Approximation Algorithm

Approximation Ratios

\&An approximation produces a solution T

- T is a δ-approximation to a minimization problem if $\mathrm{c}(\mathrm{T}) \leq \delta \cdot$ OPT
- We assume $\delta>1$
- Examples:
- Will show how to find a p path in a graph, that visits all vertices, and $w(p) \leq \delta w\left(p^{*}\right)$. Here p^{*} is the cheapest TSP path.

Approximation Ratios and optimizations problems We are trying to minimize (or maximize) some cost function $c(S)$ for an optimization problem. E.g.
\bullet Finding a minimum spanning tree of a graph.

- Cost function - sum of weights of edges in the graph
- Finding a cheapest traveling salesperson tour (TSP) in a graph.
- Finding a smallest vertex cover of a graph
- Given $G(V, E)$, find a smallest set of vertices so that each edge touches at least one vertex of the set.

Vertex Cover

$\diamond A$ vertex cover of graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subset $C \subseteq V$ of vertices, such that, for every $(\mathrm{u}, \mathrm{v}) \in \mathrm{E}$, either $u \in C$ or $v \in C \quad$ (or both $\in C$)
-Application:
*Given graph of Facebook friends, find set of influencers - vertices that cover all edges of the graph.
Given maps of roads, find junctions to place monitoring cameras, so we could monitor the whole traffic.

『OPT-VERTEX-COVER: Given an graph G, find a vertex cover of G with smallest size.
\diamond OPT-VERTEX-COVER is NP-hard.

A 2-Approximation for Vertex Cover

Algorithm VertexCoverApprox (\boldsymbol{G})
Input graph \boldsymbol{G}
Output a vertex cover \boldsymbol{C} for \boldsymbol{G}
$\boldsymbol{C} \leftarrow$ empty set; $\boldsymbol{H} \leftarrow \boldsymbol{E}$
$/ * \boldsymbol{H}$ - what is left to be covered $* /$
while \boldsymbol{H} has edges (not empty)
$(\boldsymbol{u}, \boldsymbol{v}) \leftarrow$ An edge of H.
Add both \boldsymbol{u} and \boldsymbol{v} to \boldsymbol{C}
for each edge \boldsymbol{f} of \boldsymbol{H} incident
to \boldsymbol{v} or \boldsymbol{w}
Remove \boldsymbol{f} from \boldsymbol{H}
\} return \boldsymbol{C}

- Analysis: How large could C be, comparing to OPT ? - Let OPT be the opt solution.
- Every chosen edge e has both ends in C.
- But e must be covered by at least one vertex of OPT. So, one end of e must be in OPT.
- $|\mathrm{C}| \leq 2$ |OPT|.
-(there are ≤ 2 vertices of C for each vertex of OPT.)
-That is, C is a 2-approx. of OPT
- Running time: $\mathrm{O}(|\mathrm{E}|)$

Approximating the Traveling Salesperson Problem (TSP)

- OPT-TSP: Given a weighted graph $G(V, E)$, find a cycle of minimum cost that visits each vertex at least once.
- OPT-TSP is NP-hard
- However, it is very easy to find a tour that costs \leq twice opt.
- First Step: Compute the Minimum Spanning Tree MST(G) (for example, using Kruskal algorithm)
- Just to remind ourself: $\operatorname{MST}(\mathrm{G})$ is a set of edges which are

1. Contains every vertex of V
2. Connected (a path from every vertex to every other vertex). That is, it spans G
3. Among all the graphs satisfying (1) $+(2)$, has the smallest sum of weights of edges.

Observation: The edges of TSP, they also span G

From MST to cycles

Given a MST of \boldsymbol{G}, a traversal \boldsymbol{T} of $\boldsymbol{M S T}$ is constructed by picking a source vertex s, and visit the nodes of the graph in a DFS order.

- Let w (MST) and w (OPT-TSP) be the sum of weights of edges of MST and of OPT-TSP. (an edge is counted once, even if appearing multiple times
- $\operatorname{Cost}(\mathrm{OPT}-\mathrm{TSP}) \geq w(O P T-T S P)$, since possibly the same edge was used more than once.
- Claim: w (OPT-TSP) $\geq w(M S T)$
- (explanation: Both OPT-TSP and MST spans G, but OPT-TSP optimize other parameter, which MST minimizes sum of weights.
- T is a tour that uses twice every edge of MST. so $w(T)=2 w(M S T)$.
- OPT-TSP is a spanning graph (graph that connects all vertices of V.) Obviously $\operatorname{Cost}(T) \geq \operatorname{cost}($ OPT-TSP). However
$\operatorname{cost}($ OPT-TSP $) \geq w($ OPT-TSP $) \geq \quad w($ MST $)$
$2 \operatorname{cost}(\mathrm{OPT}-\mathrm{TSP}) \geq 2 \cdot w(\mathrm{OPT}-\mathrm{TSP}) \geq 2 \cdot w(M S T)=\operatorname{cost}(T)$
Conclusion: Traversing MST gives a factor 2 approx to TSP.

7

Approximation Algorithm for Set Cover

Dave's Mount Lecture Notes:
Dorit S. Hochbaum and Anu Pathria. Analysis of the Greedy Approach in Problems of Maximum k-Coverage. Naval Research Logistics, Vol. 45 (1998)

Set-Cover Problems

Facility location problems: Given: A map of Tucson, place min number of charging station, so every house is at distance ≤ 5 miles from a charging station,

Budget Set Cover. With a budget of $\leq k$ stations, cover as much of Tucson as possible.

- Given - a polygon domain D , and a set $P=\left\{p_{1} \ldots p_{n}\right\}$ of potential guard - we might place a camera at p_{i}.
- Each potential guard p_{i} sees some region $\operatorname{Vis}\left(p_{i}\right)$ of the polygon, but could not see through walls.
- Formally, p_{i} sees every point q for which the segment $\overline{p_{i} q}$ is fully in D .
- Art Gallery Problem - find the smallest set of guards (all from P) that together see the whole D.
- Budget Art Gallery - with at most k guards, see as much as possible.
- Set cover is NP-hard (and extremely practical)
- $a_{i}=\operatorname{Area}\left(\operatorname{Vis}\left(p_{i}\right)\right)$ the area (in meters^2) that it sees.

- Greedy Approach. The first camera is located at the the point of P that sees maximum area
- The second camera g_{2} is located where it sees the maximum area that g_{1} does not see
- g_{3} sees the max area not seen by neither g_{1} nor g_{2}, etc...
- Stop when either P is covered, or (in the budget case) when used k cameras.

Visibility in a polygon. The art Gallery Problem

"Standard" Art Gallery:
Find the smallest set $\left\{g_{1}, g_{2} \ldots g_{r}\right\} \subseteq P$
s.t
$D=\operatorname{Vis}\left(g_{1}\right) \cup \operatorname{Vis}\left(g_{i}\right) \cup . . \operatorname{Vis}\left(g_{r}\right)$

Budget Art Galley:

Given k , find $\left\{g_{1}, g_{2} \ldots g_{k}\right\} \subseteq P$ Maximize
$\operatorname{Area}\left(\operatorname{Vis}\left(g_{1}\right) \cup \operatorname{Vis}\left(g_{2}\right) \cup \ldots \operatorname{Vis}\left(g_{k}\right)\right)$

- Greedy Approach. The first camera is located at the the point of P that sees maximum area
- The second camera g_{2} is located where it sees the maximum area that g_{1} does not see
- g_{3} sees the max area not seen by neither g_{1} nor g_{2}, etc...
- Stop when either P is covered, or (in the budget case) when used k cameras.
 maximum area
- The second camera g_{2} is located where it sees the maximum area that g_{1} does not see
- g_{3} sees the max area not seen by neither g_{1} nor g_{2}, etc...
- Stop when either P is covered, or (in the budget case) when used k cameras.

- Greedy Approach. The first camera is located at the the point of P that sees maximum area
- The second camera g_{2} is located where it sees the maximum area that g_{1} does not see
- g_{3} sees the max area not seen by neither g_{1} nor g_{2}, etc...
- Stop when either P is covered, or (in the budget case) when used k cameras.

This is a set cover problem

- Given - a polygon domain D , and a set $P=\left\{p_{1} \ldots p_{n}\right\}$ of potential guards.
- Every potential guard p_{i} defines a set. This set is $\operatorname{Vis}\left(p_{i}\right)$. A set cover problem is to find a collection of sets that together covers the whole domain.
- Greedy Approach. The first guard is the point that sees maximum area $g_{1}=\arg \max _{p \in P} \mu(p)$
- The second guard g_{2} sees the maximum area that g_{1} does not see
- g_{3} sees the max area not seen by neither g_{1} nor g_{2}, etc...

Set Cover Problems - terminology

General problem: Given a universe $X=\left\{x_{1} \ldots x_{m}\right\}$, each x_{i} is an atoms.
Also given a range space (also called set system). It is a collection of subsets of X. $\mathbf{R}=\left\{S_{1}, S_{2} \ldots\right\}$ a collection of subsets of X. $\left(S_{i} \subseteq X\right)$

Examples:

1. In a polygon D, the atoms are all points of D. Each possible guard p_{i} defines $\operatorname{Vis}\left(p_{i}\right) . \quad \mathbf{R}=\left\{\operatorname{Vis}\left(p_{i}\right) \mid p_{i} \in P\right\}$
2. Given a graph $G(V, E)$, we could treat V as the universe. Each edge is a set of two atoms. (edge-cover)
3. In a graph $G(V, E)$, the atoms are the edges. Each vertex $v_{i} \in V$ defines the set S_{i} of all the edges that v_{i} is adjacent to. (vertex cover)
Greedy for art-gallery
4. Pick the guard g_{1} maximizing the area of $g_{1}=\arg _{g \in D} \operatorname{area}(\operatorname{Vis}(g))$
5. Pick the guard g_{2} maximizing the area not seen by g_{1}.

$$
g_{2}=\arg _{g \in D} \operatorname{area}\left(\operatorname{Vis}(g) \backslash \operatorname{Vis}\left(g_{1}\right)\right)
$$

3. Pick the guard g_{3} maximizing the area not seen by g_{1}.

$$
g_{3}=\arg _{g \in D} \operatorname{area}\left(\operatorname{Vis}(g) \backslash\left(\operatorname{Vis}\left(g_{1}\right) \cup \operatorname{Vis}\left(g_{2}\right)\right)\right)
$$

Etc until either seeing all D , or until using k guards.

Set Cover Problems

General problem: Given a universe $X=\left\{x_{1} \ldots x_{m}\right\}$, each x_{i} is an atoms. Also given $\mathrm{R}=\left\{S_{1}, S_{2} \ldots\right\}$ a collection of subsets of $\mathrm{X} .\left(S_{i} \subseteq X\right)$

Examples:
 define $\operatorname{Vis}\left(p_{i}\right)$ which is the region of D that p_{i} sees.
2. Given a graph $G(V, E)$, we could treat V as the universe. Each edge is a set of two atoms. (edge-cover)
3. In a graph $G(V, E)$, the atoms are the edges. Each vertex $v_{i} \in V$ defines the set S_{i} of all the edges that v_{i} is adjacent to.

- We say that $\mathbf{C}=\left\{S_{1}^{\prime}, S_{2}^{\prime} \ldots S_{k}^{\prime}\right\}$ covers X if $X=S_{1}^{\prime} \cup S_{2}^{\prime} \cup \ldots \cup S_{k}^{\prime}$, that is, each atom is contained in at least one set of \mathbf{C}.)
- Set cover problem: Find the collection $\mathbf{C}=\left\{S_{1}^{\prime}, S_{2}^{\prime} \ldots S_{k}^{\prime}\right\}$ of min number of sets that covers X. That is, minimize $|\mathbf{C}|$.
- In the case of the art-gallery problem, find a min-cardinality set of guards that see all the polygon.
- Budget Set cover problem: Given an integer $k>1$ (budget).
- Find a collection $\mathbf{C}=\left\{S_{1}^{\prime}, S_{2}^{\prime} \ldots S_{k}^{\prime}\right\}$ of no more than k sets from \mathbf{R} such that the number of atoms in $S_{1}^{\prime} \bigcup S_{2}^{\prime} \bigcup \ldots \bigcup S_{k}^{\prime}$ is as large as possible.
- In the case of the art gallery, find a set of k guards that see as much as possible.

Greedy Algorithm for the budget case:

```
X'}=X={\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{m}{}
For i=1 to k {
    Let S}\mp@subsup{S}{i}{\prime}\mathrm{ be the set S}S\in\mathbf{R}\mathrm{ that maximizing | S\ 坆|.
    X'}\leftarrow\mp@subsup{X}{}{\prime}\\mp@subsup{S}{i}{\prime}//Only care for uncovered atom
    }
Return [S1, ,S2...S的]
```

For standard set cover, the stoping condition is that $X^{\prime}=\varnothing$ Algorithm for the budget case:

Greedy could be far away from opt, if we insist of covering X

Opt: $\left\{s_{5}, s_{6}\right\}$
Greedy: $\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\}$

- It is known that it could be much worse than opt.
- In the opt problem above, $O p t=\left\{s_{7}, s_{8}\right\}$ (two sets)
- Greedy might start from s_{1}, then pick $s_{2} \ldots$ could be $\geq \log _{2} n$
- Approximation factor:
- Approximation factor $=\frac{\text { Numer of sets that greedy finds }}{\text { Numer of sets that OPT finds }}=\frac{\log _{2} n}{2}=\Omega(\log n)$
- This is actually a tight bound (we will see shortly)
- However, greedy is doing much better for the budget case (number of sets is given \boldsymbol{k}-maximize the area / the number of atoms

Before we start - useful inequalities

If $k \geq 1$ then $\left(1-\frac{1}{k}\right)^{k} \leq \frac{1}{e}$
Conclusion $1-\left(1-\frac{1}{k}\right)^{k} \geq 1-\frac{1}{e}$

Analysis of greedy algorithm for the budget set-cover problem

Consider a range space (atoms and subsets)
Let k (the budget) be a given fixed positive integer.
Let OPT be the maximum number of atoms that we can cover with $\leq k$ sets

Theorem: Greedy algorithm will produces a solution that covers

$$
\geq O P T\left(1-\frac{1}{e}\right) \approx 0.64 \cdot O P T
$$

Proof: Analysis of the Greedy Algorithm (for the budget case)

- Let OPT be the maximum area that k guards could see.
...(or the max number of atoms that \boldsymbol{k} sets could contain)
- Let a_{l} be the gain from adding the $l^{\prime} s$ set (for $1 \leq l \leq k$). How much area did the $l^{\prime} t h$ add.
- Let $s(l)=a_{1}+a_{2}+\ldots a_{l}$ be the total area guard by that the first l guards that greedy picked.

Claim: $a_{1} \geq O P T / k$.

Lemma $1: a_{l} \geq \frac{O P T-s(l-1)}{k}$. (this is the heart of the proof.)
Lemma 2: $s(l) \geq O P T \cdot\left\{1-\left(1-\frac{1}{k}\right)^{l}\right\}$
Lets assume that the lemma is proven
This will implies that greedy, after picking the k'th set, covers area which is at least $s(k) \geq O P T\left\{1-(1-1 / k)^{k}\right\} \geq O P T \cdot\left(1-\frac{1}{e}\right) \approx 0.64 \cdot O P T$

That is, greedy reaches 64% of what OPT could reach.

Let a_{l} be the gain from adding the $l^{\prime} s$ set (for $1 \leq l \leq k$). Let $s(l)=a_{1}+a_{2}+\ldots a_{l}$ be the number of atoms of the first l sets that greedy picks. So a_{l} is the gain from adding the l 's set (the atoms that were not covered by previous sets)
Claim: $a_{1} \geq \frac{O P T}{k} \quad$ Lemma 1: $a_{l+1} \geq \frac{O P T-s(l)}{k} \quad$ Lemma2: $s(l) \geq O P T\left(1-(1-1 / k)^{l}\right)$
Proof Lemma 2 by induction on l.
The base case $l=1$ is just Lemma 1 , since $s(0)=0$. Let $Q=(1-1 / k)$.
Induction hypothesis claims that $s(l) \geq\left(1-Q^{l}\right) O P T$.
Need to show $\quad s(l+1) \geq\left(1-Q^{l+1}\right) O P T$.
Proof: $s(l+1) \stackrel{\text { def }}{=} s(l)+a_{l+1} \stackrel{\text { Lemma } 1}{\geq} s(l)+\frac{O P T-s(l)}{k}=$
$=s(l)\left(1-\frac{1}{k}\right)+\frac{O P T}{k}=s(l) Q+\frac{O P T}{k} \stackrel{\text { Induction }}{\geq}$
$Q\left(1-Q^{l}\right) O P T+\frac{O P T}{k}=\left(1-\frac{1}{k}\right) O P T-Q^{l+1} O P T+\frac{O P T}{k}=\left(1-Q^{l+1}\right) O P T \quad . \quad$ QED

This result is even stronger :

In many cases, it is hard or impossible to compute the largest set at each stage.

Assume that greedy picks at every stage a set S_{i} such that $\operatorname{size}\left(S_{i}\right) \geq \beta \cdot \operatorname{size}(\max (S))$. That is, we only pick a β-approximation to the largest set.

Then Greedy $\geq O P T\left(1-\frac{1}{e^{\beta}}\right)$
For example, if $\beta=0.95$, then we get
Greedy \geq OPT $\cdot 0.61$

Another attempt to prove the theorem, possibly in a simpler way

$$
\text { Claim: } a_{1} \geq \frac{O P T}{k} \quad \text { Lemma 1: } a_{l+1} \geq \frac{O P T-s(l)}{k}
$$

- Let a_{i} be the gain from adding the $i^{\prime} s$ set (for $1 \leq i \leq k$). Let $s(l)=a_{1}+a_{2}+\ldots a_{l}$ be the number of atoms of the first l sets that greedy picks. So a_{l} is the gain from adding the $l^{\prime} s$ set (the atoms that were not covered by previous sets)
- Let $\Delta(i)=O P T-s(i)$ denote the gap between OPT and what greedy gained till the i'th step. Note: $\Delta(0)=O P T$

$$
\begin{aligned}
& \text { Note that lemma } 1 \text { implies } \\
& a_{i} \geq \frac{\Delta(i-1)}{k} .
\end{aligned} \begin{aligned}
& \Delta(i)=\Delta(i-1)-a_{i} \\
& \quad \leq \Delta(i-1)-\frac{\Delta(i-1)}{k} \\
& \quad=\Delta(i-1)\left(1-\frac{1}{k}\right)
\end{aligned}
$$

This implies

$$
\begin{aligned}
\Delta(k) \leq & \Delta(k-1)\left(1-\frac{1}{k}\right) \leq \\
\leq & \left\{\Delta(k-2)\left(1-\frac{1}{k}\right)\right\}\left(1-\frac{1}{k}\right)=\Delta(k-2)\left(1-\frac{1}{k}\right)^{2} \\
\leq & \left\{\Delta(k-3)\left(1-\frac{1}{k}\right)\right\}^{2}\left(1-\frac{1}{k}\right)=\Delta(k-3)\left(1-\frac{1}{k}\right)^{3} \\
\leq & \cdots \\
& \Delta(0)\left(1-\frac{1}{k}\right)^{k}=O P T\left(1-\frac{1}{k}\right)^{k} \leq O P T\left(\frac{1}{e}\right)
\end{aligned}
$$

$$
\text { Using the fact that }(1-1 / k)^{k} \leq \frac{1}{e}
$$

$$
\text { Hence } \Delta(k)=O P T-s(k) \leq O P T / e
$$

$$
\text { Thus }: s(k) \geq O P T(1-1 / e) \quad \text { QED }
$$

This result is even stronger :

Note that $f(A \cup\{x\})-f(A)$ measures the benefit of adding an atom x to the set A.

Submodularity: We say that a function $f(S)$, is submodular if
$\forall A \subseteq B, \quad f(A \cup\{x\})-f(A) \geq f(B \cup\{x\})-f(B)$
That is, this is the idea of diminishing return, if B is larger than $\mathrm{A}(A \subseteq B)$ then adding x to B is less significant than adding it to A.

Theorem: Using the budget-greedy algorithm on any sub modular function yields a solution that is
$\geq(1-1 / e) O P T$.

Submodularity and greedy. The EMP case

- We have a items (routers), indicated by blue points $P=\left\{p_{1} \ldots p_{n}\right\}$
- Electromagnetic pulse (EMP) attack might cause some of them to burn.
- Each attack is abstracted by a disk. Each router p_{i} outside the disk is not effected. A router p_{i} inside the disk c has 50% chance to survive.
- Given a budget of k attacks, and a possible set of candidate attacks, where should the attacker place the k attacks $S=\left\{c_{1}, c_{2} \ldots c_{k}\right\}$ to maximize the expected damage $\sum_{p_{i} \in P} \operatorname{Pr}\left(p_{i}\right.$ did not survice the attackS $)$
- NP-hard, so use greedy.

For a subset $\left\{c_{1}, c_{2} \ldots c_{k}\right\}$ of attack disks, and a router $p \in \mathbb{R}^{2}$, lets define
$\operatorname{depth}(p, S)=$ \#disks from S containing p .

Reward function
$f(S)=f\left(\left\{c_{1}, c_{2} \ldots c_{k}\right\}\right)=\sum_{i \in P} 2^{-\operatorname{depth}(p, S)}$

In this app (link) add attack disks by changing the slides k , and move the disks to see their imp

Each element in the attack region survives with probability $1 / 2$.
The number next to each item is its survival probability Revenue from an attack:

Example of submodularity and greedy: An "Attack" is limited to a disk.
Each element in the attack region survives with probability $1 / 2$.
The number next to each item is its survival probability Revenue from an attack:
. 100%

Example of submodularity and greedy: An "Attack" is limited to a disk.
Each element in the attack region survives with probability $1 / 2$.
The number next to each item is its survival probability Revenue from an attack:

D Example of submodularity and greedy: An "Attack" is limited to a disk.
Each element in the attack region survives with probability $1 / 2$.

Back to covering the whole universe

Given a universe $X=\left\{x_{1} \ldots x_{m}\right\}$ with \boldsymbol{m} atoms, each x_{i} is an atoms. $\mathrm{R}=\left\{S_{1}, S_{2} \ldots\right\}$ is a collection of subsets of X. $\left(S_{i} \subseteq X\right)$. Find the smallest collection $\mathbf{C}=\left\{S_{1}^{\prime}, S_{2}^{\prime} \ldots S_{k}^{\prime}\right\}$ that covers X.
Again use greedy, but stop when X is covered. How many sets greedy produces?

- $s(i)=a_{1}+a_{2}+\ldots a_{i}$.

Recall $\Delta(\mathrm{i})=O P T-s(\mathrm{i}) \leq O P T\left(1-1 / k_{o p t}\right)^{\mathrm{i}}$.

```
kopt =min number of sets that covers X
```

Now OPT is the universe with m atoms, so $\Delta(i)=m-s(i) \leq m\left(1-1 / k_{\text {opt }}\right)^{i}$. Assume greedy needs $r+1$ iteration until it covers all m atoms of the universe. At the \mathbf{r}^{\prime} 'th iteration (last but one) at least one atom is left uncovered, or $\Delta(r) \geq 1$. How large could r be?

$$
\begin{gathered}
1 \leq \Delta(r) \leq m\left(1-1 / k_{o p t}\right)^{r}=m\left\{\left(1-1 / k_{o p t}\right)^{k_{o p t}}\right\}^{r / k_{o p t}} \\
\leq m\{1 / e\}^{l / k_{o p t}}=m / e^{r / k_{o p t}} \text { or } e^{r / k_{o p t}} \leq m
\end{gathered}
$$

Take $\ln (\cdot)$ from both sides, yield: $r / k_{o p t} \leq \ln m$ or $r \leq k_{o p t} \ln m$.
Theorem: Greedy gives $\ln m$ approximation factor to the smallest number of sets needed to cover X.
Thm: Could show: The actual bound is $\ln \left(\max \left|S_{i}\right|\right)$

Example of submodularity and greedy: An "Attack" is limited to a disk.
Each element in the attack region survives with probability $1 / 2$
The number next to each item is its survival probability Revenue from an attack:

Clustering points in \mathbb{R}^{d} with bottleneck penalty
(Source: Mount's notes)
Given $S=\left\{p_{1} \ldots p_{n}\right\} \in \mathbb{R}^{d}$ set of n points. Want to divide into k clusters (k is given)

Let $C=\left\{c_{1} \ldots c_{k}\right\}$ be the set of centers of clusters. Naturally we would like to assign each p_{i} to one cluster. How? We just assign p_{i} to the nearest cluster

For every point q let $N N(q, C)$ be the nearest center of q .
Let $\Delta(C)=\max _{p_{i} \in S} \operatorname{dist}\left(p_{i}, N N\left(p_{i}, C\right)\right)$ the max distance to the nearest cluster. This is the bottleneck distance. And the pair $\left(p_{i}, c_{j}\right)$ that defined this distance is the bottleneck pair.
$\Delta(C)$ is the measure of the quality of the clustering. The problem is to pick k centers so this distance is as small as possible. link link

Greedy Approx k-center

```
Given S ={ {\mp@subsup{p}{1}{}\ldots\mp@subsup{p}{n}{}}\in\mp@subsup{\mathbb{R}}{}{d}\mathrm{ set of n points. Want to divide into }k\mathrm{ clusters (k is given)}
    The first center c}\mp@subsup{c}{1}{}\mathrm{ in }\mp@subsup{G}{greedy is arbitrary - let's pick }{\mathrm{ p}
    Ggreedy }={\mp@subsup{p}{1}{}};\quad\forall\mp@subsup{p}{i}{}\inS\mathrm{ do }d[\mp@subsup{p}{i}{}]=|\mp@subsup{p}{i}{}-\mp@subsup{p}{1}{}
    for(i=2\ldotsk)
\[
\begin{aligned}
& c_{i}=\arg \max _{p_{j} \in S} d\left[p_{j}\right] / / \text { find the bottleneck pair } \\
& \text { Add } c_{i} \text { to } G_{g r e e d y} \\
& \forall p_{j} \in S \text { do } d\left[p_{j}\right]=\min \left\{d\left[p_{j}\right],\left|p_{j}-c_{i}\right|\right\}
\end{aligned}
\]
return \(G_{\text {greedy }}\)
```

For the proof, we will also consider G_{k+1}, obtained by performing another iteration of the algorithm.
Theorem: $\Delta\left(G_{\text {greed }}\right) \leq 2 \Delta(O p t)$
Proof: Let $G_{i}=G_{\text {greedy }}$ after i iteration of the algorithm. (for $\mathrm{i}=1$...k)
$G_{i}=\left\{c_{1}, c_{2} \ldots c_{i}\right\}$
Claim: $\Delta\left(G_{i}\right) \geq \Delta\left(G_{i+1}\right) \quad$ (for $\mathrm{i}=1 . . \mathrm{k}$)
Lemma: Let $r=\Delta\left(G_{i-1}\right)$. The distance between every two centers in G_{i} is $\geq r$.
Proof: c_{i} is at distance exactly r from the nearest center of G_{i-1}, so $\left|c_{i}-c_{l}\right| \geq r$ for all $l<i$.
For smaller values of i , remember that $\Delta\left(G_{l}\right) \geq r$ (from the first claim)

Approximating the Traveling Salesperson Problem

OOPT-TSP: Given a complete, weighted graph, find a cycle of minimum cost that visits each vertex.

- OPT-TSP is NP-hard
- Special case: edge weights satisfy the triangle inequality (which is common in many applications):
- $w(a, b)+w(b, c) \geq w(a, c)$

Complete - there is an edge between every pair of vertices

Greedy Approx k-center

The first center c_{1} in $G_{\text {greed }}$ is arbitrary - let's pick p_{1}. This is the first center c_{1}
$\underset{\text { for }(i=1 . k)}{G_{\text {gredy }}}=\left\{p_{1}\right\} ; \forall p_{i} \in S$ do $d\left[p_{i}\right]=\left|p_{i}-p_{1}\right|$
for $(i=1 \ldots k)$
$c_{i}=\arg \max _{p_{j} \in S} d\left[p_{j}\right] / /$ find the bottleneck pair
Add c_{i} to $G_{\text {greedy }}$
$\forall p_{j} \in S$ do $d\left[p_{j}\right]=\min \left\{d\left[p_{j}\right],\left|p_{j}-c_{i}\right|\right\}$
return $G_{\text {greedy }}$. Repeat one more iteration to produce G_{k+1}
Claim: $\Delta\left(G_{i}\right) \geq \Delta\left(G_{i+1}\right) \quad$ (for $\left.\mathrm{i}=1 . . \mathrm{k}\right)$
Lemma: Let $r=\Delta\left(G_{i-1}\right)$. The distance between any two centers in G_{i} is $\geq r$.
In particular, the distance between every two centers in G_{k+1} is $\geq \Delta\left(G_{\text {greedy }}\right)$.
Theorem: $\Delta\left(G_{\text {greedy }}\right) \leq 2 \Delta(O p t)$
Pf of Theorem: Let $\mathbf{C}^{\prime}=\left\{c_{1}^{\prime} \ldots c_{k}^{\prime}\right\}$ be any set of exactly k centers. (for example, opt) By Definition of C^{\prime}, each $p \in S$ has a center $c \in C$ at distance $\leq \Delta(C)$ from p.
Some center $c^{\prime} \in C$ has two centers $c_{i}, c_{j} \in G_{k+1}$ in the cluster of c
$\left|c_{i}-c_{j}\right| \geq \Delta\left(G_{\text {greedy }}\right)$ (from the Lemma). So
$\begin{aligned} \Delta\left(G_{\text {greedy }}\right) & \leq & \left|c_{i}-c_{j}\right| \leq\left|c_{r}^{\prime}-c^{\prime}\right|+\left|c_{r}^{\prime}-c^{\prime}\right| \\ & \leq & \Delta\left(C^{\prime}\right)+\Delta\left(C^{\prime}\right)=2 \Delta\left(C^{\prime}\right)\end{aligned}$
QED

From MST to cycles

Given a MST of \boldsymbol{G}, a traversal \boldsymbol{T} of $\boldsymbol{M S T}$ is constructed by picking a source vertex s, and visit the nodes of the graph in a DFS order.

- Let w(MST) and w (OPT-TSP) be the sum of weights of edges of MST and of OPT-TSP
- Since OPT-TSP does not visit a vertex twice, it does not use an edge twice. So its weight w (OPT-TSP) is the sum of weights of its edges.
- T is a tour that uses twice every edge of MST. so $w(T)=2 w(M S T)$.
- OPT-TSP is a spanning graph (graph that connects all vertices of V.)

$$
\begin{aligned}
& w(\text { OPT-TSP }) \geq \\
& 2 \cdot w(\text { OPT-TSP }) \geq 2 \cdot w(M S T) \geq w(T)
\end{aligned}
$$

