )}

2

(1 −
1
k ) = Δ(k − 3)(1 −

1
k )

3

≤ …

Δ(0)(1 −
1
k )

k
= OPT(1 −

1
k )

k
≤ OPT( 1

e )
(1 − 1/k)k ≤ 1

e

Δ(k) = OPT − s(k) ≤ OPT/e,
s(k) ≥ OPT(1 − 1/e)

Note that lemma 1 implies  

 .       So 

  

This implies 

ai ≥
Δ(i − 1)

k

Δ(i) = Δ(i − 1) − ai

≤ Δ(i − 1) −
Δ(i − 1)

k

= Δ(i − 1)(1 −
1
k )

This result is even stronger : 

In many cases, it is hard or impossible to compute the 
largest set at each stage.  

Assume that greedy picks at every stage a set  such 
that . That is, we only pick 
a approximation to the largest set.  

Then  

For example, if  then we get 

Si
size(Si) ≥ β ⋅ size(max(S))

β−

Greedy ≥ OPT(1 −
1
eβ )

β = 0.95,
Greedy ≥ OPT ⋅ 0.61

This result is even stronger : 
Note that    measures the benefit of adding an 
atom x to the set A. 

f(A ∪ {x}) − f(A)

Submodularity: We say that a function , is  
submodular if  

 
That is, this is the idea of diminishing return, if B is 
larger than A ( ) then adding x to B is less 
significant than adding it to A.  

Theorem: Using the budget-greedy algorithm on any 
sub modular function yields a solution that is 

.

f(S)

∀A ⊆ B, f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B)

A ⊆ B

≥ (1 − 1/e)OPT



• We have a items (routers), indicated by blue points  
• Electromagnetic pulse (EMP) attack might cause some of them to burn. 
• Each attack is abstracted by a disk. Each router  outside the disk is not 

effected. A router  inside the disk c has 50% chance to survive.  
• Given a budget of k attacks, and a possible set of candidate attacks, where 

should the attacker place  the k attacks    to maximize the   
expected damage  

• NP-hard, so use greedy. 
• Homework: Prove that the cost function is submodular 

P = {p1…pn}

pi
pi

S = {c1, c2…ck}

∑
pi∈P

Pr(pi did not survice the attackS )

Submodularity and greedy. The EMP case

For a subset  of attack disks, and 
a router ,  lets define 
 #disks from S containing p.  

Reward function 

{c1, c2…ck}
p ∈ ℝ2

depth(p, S) =

f(S) = f({c1, c2…ck}) = ∑
pi∈P

2−depth(p,S)

In this app (link) add attack disks by changing the slides k, and move the disks to see their impact on the routers

revenue: 6 ⋅ 50 %

https://www.geogebra.org/m/u43hrsba


Back to covering the whole universe 
Given a universe  with m atoms, each  is an atoms. R= is a  
collection of subsets of X.  ( ).  Find the smallest collection  that 
covers X.  
Again use greedy, but stop when X is covered.  How many sets greedy produces ?  
•  .  
Recall .  

Now OPT is the universe with m atoms,  so   .  
Assume greedy needs  iteration until it covers all m atoms of the universe. At 
the r’ th iteration (last but one) at least one atom is left uncovered, or . 
How large could r be ?   

 

Take  from both sides, yield: . 
Theorem:  Greedy gives  approximation factor to the smallest 
number of sets needed to cover X.   
Thm: Could show: The actual bound is 

X = {x1…xm} xi {S1, S2…}
Si ⊆ X C = {S′ 1, S′ 2…S′ k}

s(i) = a1 + a2 + …ai
Δ(i) = OPT − s(i) ≤ OPT(1 − 1/kopt)i

Δ(i) = m − s(i) ≤ m(1 − 1/kopt)i

r + 1
Δ(r) ≥ 1

1 ≤ Δ(r) ≤ m(1 − 1/kopt)r = m{(1 − 1/kopt)kopt}r/kopt

≤ m {1/e}l /kopt = m/er/kopt  or   er/kopt ≤ m
ln( ⋅ ) r/kopt ≤ ln m  or r ≤ kopt ln m

ln m

ln(max |Si | )

 =min number of 
sets that covers X

kopt

Clustering points in  with bottleneck penaltyℝd

(Source: Mount’s notes) 

Given  set of n points. Want to divide into  
clusters (k is given)  

Let  be the set of centers of clusters. Naturally we would 
like to assign each  to one cluster. How ? We just assign  to the 
nearest cluster.  

For every point  let   be the nearest center of q.  

Let  the max distance to the 

nearest cluster. This is the bottleneck distance. And the pair  that 
defined this distance is the bottleneck pair.  

 is the measure of the quality of the clustering. The problem is to 
pick  centers so this distance is as small as possible. link link 

S = {p1…pn} ∈ ℝd k

C = {c1…ck}
pi pi

q NN(q, C)

Δ(C) = max
pi∈S

dist(pi, NN(pi , C))

(pi, cj)

Δ(C)
k

https://www.geogebra.org/classic/fprwjzbp
https://www.geogebra.org/m/fprwjzbp


Greedy Approx k-center
Given  set of n points. Want to divide into  clusters (k is given)  

For the proof, we will also consider , obtained by performing another iteration of the algorithm.  
  
 Theorem:  

Proof:  Let  after i iteration of the algorithm.  (for i=1..k)  
 

Claim:    (for i=1..k)  
Lemma:  Let . The distance between every two centers in   is  .   
Proof:   is at distance exactly r from the nearest center of , so  for all .  
For smaller values of i, remember that   (from the first claim) 

S = {p1…pn} ∈ ℝd k

Gk+1

Δ(Ggreedy) ≤ 2Δ(Opt)

Gi = Ggreedy
Gi = {c1, c2…ci}

Δ(Gi) ≥ Δ(Gi+1)
r = Δ(Gi−1) Gi ≥ r

ci Gi−1 |ci − cl | ≥ r l < i
Δ(G l ) ≥ r

The first center in  is arbitrary - let’s pick  This is the first center  
 

 

return 

c1 Ggreedy p1 . c1
Ggreedy = {p1}; ∀pi ∈ S do d[pi] = |pi − p1 |
for(i = 2…k)

ci = arg max
pj∈S

d[pj] / / find the bottleneck pair 

Add ci to Ggreedy

∀pj ∈ S do d[pj] = min{d[pj], |pj − ci |}
Ggreedy

Greedy Approx k-center

Claim:    (for i=1..k)  
Lemma:  Let . The  distance between any two centers in   is  . 

In particular,   the distance between every two centers in   is  . 

Theorem:  
Pf of Theorem:   Let  be any set of exactly k centers. (for example, opt) 
By Definition of , each  has a center  at distance  from . 
Some center   has two centers    in the cluster of c.   

  (from the Lemma). So  

 

QED

Δ(Gi) ≥ Δ(Gi+1)
r = Δ(Gi−1) Gi ≥ r

Gk+1 ≥ Δ(Ggreedy)

Δ(Ggreedy) ≤ 2Δ(Opt)
C′ = {c′ 1…c′ k}

C′ p ∈ S c ∈ C ≤ Δ(C) p
c′ ∈ C ci, cj ∈ Gk+1

|ci − cj | ≥ Δ(Ggreedy)

Δ(Ggreedy) ≤ |ci − cj | ≤ |c′ r−c′ | + |c′ r−c′ |
≤ Δ(C′ ) + Δ(C′ ) = 2Δ(C′ )

The first center in  is arbitrary - let’s pick  This is the first center  
 

 

return . Repeat one more iteration to produce  

c1 Ggreedy p1 . c1
Ggreedy = {p1}; ∀pi ∈ S do d[pi] = | pi − p1 |
for (i = 1…k)

ci = arg max
pj∈S

d[pj] / / find the bottleneck pair 

Add ci to Ggreedy

∀pj ∈ S do d[pj] = min{d[pj], | pj − ci |}

Ggreedy Gk+1
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Approximating the Traveling 
Salesperson Problem

OPT-TSP: Given a complete, weighted graph, 
find a cycle of minimum cost that visits each 
vertex.  
■ OPT-TSP is NP-hard 
■ Special case: edge weights satisfy the triangle 

inequality (which is common in many applications): 
◆w(a,b) + w(b,c) > w(a,c)

a

b

c

5 4

7

Complete – there is an edge 
between every pair of vertices 

40

From MST to cycles

Given a MST of G,  a traversal T of MST is constructed by picking 
a source vertex s, and visit the nodes of the graph in a DFS order. 

• Let w(MST) and   be the sum of weights of edges of MST 
and of OPT-TSP. 

• Since OPT-TSP does not visit a vertex twice, it does not use an edge 
twice. So its  weight  is the sum of weights of its edges.  

•  T is a tour that uses twice every edge of MST. so  . 
• OPT-TSP is a spanning graph (graph that connects all vertices of ) 

  

w(OPT-TSP)

w(OPT-TSP)
w(T ) = 2w(MST )

V .

w(OPT-TSP) ≥ w(MST )
2 ⋅ w(OPT-TSP) ≥ 2 ⋅ w(MST ) = w(T )

MST T


