Approximation Algorithm

Approximation Ratios and optimizations problems We are trying to minimize (or maximize) some cost function c(S) for an optimization problem. E.g.

- Finding a minimum spanning tree of a graph.
 - Cost function sum of weights of edges in the graph
- Finding a cheapest traveling salesperson tour (TSP) in a graph.
- Finding a smallest vertex cover of a graph
 - Given G(V,E), find a smallest set of vertices so that each edge touches at least one vertex of the set.

Approximation Ratios

An approximation produces a solution T

- T is a **\delta-approximation** to a minimization problem if $c(T) \leq \delta$ OPT
- We assume $\delta > 1$
- Examples:
- Will show how to find a p path in a graph, that visits all vertices, and $w(p) \le \delta w(p^*)$. Here p* is the cheapest TSP path.

Vertex Cover

A vertex cover of graph G=(V,E) is a subset $C \subseteq V$ of vertices, such that, for every $(u,v) \in E$, either $u \in C$ or $v \in C$ (or both $\in C$)

Application:

Given graph of Facebook friends, find set of influencers - vertices that cover all edges of the graph.

Given maps of roads, find junctions to place monitoring cameras, so we could monitor the whole traffic.

OPT-VERTEX-COVER: Given an graph G, find a vertex cover of G with smallest size.

•OPT-VERTEX-COVER is NP-hard.

2

Analysis: How large could C be, comparing to OPT ? • Let OPT be the opt solution. • Every chosen edge e has both ends in C. • But e must be covered by at least one vertex of OPT. So, one end of e must be in OPT. • (there are ≤ 2 vertices of C for each vertex of • That is, C is a 2-approx, of OPT

Approximating the Traveling Salesperson Problem (TSP)

- **OPT-TSP:** Given a weighted graph G(V, E), find a cycle of minimum cost that visits each vertex at least once.
- **OPT-TSP** is NP-hard
- However, it is very easy to find a tour that costs \leq twice opt.
- First Step: Compute the Minimum Spanning Tree MST(G) (for example, using Kruskal algorithm)
- Just to remind ourself: MST(G) is a set of edges which are
 - 1. Contains every vertex of V
 - 2. Connected (a path from every vertex to every other vertex). That is, it **spans** G.
 - 3. Among all the graphs satisfying (1) + (2), has the smallest sum of weights of edges.
- Observation: The edges of TSP, they also span G

From MST to cycles

5

Given a MST of **G**, a traversal **T** of **MST** is constructed by picking a source vertex s, and visit the nodes of the graph in a DFS order.

- Let w(MST) and w(OPT-TSP) be the sum of weights of edges of MST and of OPT-TSP. (an edge is counted once, even if appearing multiple times).
- Cost(OPT-TSP) $\geq w(OPT TSP)$, since possibly the same edge was used more than once.
- Claim: $w(\text{OPT-TSP}) \ge w(MST)$ • (explanation: Both OPT-TSP and MST spans G, but OPT-TSP optimize other parameter, which MST minimizes sum of weights.
- T is a tour that uses twice every edge of MST. so w(T) = 2w(MST).
- OPT-TSP is a spanning graph (graph that connects all vertices of V.) Obviously $Cost(T) \ge cost(OPT-TSP)$. However

 $cost(OPT-TSP) \ge w(OPT-TSP) \ge w(MST)$ $2cost(OPT-TSP) \ge 2 \cdot w(OPT-TSP) \ge 2 \cdot w(MST) = cost(T)$

Conclusion: Traversing MST gives a factor 2 approx to TSP.

Approximation Algorithm for Set Cover

Dave's Mount Lecture Notes:

Dorit S. Hochbaum and Anu Pathria. Analysis of the Greedy Approach in Problems of Maximum k-Coverage. Naval Research Logistics, Vol. 45 (1998)

- Greedy Approach. The first camera is located at the point of P that sees maximum area
- The second camera g_2 is located where it sees the maximum area that g_1 does not see
- g_3 sees the max area not seen by neither g_1 nor g_2 , etc...
- Stop when either P is covered, or (in the budget case) when used k cameras.

- Greedy Approach. The first camera is located at the point of P that sees maximum area
- The second camera g_2 is located where it sees the maximum area that g_1 does not see
- g_3 sees the max area not seen by neither g_1 nor g_2 , etc...
- Stop when either P is covered, or (in the budget case) when used k cameras.

- The second camera g_2 is located where it sees the maximum area that g_1 does not see
- g_3 sees the max area not seen by neither g_1 nor g_2 , etc...
- Stop when either P is covered, or (in the budget case) when used k cameras.

- Greedy Approach. The first camera is located at the point of P that sees maximum area
- The second camera g_2 is located where it sees the maximum area that g_1 does not see
- g_3 sees the max area not seen by neither g_1 nor g_2 , etc...
- Stop when either P is covered, or (in the budget case) when used k cameras.

- Greedy Approach. The first guard is the point that sees maximum area $g_1 = \underset{p \in P}{\arg \max \mu(p)}$
- The second guard g_2 sees the maximum area that g_1 does not see
- g_3 sees the max area not seen by neither g_1 nor g_2 , etc...

Set Cover Problems - terminology

General problem: Given a **universe** $X = \{x_1...x_m\}$, each x_i is an **atoms**. Also given a range space (also called set system). It is a collection of subsets of X. $\mathbf{R} = \{S_1, S_2...\}$ a collection of subsets of X. $(S_i \subseteq X)$

Examples:

1. In a polygon *D*, the atoms are all points of *D*. Each possible guard p_i defines $Vis(p_i)$. $\mathbf{R} = \{Vis(p_i) \mid p_i \in P\}$

 $Vis(p_1)$

- 2. Given a graph G(V, E), we could treat V as the universe. Each edge is a set of two atoms. (edge-cover)
- 3. In a graph G(V, E), the atoms are the **edges**. Each vertex $v_i \in V$ defines the set S_i of all the edges that v_i is adjacent to. (vertex cover)

Set Cover Problems

General problem: Given a **universe** $X = \{x_1...x_m\}$, each x_i is an atoms. Also given R= $\{S_1, S_2...\}$ a collection of subsets of X. $(S_i \subseteq X)$ $Vis(p_1)$

Examples:

- In a polygon D, the atoms are all points of D. Each possible guard p_i define Vis(p_i) which is the region of D that p_i sees.
- 2. Given a graph G(V, E), we could treat V as the universe. Each edge is a set of two atoms. (edge-cover)
- 3. In a graph G(V, E), the atoms are the **edges**. Each vertex $v_i \in V$ defines the set S_i of all the edges that v_i is adjacent to.
- We say that $\mathbf{C} = \{S'_1, S'_2...S'_k\}$ covers *X* if $X = S'_1 \cup S'_2 \cup ... \cup S'_k$, (that is, each atom is contained in at least one set of **C**.)

 p_1

- Set cover problem: Find the collection $\mathbf{C} = \{S'_1, S'_2, \dots, S'_k\}$ of min number of sets that covers *X*. That is, minimize $|\mathbf{C}|$.
- In the case of the art-gallery problem, find a min-cardinality set of guards that see all the polygon .
- **Budget Set cover problem:** Given an integer k > 1 (budget).
- Find a collection $\mathbf{C} = \{S'_1, S'_2..., S'_k\}$ of no more than k sets from **R** such that the number of atoms in $S'_1 \bigcup S'_2 \bigcup ... \bigcup S'_k$ is as large as possible.
- In the case of the art gallery, find a set of k guards that see as much as possible.

Greedy Algorithm for the budget case:

 $X' = X = \{x_1...x_m\}$ For i=1 to k { Let S'_i be the set $S \in \mathbb{R}$ that maximizing $|S \bigcap X'|$. $X' \leftarrow X' \setminus S'_i$ //Only care for uncovered atoms } Return $[S'_1, S'_2...S'_k]$

For standard set cover, the stoping condition is that $X' = \emptyset$ Algorithm for the budget case:

Dorit S. Hochbaum and Anu Pathria. Analysis of the Greedy Approach in Problems of Maximum k-Coverage. Naval Research Logistics, Vol. 45 (1998)

Analysis of greedy algorithm for the budget set-cover problem

Consider a range space (atoms and subsets)

Let k (the budget) be a given fixed positive integer.

Let OPT be the maximum number of atoms that we can cover with < k sets

Theorem: Greedy algorithm will produces a solution that covers $\geq OPT(1-\frac{1}{a}) \approx 0.64 \cdot OPT$

Proof: Analysis of the Greedy Algorithm (for the budget case)

- Let OPT be the maximum area that k guards could see. ...(or the max number of atoms that k sets could contain)
- Let a_l be the gain from adding the *l's* set (for $1 \le l \le k$). How much area did the *l'th* add.
- Let $s(l) = a_1 + a_2 + \dots + a_l$ be the total area guard by that the first *l* guards that greedy picked.

Claim: $a_1 \ge OPT / k$.

$$(1-1/k)^{\kappa} \leq$$

Lemma 1 : $a_l \ge \frac{OPT - s(l-1)}{l}$. (this is the heart of the proof.)

Lemma 2:
$$s(l) \ge OPT \cdot \left\{ 1 - \left(1 - \frac{1}{k}\right)^l \right\}$$

Lets assume that the lemma is proven.
This will implies that greedy, after picking the k'th set, covers area which is at least
$$g(k) \ge OPT\left\{1 - \left(1 - \frac{1}{k}\right)^k\right\} \ge OPT \cdot \left(1 - \frac{1}{e}\right) \approx 0.64 \cdot OPT$$

That is, greedy reaches 64% of what OPT could reach.

Let a_l be the gain from adding the *l's* set (for $1 \le l \le k$). Let $s(l) = a_1 + a_2 + ...a_l$ be the number of atoms of the first *l* sets that greedy picks. So a_l is the gain from adding the *l's* set (the atoms that were not covered by previous sets) Claim: $a_1 \ge \frac{OPT}{k}$ Lemma 1: $a_{l+1} \ge \frac{OPT - s(l)}{k}$ Lemma2: $s(l) \ge OPT(1 - (1 - 1/k)^l)$ Proof Lemma 2 by induction on *l*. The base case l = 1 is just Lemma 1, since s(0) = 0. Let Q = (1 - 1/k). Induction hypothesis claims that $s(l) \ge (1 - Q^l)OPT$. Need to show $s(l+1) \ge (1 - Q^{l+1})OPT$. Proof: $s(l+1) \stackrel{\text{def}}{=} s(l) + a_{l+1} \stackrel{\text{Lemma 1}}{=} s(l) + \frac{OPT - s(l)}{k} = s(l)(1 - \frac{1}{k}) + \frac{OPT}{k} = s(l)Q + \frac{OPT}{k} \stackrel{\text{Induction}}{=} (1 - Q^{l+1})OPT$. QED

This result is even stronger :

In many cases, it is hard or impossible to compute the largest set at each stage.

Assume that greedy picks at every stage a set S_i such that $size(S_i) \ge \beta \cdot size(\max(S))$. That is, we only pick a β -approximation to the largest set.

Then Greedy $\geq OPT \left(1 - \frac{1}{e^{\beta}}\right)$

For example, if $\beta = 0.95$, then we get *Greedy* $\geq OPT \cdot 0.61$ Another attempt to prove the theorem, possibly in a simpler way

Lemma 1: $a_{l+1} \ge$	$\frac{OPT-s}{k}$
1	Lemma 1: $a_{l+1} \ge$

• Let a_i be the gain from adding the *i's* set (for $1 \le i \le k$). Let $s(l) = a_1 + a_2 + ... a_l$ be the number of atoms of the first *l* sets that greedy picks. So a_l is the gain from adding the *l's* set (the atoms that were not covered by previous sets)

• Let $\Delta(i) = OPT - s(i)$ denote the gap between OPT and what greedy gained till the i'th step. Note: $\Delta(0) = OPT$

Note that lemma 1 implies

$$a_{i} \geq \frac{\Delta(i-1)}{k}.$$
So

$$\Delta(i) = \Delta(i-1) - a_{i}$$

$$\leq \Delta(i-1) - \frac{\Delta(i-1)}{k}$$

$$= \Delta(i-1)\left(1 - \frac{1}{k}\right)$$
This implies

$$\Delta(k) \leq \Delta(k-1)\left(1 - \frac{1}{k}\right) \leq \Delta(k-2)\left(1 - \frac{1}{k}\right) = \Delta(k-2)\left(1 - \frac{1}{k}\right)^{2}$$

$$\leq \left\{\Delta(k-3)\left(1 - \frac{1}{k}\right)\right\}^{2}\left(1 - \frac{1}{k}\right) = \Delta(k-3)\left(1 - \frac{1}{k}\right)^{2}$$

$$\leq \dots$$

$$\Delta(0)\left(1 - \frac{1}{k}\right)^{k} = OPT\left(1 - \frac{1}{k}\right)^{k} \leq OPT\left(\frac{1}{e}\right)$$
Using the fact that $(1 - 1/k)^{k} \leq \frac{1}{e}$
Hence $\Delta(k) = OPT - s(k) \leq OPT/e$,
Thus : $s(k) \geq OPT(1 - 1/e)$ QED

This result is even stronger :

Note that $f(A \cup \{x\}) - f(A)$ measures the benefit of adding an atom x to the set *A*.

Submodularity: We say that a function f(S), is submodular if $\forall A \subseteq B$, $f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B)$

That is, this is the idea of **diminishing return**, if B is larger than A ($A \subseteq B$) then adding x to B is less significant than adding it to A.

Theorem: Using the budget-greedy algorithm on any sub modular function yields a solution that is $\geq (1 - 1/e)OPT$.

' Example of submodularity and greedy: An "Attack" is limited to a disk.

Each element in the attack region survives with probability 1/2.

Back to covering the whole universe

Given a universe $X = \{x_1...x_m\}$ with *m* atoms, each x_i is an atoms. $R=\{S_1, S_2...\}$ is a collection of subsets of X. $(S_i \subseteq X)$. Find the smallest collection $C = \{S'_1, S'_2...S'_k\}$ that covers X.

Again use greedy, but stop when X is covered. How many sets greedy produces ? • $s(i) = a_1 + a_2 + \dots a_i$.

Recall $\Delta(\mathbf{i}) = OPT - s(\mathbf{i}) \leq OPT(1 - 1/k_{ont})^{\mathbf{i}}$.

 k_{opt} =min number of sets that covers X

Now OPT is the universe with m atoms, so $\Delta(i) = m - s(i) \le m(1 - 1/k_{opt})^i$. Assume greedy needs r + 1 iteration until it covers all m atoms of the universe. At the **r**' th iteration (last but one) at least one atom is left uncovered, or $\Delta(r) \ge 1$. How large could **r** be ?

$$1 \le \Delta(r) \le m(1 - 1/k_{opt})^r = m\{(1 - 1/k_{opt})^{k_{opt}}\}^{r/k_{opt}}$$

 $\leq m \{1/e\}^{l/k_{opt}} = m/e^{r/k_{opt}}$ or $e^{r/k_{opt}} \leq m$ Take $ln(\cdot)$ from both sides, yield: $r/k_{opt} \leq \ln m$ or $r \leq k_{opt} \ln m$. **Theorem:** Greedy gives $\ln m$ approximation factor to the smallest number of sets needed to cover X. Thm: Could show: The actual bound is $\ln(\max |S_i|)$

Clustering points in \mathbb{R}^d with bottleneck penalty

(Source: Mount's notes)

Given $S = \{p_1...p_n\} \in \mathbb{R}^d$ set of n points. Want to divide into k clusters (k is given)

Let $C = \{c_1...c_k\}$ be the set of centers of clusters. Naturally we would like to assign each p_i to one cluster. How ? We just assign p_i to the nearest cluster.

For every point q let NN(q, C) be the nearest center of q.

Let $\Delta(C) = \max_{p_i \in S} dist(p_i, NN(p_i, C))$ the max distance to the

nearest cluster. This is the **bottleneck distance**. And the pair (p_i, c_j) that defined this distance is the bottleneck pair.

 $\Delta(C)$ is the measure of the quality of the clustering. The problem is to pick *k* centers so this distance is as small as possible. <u>link link</u>

Greedy Approx k-center Given $S = \{p_1...p_n\} \in \mathbb{R}^d$ set of n points. Want to divide into k clusters (k is given)

The first center c_1 in G_{greedy} is arbitrary - let's pick p_1 . This is the first center c_1 $G_{greedy} = \{p_1\}; \quad \forall p_i \in S \text{ do } d[p_i] = |p_i - p_1|$ for(i = 2...k) $c_i = \arg \max_{p_i \in S} d[p_j] / / \text{ find the bottleneck pair}$ Add c_i to G_{greedy} $\forall p_j \in S \text{ do } d[p_j] = \min\{d[p_j], |p_j - c_i|\}$ return G_{greedy} For the proof, we will also consider G_{k+1} , obtained by performing another iteration of the algorithm. **Theorem:** $\Delta(G_{greedy}) \leq 2\Delta(Opt)$

Proof: Let $G_i = G_{greedy}$ after i iteration of the algorithm. (for i=1..k) $G_i = \{c_1, c_2...c_l\}$ **Claim:** $\Delta(G_i) \ge \Delta(G_{i+1})$ (for i=1..k) **Lemma:** Let $r = \Delta(G_{i-1})$. The distance between every two centers in G_i is $\ge r$. **Proof:** c_i is at distance exactly Γ from the <u>nearest</u> center of G_{i-1} , so $|c_i - c_i| \ge r$ for all l < i. For smaller values of i, remember that $\Delta(G_l) \ge r$ (from the first claim)

Greedy Approx k-center The first center c_1 in G_{ereedy} is arbitrary - let's pick p_1 . This is the first center c_1 $G_{greedy} = \{p_1\}; \quad \forall p_i \in S \text{ do } d[p_i] = |p_i - p_1|$ for(i = 1...k) $c_i = \arg \max_{p_i \in S} d[p_i] / / \text{ find the bottleneck pair$ Add c_i to G_{greedy} $\forall p_i \in S \text{ do } d[p_i] = \min\{d[p_i], |p_i - c_i|\}$ return G_{oreedy} . Repeat one more iteration to produce G_{k+1} Claim: $\Delta(G_i) \ge \Delta(G_{i+1})$ (for i=1..k) Lemma: Let $r = \Delta(G_{i-1})$. The distance between any two centers in G_i is $\geq r$. In particular, the distance between every two centers in G_{k+1} is $\geq \Delta(G_{ereedy})$. **Theorem:** $\Delta(G_{greedy}) \leq 2\Delta(Opt)$ Pf of Theorem: Let $\mathbf{C}' = \{c'_1 \dots c'_k\}$ be any set of exactly k centers. (for example, opt) By Definition of C', each $p \in S$ has a center $c \in C$ at distance $\leq \Delta(C)$ from p. Some center $c' \in C$ has two centers $c_i, c_i \in G_{k+1}$ in the cluster of c. $|c_i - c_j| \ge \Delta(G_{greedy})$ (from the Lemma). So $\left| \Delta(G_{\text{greedy}}) \leq |c_i - c_j| \leq |c_r' - c'| + |c_r' - c'| \right|$ < $\Delta(C') + \Delta(C') = 2\Delta(C')$ OED

Approximating the Traveling Salesperson Problem

OPT-TSP: Given a complete, weighted graph, find a cycle of minimum cost that visits each vertex.

- OPT-TSP is NP-hard
- Special case: edge weights satisfy the triangle inequality (which is common in many applications):
 ♦ w(a,b) + w(b,c) ≥ w(a,c)

Complete – there is an edge between every pair of vertices

From MST to cycles

40

Given a MST of *G*, a traversal *T* of *MST* is constructed by picking a source vertex *s*, and visit the nodes of the graph in a DFS order.

- Let w(MST) and w(OPT-TSP) be the sum of weights of edges of MST and of OPT-TSP.
- Since OPT-TSP does not visit a vertex twice, it does not use an edge twice. So its weight *w*(OPT-TSP) is the sum of weights of its edges.
- *T* is a tour that uses twice every edge of MST. so w(T) = 2w(MST).
- OPT-TSP is a spanning graph (graph that connects all vertices of V.)

 $w(OPT-TSP) \ge w(MST)$ $2 \cdot w(OPT-TSP) \ge 2 \cdot w(MST) = w(T)$

