
Approximation Algorithm

2

Approximation Ratios and optimizations problems
We are trying to minimize (or maximize) some cost

function c(S) for an optimization problem. E.g.
◆Finding a minimum spanning tree of a graph.

■ Cost function – sum of weights of edges in the
graph

◆Finding a cheapest traveling salesperson tour (TSP) in
a graph.
◆Finding a smallest vertex cover of a graph

■ Given G(V,E), find a smallest set of vertices so that
each edge touches at least one vertex of the set.

3

Approximation Ratios

An approximation produces a solution T
■ T is a δ-approximation to a minimization problem if

c(T) ≤ δ· OPT
■ We assume δ>1
■ Examples:
■ Will show how to find a p path in a graph, that visits

all vertices, and w(p) ≤ δ w(p*). Here p* is the
cheapest TSP path.

4

Vertex Cover
A vertex cover of graph G=(V,E) is a subset of vertices, such that, for every (u,v) ∈ E,
either
Application:

Given graph of Facebook friends, find set of influencers - vertices that cover all edges of
the graph.
Given maps of roads, find junctions to place monitoring cameras, so we could monitor the
whole traffic.

OPT-VERTEX-COVER: Given an graph G, find a vertex cover of G with smallest size.

OPT-VERTEX-COVER is NP-hard.

C ⊆ V
u ∈ C or v ∈ C (or both ∈ C)

5

A 2-Approximation for Vertex Cover
• Analysis: How large could C be, comparing to OPT ?
• Let OPT be the opt solution.
• Every chosen edge e has both ends in C.
• But e must be covered by at least one vertex of

OPT. So, one end of e must be in OPT.
• |C| ≤ 2 |OPT|.
• (there are ≤ 2 vertices of C for each vertex of

OPT.)
• That is, C is a 2-approx. of OPT
• Running time: O(|E|)

Algorithm VertexCoverApprox(G)
 Input graph G
 Output a vertex cover C for G
 C ← empty set ; H ← E
 /* H – what is left to be covered */

while H has edges (not empty){
 (u,v) ← An edge of H.
 Add both u and v to C
 for each edge f of H incident
 to v or w
 Remove f from H
}
return C

Approximating the Traveling Salesperson Problem (TSP)
• OPT-TSP: Given a weighted graph , find a cycle of minimum cost that visits each

vertex at least once.

• OPT-TSP is NP-hard

• However, it is very easy to find a tour that costs twice opt.

• First Step: Compute the Minimum Spanning Tree MST(G) (for example, using Kruskal

algorithm)

• Just to remind ourself: MST(G) is a set of edges which are

1. Contains every vertex of V

2. Connected (a path from every vertex to every other vertex). That is, it spans G.

3. Among all the graphs satisfying (1) +(2), has the smallest sum of weights of edges.

• Observation: The edges of TSP, they also span G

G(V, E)

≤

7

From MST to cycles

Given a MST of G, a traversal T of MST is constructed by picking
a source vertex s, and visit the nodes of the graph in a DFS order.

• Let w(MST) and be the sum of weights of edges of MST and of OPT-TSP. (an edge is
counted once, even if appearing multiple times).

• Cost(OPT-TSP) , since possibly the same edge was used more than once.
• Claim:

• (explanation: Both OPT-TSP and MST spans G, but OPT-TSP optimize other parameter, which MST
minimizes sum of weights.

• T is a tour that uses twice every edge of MST. so .
• OPT-TSP is a spanning graph (graph that connects all vertices of)

 Obviously . However

Conclusion: Traversing MST gives a factor 2 approx to TSP.

w(OPT-TSP)

≥ w(OPT − TSP)
w(OPT-TSP) ≥ w(MST)

w(T) = 2w(MST)
V .

Cost(T) ≥ cost(OPT-TSP)

cost(OPT-TSP) ≥ w(OPT-TSP) ≥ w(MST)
2cost(OPT-TSP) ≥ 2 ⋅ w(OPT-TSP) ≥ 2 ⋅ w(MST) = cost(T)

MST T

Approximation Algorithm for Set Cover

Dave's Mount Lecture Notes:

Dorit S. Hochbaum and Anu Pathria. Analysis of the Greedy Approach in Problems
of Maximum k-Coverage. Naval Research Logistics, Vol. 45 (1998)

https://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect09-set-cover.pdf

Set-Cover Problems
Facility location problems: Given: A map
of Tucson, place min number of charging
station, so every house is at distance
miles from a charging station,

Budget Set Cover. With a budget of
stations, cover as much of Tucson as
possible.

≤ 5

≤ k

• Given - a polygon domain D, and a set of
potential guard - we might place a camera at .

• Each potential guard sees some region of the
polygon, but could not see through walls.

• Formally, sees every point for which the segment is
fully in D.

• Art Gallery Problem - find the smallest set of guards (all
from P) that together see the whole D.

• Budget Art Gallery - with at most guards, see as much as
possible.

P = {p1…pn}
pi

pi Vis(pi)

pi q pi q

k

D

q

p1

p2
Vis(p1)

pi , q

• Set cover is NP-hard (and extremely practical)
• the area (in meters^2) that it sees. ai = Area(Vis(pi))

Visibility in a polygon. The art Gallery Problem

 • Given - a polygon domain D, and a set
 of potential guards.

• Each potential guard sees some region
 of the polygon, but could not see

through walls.
• Formally, sees every point for which

the segment is fully in D.
• Art Gallery Problem - find the smallest

set of guards (all from P) that together
see the whole D.

• NP-hard (and extremely practical)
• the area (in

meters^2) that it sees.
• Budget Art-Gallery Problem: Given a

number (`budget’), find a set G of
guards from P, that sees together the
maximum area.

P = {p1…pn}
pi

Vis(pi)

pi q
pi q

μi = Area(Vis(pi))

k ≤ k

D

q

p1

p2

“Standard” Art Gallery:
Find the smallest set

s.t

Budget Art Galley:
Given k, find

Maximize

{g1, g2…gr} ⊆ P

D = Vis(g1) ∪ Vis(gi) ∪ . . Vis(gr)

{g1, g2…gk} ⊆ P

Area(Vis(g1) ∪ Vis(g2) ∪ . . Vis(gk))

Vis(p1)
pi , q

• Greedy Approach. The first camera is located at the the point of P that sees
maximum area

• The second camera is located where it sees the maximum area that
does not see

• sees the max area not seen by neither nor , etc…
• Stop when either P is covered, or (in the budget case) when used cameras.

g2 g1

g3 g1 g2
k

• Greedy Approach. The first camera is located at the the point of P that sees
maximum area

• The second camera is located where it sees the maximum area that
does not see

• sees the max area not seen by neither nor , etc…
• Stop when either P is covered, or (in the budget case) when used cameras.

g2 g1

g3 g1 g2
k

• Greedy Approach. The first camera is located at the the point of P that sees
maximum area

• The second camera is located where it sees the maximum area that
does not see

• sees the max area not seen by neither nor , etc…
• Stop when either P is covered, or (in the budget case) when used cameras.

g2 g1

g3 g1 g2
k

• Greedy Approach. The first camera is located at the the point of P that sees
maximum area

• The second camera is located where it sees the maximum area that
does not see

• sees the max area not seen by neither nor , etc…
• Stop when either P is covered, or (in the budget case) when used cameras.

g2 g1

g3 g1 g2
k

This is a set cover problem

Vis(p1)

p1

• Given - a polygon domain D, and a set of potential guards.

• Every potential guard defines a set. This set is . A set cover problem is to
find a collection of sets that together covers the whole domain.

• Greedy Approach. The first guard is the point that sees maximum area

• The second guard sees the maximum area that does not see

• sees the max area not seen by neither nor , etc…

P = {p1…pn}

pi Vis(pi)

g1 = arg max
p∈P

μ(p)

g2 g1

g3 g1 g2

D

Set Cover Problems - terminology
General problem: Given a universe , each is an atoms.
Also given a range space (also called set system). It is a collection of subsets
of X. a collection of subsets of X. ()

X = {x1…xm} xi

R = {S1, S2…} Si ⊆ X

Examples:

1. In a polygon , the atoms are all points of D. Each possible guard
defines .

2. Given a graph , we could treat V as the universe. Each edge
is a set of two atoms. (edge-cover)

3. In a graph , the atoms are the edges. Each vertex
defines the set of all the edges that is adjacent to. (vertex cover)

D pi
Vis(pi) R = {Vis(pi) | pi ∈ P}

G(V, E)

G(V, E) vi ∈ V
Si vi

Vis(p1)
p1

Set Cover Problems
General problem: Given a universe , each is an atoms.
Also given R= a collection of subsets of X. ()

X = {x1…xm} xi
{S1, S2…} Si ⊆ X

Examples:
1. In a polygon , the atoms are all points of D. Each possible guard

define which is the region of that sees.
2. Given a graph , we could treat V as the universe. Each edge is a

set of two atoms. (edge-cover)
3. In a graph , the atoms are the edges. Each vertex defines

the set of all the edges that is adjacent to.

D pi
Vis(pi) D pi

G(V, E)

G(V, E) vi ∈ V
Si vi

Vis(p1)

p1

• We say that covers if , (that is, each
atom is contained in at least one set of .)

• Set cover problem: Find the collection of min number of sets
that covers X. That is, minimize .

• In the case of the art-gallery problem, find a min-cardinality set of guards that
see all the polygon .

• Budget Set cover problem: Given an integer (budget).
• Find a collection of no more than sets from such that the

number of atoms in is as large as possible.
• In the case of the art gallery, find a set of guards that see as much as possible.

C = {S′ 1, S′ 2…S′ k} X X = S′ 1 ∪ S′ 2 ∪ … ∪ S′ k
C
C = {S′ 1, S′ 2…S′ k}

|C |

k > 1
C = {S′ 1, S′ 2…S′ k} k R

S′ 1⋃S′ 2⋃…⋃S′ k
k

Greedy for art-gallery

Vis(p1)

p1

1. Pick the guard maximizing the area of
2. Pick the guard maximizing the area not seen by .

3. Pick the guard maximizing the area not seen by .

Etc until either seeing all D, or until using k guards.

g1 g1 = argg∈D area(Vis(g))
g2 g1

g2 = argg∈D area(Vis(g)∖Vis(g1))
g3 g1

g3 = argg∈D area(Vis(g) ∖(Vis(g1) ∪ Vis(g2)))

Greedy Algorithm for the budget case:

For i=1 to k {

Let be the set that maximizing .
 //Only care for uncovered atoms

}
Return

X′ = X = {x1…xm}

S′ i S ∈ R |S⋂X′ |
X′ ← X′ ∖ S′ i

[S′ 1, S′ 2…S′ k]

Dorit S. Hochbaum and Anu Pathria. Analysis of the Greedy Approach in Problems
of Maximum k-Coverage. Naval Research Logistics, Vol. 45 (1998)

For standard set cover, the stoping condition is
that Algorithm for the budget case: X′ = ∅

Greedy could be far away from opt, if we insist of covering X

• It is known that it could be much worse than opt.
• In the opt problem above, (two sets)
• Greedy might start from , then pick … could be
• Approximation factor:

•

• This is actually a tight bound (we will see shortly)

• However, greedy is doing much better for the budget case (number of
sets is given k - maximize the area / the number of atoms

Opt = {s7, s8}
s1 s2 ≥ log2 n

Approximation factor =
Numer of sets that greedy finds
Numer of sets that OPT finds

=
log2 n

2
= Ω(log n)

n/2n/4n/8

Analysis of greedy algorithm for
the budget set-cover problem

Consider a range space (atoms and subsets)

Let k (the budget) be a given fixed positive integer.

Let OPT be the maximum number of atoms that we can cover with
 sets

Theorem: Greedy algorithm will produces a solution that covers

≤ k

≥ OPT(1 −
1
e) ≈ 0.64 ⋅ OPT

Before we start - useful inequalities

If then

Conclusion

k ≥ 1 (1 −
1
k)

k
≤

1
e

1 − (1 −
1
k)

k
≥ 1 −

1
e

Proof: Analysis of the Greedy Algorithm (for the budget case)

• Let OPT be the maximum area that k guards could see.
…(or the max number of atoms that k sets could contain)

• Let be the gain from adding the set (for). How much area did the add.

• Let be the total area guard by that the first guards that greedy
picked.

Claim: .

Lemma 1 : . (this is the heart of the proof.)

Lemma 2:

Lets assume that the lemma is proven.
This will implies that greedy, after picking the k’th set, covers area which is at least

That is, greedy reaches 64% of what OPT could reach.

al l′ s 1 ≤ l ≤ k l′ th

s(l) = a1 + a2 + …al l

a1 ≥ OPT / k

al ≥
OPT − s(l − 1)

k
s(l) ≥ OPT ⋅ {1 − (1 − 1

k)
l }

s(k) ≥ OPT {1 − (1 − 1/k)k } ≥ OPT ⋅ (1 − 1
e) ≈ 0.64 ⋅ OPT

 (1 − 1/k)k ≤ 1
e

Let be the gain from adding the set (for). Let be the
number of atoms of the first sets that greedy picks. So is the gain from adding the set (the
atoms that were not covered by previous sets)

Proof Lemma 2 by induction on .
The base case is just Lemma 1, since Let .
Induction hypothesis claims that

Need to show .

Proof:

 . QED

al l′ s 1 ≤ l ≤ k s(l) = a1 + a2 + …al
l al l′ s

l
l = 1 s(0) = 0. Q = (1 − 1/k)

s(l) ≥ (1 − Ql)OPT .
s(l + 1) ≥ (1 − Ql+1)OPT

s(l + 1) def= s(l)+al+1
Lemma 1

≥ s(l)+
OPT−s(l)

k
=

= s(l)(1 − 1
k) + OPT

k = s(l)Q + OPT
k

Induction
≥

Q(1 − Ql)OPT+
OPT

k
= (1− 1

k)OPT−Ql+1 OPT+
OPT

k
= (1 − Ql+1)OPT

Claim: a1 ≥
OPT

k
Lemma 1: al+1 ≥

OPT − s(l)
k

Lemma2: s(l) ≥ OPT(1 − (1 − 1/k)l)

Another attempt to prove the theorem, possibly in a simpler way

• Let be the gain from adding the set (for). Let
be the number of atoms of the first sets that greedy picks. So is the gain from adding
the set (the atoms that were not covered by previous sets)

• Let denote the gap between OPT and what greedy gained till the
i’th step. Note:

ai i′ s 1 ≤ i ≤ k s(l) = a1 + a2 + …al
l al

l′ s

Δ(i) = OPT − s(i)
Δ(0) = OPT

Claim: a1 ≥
OPT

k
Lemma 1: al+1 ≥

OPT − s(l)
k

Using the fact that

Hence
 Thus : QED

Δ(k) ≤ Δ(k − 1)(1 −
1
k) ≤

≤ {Δ(k − 2)(1 −
1
k)}(1 −

1
k) = Δ(k − 2)(1 −

1
k)

2

≤ {Δ(k − 3)(1 −
1
k)}

2

(1 −
1
k) = Δ(k − 3)(1 −

1
k)

3

≤ …

Δ(0)(1 −
1
k)

k
= OPT(1 −

1
k)

k
≤ OPT(1

e)
(1 − 1/k)k ≤ 1

e

Δ(k) = OPT − s(k) ≤ OPT/e,
s(k) ≥ OPT(1 − 1/e)

Note that lemma 1 implies

 . So

This implies

ai ≥
Δ(i − 1)

k

Δ(i) = Δ(i − 1) − ai

≤ Δ(i − 1) −
Δ(i − 1)

k

= Δ(i − 1)(1 −
1
k)

This result is even stronger :

In many cases, it is hard or impossible to compute the
largest set at each stage.

Assume that greedy picks at every stage a set such
that . That is, we only pick
a approximation to the largest set.

Then

For example, if then we get

Si
size(Si) ≥ β ⋅ size(max(S))

β−

Greedy ≥ OPT(1 −
1
eβ)

β = 0.95,
Greedy ≥ OPT ⋅ 0.61

This result is even stronger :
Note that measures the benefit of adding an
atom x to the set A.

f(A ∪ {x}) − f(A)

Submodularity: We say that a function , is
submodular if

That is, this is the idea of diminishing return, if B is
larger than A () then adding x to B is less
significant than adding it to A.

Theorem: Using the budget-greedy algorithm on any
sub modular function yields a solution that is

.

f(S)

∀A ⊆ B, f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B)

A ⊆ B

≥ (1 − 1/e)OPT

• We have a items (routers), indicated by blue points
• Electromagnetic pulse (EMP) attack might cause some of them to burn.
• Each attack is abstracted by a disk. Each router outside the disk is not

effected. A router inside the disk c has 50% chance to survive.
• Given a budget of k attacks, and a possible set of candidate attacks, where

should the attacker place the k attacks to maximize the
expected damage

• NP-hard, so use greedy.
• Homework: Prove that the cost function is submodular

P = {p1…pn}

pi
pi

S = {c1, c2…ck}

∑
pi∈P

Pr(pi did not survice the attackS)

Submodularity and greedy. The EMP case

For a subset of attack disks, and
a router , lets define
 #disks from S containing p.

Reward function

{c1, c2…ck}
p ∈ ℝ2

depth(p, S) =

f(S) = f({c1, c2…ck}) = ∑
pi∈P

2−depth(p,S)

In this app (link) add attack disks by changing the slides k, and move the disks to see their impact on the routers

revenue: 6 ⋅ 50 %

https://www.geogebra.org/m/u43hrsba

Back to covering the whole universe
Given a universe with m atoms, each is an atoms. R= is a
collection of subsets of X. (). Find the smallest collection that
covers X.
Again use greedy, but stop when X is covered. How many sets greedy produces ?
• .
Recall .

Now OPT is the universe with m atoms, so .
Assume greedy needs iteration until it covers all m atoms of the universe. At
the r’ th iteration (last but one) at least one atom is left uncovered, or .
How large could r be ?

Take from both sides, yield: .
Theorem: Greedy gives approximation factor to the smallest
number of sets needed to cover X.
Thm: Could show: The actual bound is

X = {x1…xm} xi {S1, S2…}
Si ⊆ X C = {S′ 1, S′ 2…S′ k}

s(i) = a1 + a2 + …ai
Δ(i) = OPT − s(i) ≤ OPT(1 − 1/kopt)i

Δ(i) = m − s(i) ≤ m(1 − 1/kopt)i

r + 1
Δ(r) ≥ 1

1 ≤ Δ(r) ≤ m(1 − 1/kopt)r = m{(1 − 1/kopt)kopt}r/kopt

≤ m {1/e}l /kopt = m/er/kopt or er/kopt ≤ m
ln(⋅) r/kopt ≤ ln m or r ≤ kopt ln m

ln m

ln(max |Si |)

 =min number of
sets that covers X

kopt

Clustering points in with bottleneck penaltyℝd

(Source: Mount’s notes)

Given set of n points. Want to divide into
clusters (k is given)

Let be the set of centers of clusters. Naturally we would
like to assign each to one cluster. How ? We just assign to the
nearest cluster.

For every point let be the nearest center of q.

Let the max distance to the

nearest cluster. This is the bottleneck distance. And the pair that
defined this distance is the bottleneck pair.

 is the measure of the quality of the clustering. The problem is to
pick centers so this distance is as small as possible. link link

S = {p1…pn} ∈ ℝd k

C = {c1…ck}
pi pi

q NN(q, C)

Δ(C) = max
pi∈S

dist(pi, NN(pi , C))

(pi, cj)

Δ(C)
k

https://www.geogebra.org/classic/fprwjzbp
https://www.geogebra.org/m/fprwjzbp

Greedy Approx k-center
Given set of n points. Want to divide into clusters (k is given)

For the proof, we will also consider , obtained by performing another iteration of the algorithm.

 Theorem:

Proof: Let after i iteration of the algorithm. (for i=1..k)

Claim: (for i=1..k)
Lemma: Let . The distance between every two centers in is .
Proof: is at distance exactly r from the nearest center of , so for all .
For smaller values of i, remember that (from the first claim)

S = {p1…pn} ∈ ℝd k

Gk+1

Δ(Ggreedy) ≤ 2Δ(Opt)

Gi = Ggreedy
Gi = {c1, c2…ci}

Δ(Gi) ≥ Δ(Gi+1)
r = Δ(Gi−1) Gi ≥ r

ci Gi−1 |ci − cl | ≥ r l < i
Δ(G l) ≥ r

The first center in is arbitrary - let’s pick This is the first center

return

c1 Ggreedy p1 . c1
Ggreedy = {p1}; ∀pi ∈ S do d[pi] = |pi − p1 |
for(i = 2…k)

ci = arg max
pj∈S

d[pj] / / find the bottleneck pair

Add ci to Ggreedy

∀pj ∈ S do d[pj] = min{d[pj], |pj − ci |}
Ggreedy

Greedy Approx k-center

Claim: (for i=1..k)
Lemma: Let . The distance between any two centers in is .

In particular, the distance between every two centers in is .

Theorem:
Pf of Theorem: Let be any set of exactly k centers. (for example, opt)
By Definition of , each has a center at distance from .
Some center has two centers in the cluster of c.

 (from the Lemma). So

QED

Δ(Gi) ≥ Δ(Gi+1)
r = Δ(Gi−1) Gi ≥ r

Gk+1 ≥ Δ(Ggreedy)

Δ(Ggreedy) ≤ 2Δ(Opt)
C′ = {c′ 1…c′ k}

C′ p ∈ S c ∈ C ≤ Δ(C) p
c′ ∈ C ci, cj ∈ Gk+1

|ci − cj | ≥ Δ(Ggreedy)

Δ(Ggreedy) ≤ |ci − cj | ≤ |c′ r−c′ | + |c′ r−c′ |
≤ Δ(C′) + Δ(C′) = 2Δ(C′)

The first center in is arbitrary - let’s pick This is the first center

return . Repeat one more iteration to produce

c1 Ggreedy p1 . c1
Ggreedy = {p1}; ∀pi ∈ S do d[pi] = | pi − p1 |
for (i = 1…k)

ci = arg max
pj∈S

d[pj] / / find the bottleneck pair

Add ci to Ggreedy

∀pj ∈ S do d[pj] = min{d[pj], | pj − ci |}

Ggreedy Gk+1

39

Approximating the Traveling
Salesperson Problem

OPT-TSP: Given a complete, weighted graph,
find a cycle of minimum cost that visits each
vertex.
■ OPT-TSP is NP-hard
■ Special case: edge weights satisfy the triangle

inequality (which is common in many applications):
◆w(a,b) + w(b,c) > w(a,c)

a

b

c

5 4

7

Complete – there is an edge
between every pair of vertices

40

From MST to cycles

Given a MST of G, a traversal T of MST is constructed by picking
a source vertex s, and visit the nodes of the graph in a DFS order.

• Let w(MST) and be the sum of weights of edges of MST
and of OPT-TSP.

• Since OPT-TSP does not visit a vertex twice, it does not use an edge
twice. So its weight is the sum of weights of its edges.

• T is a tour that uses twice every edge of MST. so .
• OPT-TSP is a spanning graph (graph that connects all vertices of)

w(OPT-TSP)

w(OPT-TSP)
w(T) = 2w(MST)

V .

w(OPT-TSP) ≥ w(MST)
2 ⋅ w(OPT-TSP) ≥ 2 ⋅ w(MST) = w(T)

MST T

