

Dynamic Programming

Some of the slides are courtesy of Charles Leiserson with small changes by Carola Wenk

Example: All-Pairs Shortest Paths Floyd-Warshall alg (Spring 2021)

- Given a graph G(V,E) with weights (positive and negative) assign to each edges. Assume V={v₁...v_n}.
- Compute a matrix D such that D[i,j] contains the length of the shortest path v_i → v_j
- Also compute a matrix ∏[1..n,1..n] such that ∏[i, j] is the vertex that proceed v_i along the shortest path v_i → v_j
- Warshall-Floyd Algorithm computes these tables in O(n ³)
- Can you think about alternative approaches when the weights of all edges is positive ?

In the figure to the right, $k = \prod[i, j]$.

Compare to $\Pi[v_i]$ in Dijkstra or Bellman-Ford

Dynamic Programming: Example 1: Longest Common Subsequance

We look at sequences of characters (strings)

e.g. x = "ABCA"

Def: A **subsequence** of *x* is an sequence obtained from *x* by possibly deleting some of its characters (but without changing their order

Examples:
"ABC","ACA","ABCA""ABC","ACA","ABCA"

Def A **prefix** of *x*, denoted x[1..m], is the sequence of the first *m* characters of *x*

Examples: $x[1..4] = "ABCA" \quad x[1..3] = "ABC" \quad x[1..2] = "AB"$ $x[1..1] = "A" \quad x[1..0] = ""$

Longest Common Subsequence (LCS)

• Given two sequences *x*[1 . . *m*] and *y*[1 . . *n*], find a longest subsequence common to them both.

Different phrasing: Find a set of a maximum number of segments, such that

•Each segment connects a character of x to an identical character of y,

- •Each character is used at most once
- •Segments do not intersect.

Longest Common Subsequence (LCS)

• Given two sequences $x[1 \dots m]$ and $y[1 \dots n]$, find a longest subsequence common to them both.

"a" not "the"

Different phrasing: Find a set of a maximum number of segments, such that

•Each segment connects a character of x to an identical character of y,

- •Each character is used at most once
- •Segments do not intersect.

Cs445 salute

Brute-force LCS algorithm

Checking every subsequence of x whether it is also a subsequence of y.

Brute-force LCS algorithm

Checking every subsequence of x whether it is also a subsequence of y.

Analysis

- Checking = $\Theta(m+n)$ time per subsequence.
- 2^m subsequences of x

Worst-case running time = Θ ((*m*+*n*)2^{*m*}) = exponential time.

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

Strategy: Consider *prefixes* of *x* and *y*.

• Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.

• Then, c[m, n] = |LCS(x, y)|.

Recursive formulation

Observation:

It is impossible that

x[m] is matched to an element in y[1..n-1] and simultaneously

y[*n*] is matched to an element in *x*[1..*m*-1] (since it must create a pair of crossing segments).

Conclusion – either x[m] is matched to y[n], or one at least of them is unmatched in **OPT**. {**OPT** – the optimal solution}

Recursive formaula

Lets just consider the last character of of x and of y **Case (I):** x[m] = y[n]. Claim: c[m, n] = c[m-1, n-1]+1. *Proof.*

Recursive formaula

Lets just consider the last character of of x and of y **Case (I):** x[m] = y[n]. Claim: c[m, n] = c[m-1, n-1]+1. *Proof.*

We claim that there is a max matching that matches x[m] to y[n].

Indeed, if x[m] is matched to y[k] (for k < m) then y[n] is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by matching x[m] to y[n].

This implies that we can find an optimal matching of LCS(x[1..m-1] to y[1..n-1], and add the segment (x[m],y[n]).So c[m,n]=c[m-1,n-1]+1

Recursive formulation-cont

Case (II): $x[m] \neq y[n]$ Claim: $c[m,n]=\max\{c[m,n-1], c[m-1,n]\}$

Recall - in LCS(x[1 ...m], y[1 ...n]) it cannot be that **both** x[m] and y[n] are both matched.

If x[m] is unmatched in OPT then LCS(x[1 ...m], y[1 ...n]) = LCS(x[1 ...m-1], y[1 ...n])If y[j] is unmatched in OPT then LCS(x[1 ...m], y[1 ...n]) = LCS(x[1 ...m], y[1 ...n-1])

So $c[m,n] = \max\{c[m-1, n], c[m, n-1]\}$

c[i,j] For general *i*,*j*

Since we only care for OPT matching the prefixes, then Case (I): x[i] = y[j]. Claim: if x[i] = y[j] then c[i, j] = c[i-1, j-1] + 1.

c[i,j] For general *i*,*j*

Since we only care for OPT matching the prefixes, then Case (I): x[i] = y[j]. Claim: if x[i] = y[j] then c[i, j] = c[i-1, j-1] + 1.

c[i,j] For general *i*,*j*

Since we only care for OPT matching the prefixes, then Case (I): x[i] = y[j]. Claim: if x[i] = y[j] then c[i, j] = c[i-1, j-1] + 1.

We claim that there is a max matching that matches x[i] to y[j].

Indeed, if x[i] is matched to y[k] (for k < j) then y[j] is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by match x[i] to y[j].

This implies that we can match x[1..i-1] to y[1..j-1], and add the match (x[i],y[j]). So c[i, j]=c[i-1,j-1]+1

Recursive formulation-cont

Case (II): if $x[i] \neq y[j]$ then $c[i, j] = \max\{c[i-1, j], c[i, j-1]\}$

Recall - in LCS(x[1 . . i], y[1 . . j]) it cannot be that **both** x[i] and y[j] are both matched.

If x[i] is unmatched then LCS(x[1 . . i], y[1 . . j]) = LCS(x[1 . . i-1], y[1 . . j])If y[j] is unmatched then LCS(x[1 . . i], y[1 . . j]) = LCS(x[1 . . i], y[1 . . j-1])

So $c[i, j] = \max\{c[i-1, j], c[i, j-1]\}$

Dynamic-programming hallmark #1

Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Dynamic-programming hallmark #1

Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

```
LCS(x, y, i, j)

if ( i==0 or j=0) return 0

if x[i] = y[ j]

then return LCS(x, y, i-1, j-1) + 1

else return max{LCS(x, y, i-1, j), LCS(x, y, i, j-1)}
```

To call the function LCS(x, y, m,n)

Recursive algorithm for LCS

```
LCS(x, y, i, j)

if ( i==0 or j=0) return 0

if x[i] = y[ j]

then return LCS(x, y, i-1, j-1) + 1

else return max{LCS(x, y, i-1, j), LCS(x, y, i, j-1)}
```

To call the function LCS(x, y, m,n)

Worst-case: $x[i] \neq y[j]$, for all *i*,*j* in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Height = $m + n \Rightarrow$ work potentially 2^{m+n} exponential.

Height = $m + n \Rightarrow$ work potentially 2^{m+n} exponential. but we're solving subproblems already solved!

Dynamic-programming hallmark #2

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

Dynamic-programming hallmark #2

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
LCS(x, y)
   for i=0 to m c[i, 0] = 0
   for j=0 to n c[0, j] = 0
   for i=1 to m
     for j=1 to n
        if (x[i] = y[j])
           then c[i, j] \leftarrow c[i-1, j-1] + 1
           else c[i, j] \leftarrow \max\{c[i-1, j], c[i, j-1]\}
```

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
LCS(x, y)
   for i=0 to m c[i, 0] = 0
   for j=0 to n c[0, j] = 0
   for i=1 to m
     for j=1 to n
        if (x[i] = y[j])
           then c[i, j] \leftarrow c[i-1, j-1] + 1
           else c[i, j] \leftarrow \max\{c[i-1, j], c[i, j-1]\}
```

Time = $\Theta(mn)$ = constant work per table entry. Space = $\Theta(mn)$.

LCS: Dynamic-programming algorithm

IDEA: Compute the table bottom-up. Fill *z* backward.

Observation: $c[i;j] \ge c[i-1;j]$ and $c[i;j] \ge c[i;j-1]$ **Proof Sketch:** We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:

Set i=m; j=n; k=c[i;j]
While(k>0){
 if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1]) {
 z[k] = x[i] ;
 i--; j--; k--;
 }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
 if (c[i;j]==c[i;j-1]) j--;
 else i--;

IDEA: Compute the table bottom-up. Fill *z* backward.

Observation: $c[i;j] \ge c[i-1;j]$ and $c[i;j] \ge c[i;j-1]$ **Proof Sketch:** We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:

Set i=m; j=n; k=c[i;j]
While(k>0){
 if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1]) {
 z[k] = x[i] ;
 i--; j--; k--;
 }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
 if (c[i;j]==c[i;j-1]) j--;
 else i--;

IDEA: Compute the table bottom-up. Fill *z* backward.

Observation: $c[i;j] \ge c[i-1;j]$ and $c[i;j] \ge c[i;j-1]$ **Proof Sketch:** We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:

Set i=m; j=n; k=c[i;j]
While(k>0){
 if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1]) {
 z[k] = x[i] ;
 i--; j--; k--;
 }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
 if (c[i;j]==c[i;j-1]) j--;
 else i--;

IDEA: Compute the table bottom-up. Fill *z* backward.

Observation: $c[i;j] \ge c[i-1;j]$ and $c[i;j] \ge c[i;j-1]$ **Proof Sketch:** We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:

Set i=m; j=n; k=c[i;j]
While(k>0){
 if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1]) {
 z[k] = x[i] ;
 i--; j--; k--;
 }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
 if (c[i;j]==c[i;j-1]) j--;
 else i--;

IDEA: Compute the table bottom-up. Fill *z* backward.

Observation: $c[i;j] \ge c[i-1;j]$ and $c[i;j] \ge c[i;j-1]$ **Proof Sketch:** We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:

Set i=m; j=n; k=c[i;j]
While(k>0){
 if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1]) {
 z[k] = x[i] ;
 i--; j--; k--;
 }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
 if (c[i;j]==c[i;j-1]) j--;
 else i--;

IDEA: Compute the table bottom-up. Fill *z* backward.

Observation: $c[i;j] \ge c[i-1;j]$ and $c[i;j] \ge c[i;j-1]$ **Proof Sketch:** We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:

Set i=m; j=n; k=c[i;j]
While(k>0){
 if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1]) {
 z[k] = x[i] ;
 i--; j--; k--;
 }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
 if (c[i;j]==c[i;j-1]) j--;
 else i--;

IDEA: Compute the table bottom-up. Fill *z* backward.

Observation: $c[i;j] \ge c[i-1;j]$ and $c[i;j] \ge c[i;j-1]$ **Proof Sketch:** We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:

Set i=m; j=n; k=c[i;j]
While(k>0){
 if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1]) {
 z[k] = x[i] ;
 i--; j--; k--;
 }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
 if (c[i;j]==c[i;j-1]) j--;
 else i--;

IDEA: Compute the table bottom-up. Fill *z* backward.

Observation: $c[i;j] \ge c[i-1;j]$ and $c[i;j] \ge c[i;j-1]$ **Proof Sketch:** We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:

Set i=m; j=n; k=c[i;j]
While(k>0){
 if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1]) {
 z[k] = x[i] ;
 i--; j--; k--;
 }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
 if (c[i;j]==c[i;j-1]) j--;
 else i--;

IDEA: Compute the table bottom-up. Fill *z* backward.

Observation: $c[i;j] \ge c[i-1;j]$ and $c[i;j] \ge c[i;j-1]$ **Proof Sketch:** We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:

Set i=m; j=n; k=c[i;j]
While(k>0){
 if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1]) {
 z[k] = x[i] ;
 i--; j--; k--;
 }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
 if (c[i;j]==c[i;j-1]) j--;
 else i--;

Reconstructing *z=LCS(X,Y*)

Another idea – While filling c[], add arrows to each cell c[i,j] specifying which neighboring cell c[i,j] it got its value.

- *c[i,j].flag* = "\" if *c[i,,j]=c[i-1;j-1]+1*
- *c[i,j].flag* = "↑ " if *c[i,j]=c[i-1;j] c[i,j].flag* = "←" if *c[i,j]=c[i-1;j]*

Example 2: Edit distance

Given strings X, Y, the edit distance ed(X, Y) between X and Y is defined as the minimum number of operations that we need to perform on X, in order to obtain Y.

Definition: An Operations (in this context) Insertion/Deletion/ Replacement of a **single** character.

Examples:

ed("aaba", "aaba")	= 0
ed("aaa", "aaba")	= 1
<i>ed("aaaa", "abaa")</i>	= 1
ed("baaa", "")	=4
<i>ed("baaa", "aaab")</i>	=2

Note that the term "distance" is a bit misleading: We need both the **value** (how many operations) as well as knowing **which** operations.

Example 3': "Priced" Edit distance *ed(X,Y)*

Assume also given

InsCost, - the cost of a single insertion into x.
DelCost - the cost of a single deletion from x, and
RepCost - the cost of replacing one character of x
by a different character.

Definition: Given strings X, Y, the **edit distance** ed(X, Y) between X and Y is the cheapest sequence of operations, starting on X and ending at Y.

Problem: Compute ed(X, Y), (both the value and the optimal sequence of operations.)

Definition: c[i,j] = Cost(ed(X[1..i], Y[1..j])).

Will first compute Cost(c[m,n]). Then will recover the sequence.

Thm:

Let c[i,j] = ed(x[1..i], y[1..j]). Assume c[i-1,j-1], c[i-1,j-1], c[i-1,j] are already computed.

If X[i]=Y[j] then c[i,j] = c[i-1,j-1]Else // $X[i] \neq Y[j]$ $c[i,j] = \min\{$ $c[i-1,j-1]+RepCost, //convert X[1..i-1] \rightarrow Y[1..j-1], \text{ and replace } y[j]$ by x[i]

 $\begin{array}{l} c[i-1, j] + DelCost, \ //delete \ X[i] \ and \ convert \ X[1..i-1] \rightarrow Y[1..j] \\ c[i,j-1] + InsCost \ //convert \ X[1..i,] \rightarrow Y[1..j-1], \ and \ insert \ Y[i] \\ \end{array}$

Algorithm Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
ed(X, Y)
     for i=0 to m c[i, 0] = i DelCost
     for j=0 to n c[0, j] = j InsCost
     for i=1 to m
       for j=1 to n
           if (X[i] == Y[i])
               then c[i, j] \leftarrow c[i-1, j-1]
               else c[i,j] \leftarrow min\{ \begin{array}{ccc} c[i-1,j] + \\ c[i-1,j-1] + \\ c[i,j-1] + \\ InsCost \end{array}
```

Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
ed(X, Y)
     for i=0 to m c[i, 0] = i DelCost
     for j=0 to n c[0, j] = j InsCost
     for i=1 to m
       for j=1 to n
           if (X[i] == Y[j])
               then c[i, j] \leftarrow c[i-1, j-1]
               else c[i,j] \leftarrow min\{ \begin{array}{ccc} c[i-1,j] + \\ c[i-1,j-1] + \\ c[i,j-1] + \\ InsCost \end{array}
```

Time = $\Theta(m n)$ = constant work per table entry. Space = $\Theta(m n)$. Homework: Compute the sequence of operations. Compute which characters in *x* matches which chars in *y*.

Polygonal Path - definition

- We definite a polygonal path $P = \{p_1 \dots p_n\}$ where
- •Each vertex p_i is a point in the plane,
- •Vertex p_1 is the first vertex, p_n is the last,
- •Vertex p_i is connected to the next vertex p_{i+1} by a straight segment.

$$\begin{array}{c|cccc} P & p_2 & p_4 \\ p_1 & p_3 & p_n \end{array}$$

- Should not be effected by how curves are sampled
- Should reflect the "order" of the points along the curves.

Problem: Computing the Frechet Distance between polylines *Frechet(P, Q,r)*

Definition of *Frechet(P,Q, r)* Assume a person walks on $P = \{p_1 \dots p_n\}$ while a dog walks on $Q = \{q_1 \dots q_n\}$. *r* is the leash length (part of input). The **person** starts at p_1 and ends at p_n The **dog** starts at q_1 and ends at q_n

 q_2

 Q_{3}

At each time stamp,

•either the **person** jumps to the next vertex

Or the dog jumps to the next vertexOr both jumps to the next vertex

• Every instance they stop, we measure whether the distance between person \leftrightarrow dog (the length of the leash) $\leq r$.

 p_n

- Frechet(P,Q,r)=YES if the answer is positive for all time stamps.
- (if not, a longer leash is need. If yes, maybe a shorter one is sufficient.
- So we could use binary search.

Problem: Computing the Frechet Distance between polylines Frechet(**P**, **Q**, **r**) q_2 p_n Q_{3} Definition of *Frechet(P,Q, r)* Every instance they stop, we Assume a person walks on $P = \{p_1 \dots p_n\}$ • measure whether the distance while a dog walks on $Q = \{q_1, q_n\}$. between person \leftrightarrow dog (the length of the **leash**) $\leq r$. *r* is the leash length (part of input). The **person** starts at p_1 and ends at p_n Frechet(P,Q,r)=YES if the ulletThe dog starts at q_1 and ends at q_n answer is positive for all time stamps.

- (if not, a longer leash is need. If yes, maybe a shorter one is sufficient.
- So we could use binary search.

•Or the dog jumps to the next vertex

•either the **person** jumps to the next

At each time stamp,

•Or **both** jumps to the next vertex

Problem: Computing the Frechet Distance between polylines *Frechet(P, Q,r)*

Definition of *Frechet*(P,Q, r) Assume a person walks on $P = \{p_1 \dots p_n\}$ while a dog walks on $Q = \{q_1 \dots q_n\}$. *r* is the leash length (part of input). The **person** starts at p_1 and ends at p_n The **dog** starts at q_1 and ends at q_n

 Q_2

 Q_{z}

At each time stamp,

•either the **person** jumps to the next vertex

Or the dog jumps to the next vertexOr both jumps to the next vertex

- Every instance they stop, we measure whether the distance between person↔dog (the length of the leash) ≤ *r*.
- Frechet(P,Q,r)=YES if the answer is positive for all time stamps.
- (if not, a longer leash is need. If yes, maybe a shorter one is sufficient.
- So we could use binary search.

Computing Frechet(P,Q,r)

Frechet(P,Q,r) // c[1..n, 1..n] - boolean array // *c[i,j]*=Frechet(P[1..*i*],Q[1..*j*], *r*)

Init: $c[1,1] = (||p_1 - q_1|| \le r) (YES/NO)$ For i=2 to $n c[i,1] = (||p_i - q_1|| \le r) AND c[i-1,1] (YES/NO)$ For j=2 to $n c[1,j] = (||p_1 - q_i|| \le r) AND c[1,j-1]$

Computing Frechet (P,Q,r) (cont.)

// c[1..n, 1..n] – boolean array

Init- previous slide

For i=2 to nFor j=2 to n $c[i,j] = (||p_i - q_j|| \le r)$ AND $\{ c[i-1,j-1], // both jumps$ OR $c[i-1,j], // person jumped from <math>p_{i-1}$ to p_i , dog stays at q_j OR c[i,j-1]. // person stayed at p_i , dog jumped from q_{j-1} to q_j . $\}$

Return *c[n.n]*

Note – this is only the cost (that is the distance itself. We still need to find what is the series of steps that yield this cost

Comments

- This is actually the **Discrete** Frechet Distance (only distances between vertices counts). We do not discuss the **continuous** version.
- This is only the Decision problem we actually want the shortest leash. We could use a binary search to approximate it. Exact algorithm outside the scope of this course
- If person/dog could move backward, the problem is called the **weak** Frechet.

Maurice René Fréchet

The input is the locations of their vertices (e.g. GIS coordinates)

How similar are P to Q?

Need to come up with a number dtw(P,Q)? So if dtw(P,Q) < dtw(P,Q'), then **P** is more similar to **Q**

The input is the locations of their vertices (e.g. GIS coordinates)

How similar are P to Q?

Need to come up with a number dtw(P,Q)? So if dtw(P,Q) < dtw(P,Q'), then **P** is more similar to **Q**

Dynamic Time Warping dtw(P,Q) $P \stackrel{p_2}{q_2} \qquad p_4$ $p_1 \stackrel{p}{q_2} \qquad p_3$ q_3

Definition of dtw(P,Q)Assume a person walks on $P = \{p_1 \dots p_n\}$ while a dog walks on $Q = \{q_1 \dots q_m\}$.

They **person** starts at p_1 and ends at p_n They **dog** starts at q_1 and ends at q_n

At each time stamp,

•either the **person** jumps to the next vertex

Or the dog jumps to the next vertexOr both jumps to the next vertex

- Every instance they stop,
 we measure the distance
 (the length of the leash)
 person↔dog.
- We sum the lengths of all leashes.
- dtw(P,Q) is the smallest sum (over all possible sequences)

Definition of dtw(P,Q)Assume a person walks on $P = \{p_1 \dots p_n\}$ while a dog walks on $Q = \{q_1 \dots q_m\}$.

 Q_2

 q_3

Dynamic Time Warping *dtw(P,Q)*

They **person** starts at p_1 and ends at p_n They **dog** starts at q_1 and ends at q_n

At each time stamp,

•either the **person** jumps to the next vertex

Or the dog jumps to the next vertexOr both jumps to the next vertex

- Every instance they stop, we measure the distance (the length of the leash) person↔dog.
- We sum the lengths of all leashes.
- dtw(P,Q) is the smallest sum (over all possible sequences)

Motivation:

Definition of dtw(P,Q)Assume a person walks on $P = \{p_1 \dots p_n\}$ while a dog walks on $Q = \{q_1 \dots q_m\}$.

Distance between trajectoris enables finding nearest neighbor, and clustering

But two very similar trajectories might have vertices in very different places DTW is used in

- Signal processing (speech reco)
- Signature verification
- Analysis of vehicles trajectories for roads networks
- Improving locationsbased services
- Animals migrations patters
- Stocks analysis

Thm 1:

Let c[i,j] = dtw(P[1..i], Q[1..j]).

Let $|| p_i - q_j ||$ be the between the points p_i and q_j That is, the length of the leash.

For every i > 1, j > 1 $c[1,1] = || p_1 - q_1 ||$

 $c[1,j] = c[1,j-1] + ||p_1 - q_j||$

 $c[i,1] = c[i-1,1] + ||p_i - q_1||$

Thm 2:

Assume at some time, the person is at p_i while dog at q_{j} . Assume i > 1 and j > 1.

What (might have) happened one step ago ?

Three possibilities

Both person and the dog jumped (from p_{i-1} and from q_j) OR Person jumped from p_{i-1} to p_i , dog stays at q_j OR Person stayed at p_i , dog jumped from q_{i-1} to q_{i-1}

Thm 2 cont:

Let c[i,j] = dtw(P[1..i], Q[1..j]).

If $i \ge 1$ and $j \ge 1$ then

 $c[i,j] = || p_i - q_j || + \min\{c[i-1,j-1], // both jumps c[i-1,j], // both jumps c[i-1,j], // person jumped from p_{i-1} to p_i, dog stays at q_j c[i,j-1]. // person stayed at p_i, dog jumped from q_{j-1} to q_{j-1} \}$

Since we are not sure that when the person is at p_i the dog is at q_j we will compute all such pairs i, j – one of them must happened

Algorithm for computing dtw(P,Q) Init according to Thm 1.

```
Fot i=2 to n

For j=2 to n

c[i,j] = || p_i - q_j || + \min\{c[i-1,j-1], // both jumps c[i-1,j], // person jumped from <math>p_{i-1} to p_i, dog stays at q_j

c[i,j-1] // person stayed at <math>p_i, dog jumped from q_{j-1} to q_j.

}

Peturn c[n, n]
```

Return *c*[*n*.*n*]

Note – this is only the cost (that is the distance itself. We still need to find what is the series of steps that yield this cost

Dynamic-programming hallmark #1

(we saw this slide already)

Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Dynamic-programming hallmark #1

(we saw this slide already)

Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

Dynamic-programming hallmark #2

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

Dynamic-programming hallmark #2

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

Another application of DP: **Clustering** (source: Kleinberg & Tardos)

$$\frac{2g_i}{n}$$

• Given points $P = (p_1, p_2, \dots, p_n)$ sorted from left to right, and a panelty R, find optimal k, and partition of P into k **runs** $(p_1, p_2 \dots p_{i_1})(p_{i_1+1}, p_{i_1+2} \dots p_{i_2}), (p_{i_2+1}, \dots, p_{i_3}) \dots (p_{i_{k-1}+1} \dots p_n)$ and lines $\ell_1 \dots \ell_k$ (one per each run) So that the sum $R + Err(\ell_1, \{p_1, p_2 \dots p_{i_1}\}) +$

$$R + Err(\ell_2, \{p_{i_1+2} \dots p_{i_2}\}) +$$

$$R + Err(\ell_k, \{p_{i_{k-1}+1} \dots p_n\})$$

is as small as possible

÷

Note that if R=0, we will probably use n/2 runs $(p_1 p_2)$, (p_3, p_4) , ... (p_{n-1}, p_n) . If R is huge, we can afford only one penalty, so only one run $(p_1...,p_n)$. In the example, k=3, $i_1=5$, $i_2=8$

- Algorithm:
- Preprocessing: $\forall j < i$: compute the line ℓ minimizing the error for the set $\{p_j, p_{j+1} \dots p_i\}$.

Let
$$e[j, i] = Err(\ell, \{p_j, p_{j+1} \dots p_i\})$$

- Idea: Let c[i] = cost of the opt clustering problem for the set $\{p_1 \dots p_i\}$.
- Init: c[0] = 0.
- for i = 2 to n do {

 c[i] = min{R + c[j] + e[j + 1, i] | 0 ≤ j < i}

 return c[n]
Summarizing

- The algorithm takes $O(n^3)$ and $O(n^2)$ space
- (for preprocessing *d[j,i]*)
- Note we did not discuss how to reconstruct the solution itself. We only calculated its cost