CS 445

Dynamic Programming

Some of the slides are courtesy of Charles Leiserson with small changes by Carola Wenk

Example: All-Pairs Shortest Paths
 Floyd-Warshall alg (Spring 2021)

- Given a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ with weights (positive and negative)
 assign to each edges. Assume $\mathrm{V}=\left\{\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}\right\}$.
- Compute a matrix D such that $\mathrm{D}[\mathrm{i}, \mathrm{j}]$ contains the length of the shortest path $v_{i} \rightarrow v_{j}$
- Also compute a matrix $\Pi[1 . . n, 1 . . n]$ such that $\Pi[i, j]$ is the vertex that proceed v_{j} along the shortest path $v_{i} \rightarrow v_{j}$
- Warshall-Floyd Algorithm computes these tables in $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Can you think about alternative approaches when the weights of all edges is positive?

In the figure to the right, $k=\Pi[i, j]$.
Compare to $\Pi\left[v_{i}\right]$ in Dijkstra or Bellman-Ford

Dynamic Programming:
Example 1: Longest Common Subsequance

We look at sequences of characters (strings)
e.g. $x=$ " $A B C A$ "

Def: A subsequence of x is an sequence obtained from x by possibly deleting some of its characters (but without changing their order

Examples:
" $A B C$ ", " $A C A$ ", " $A A$ ", " $A B C A$ "
Def A prefix of x, denoted $x[1 . . m]$, is the sequence of the first m characters of x

Examples:

$$
\begin{array}{ll}
x[1 . .4]=" A B C A " & x[1 . .3]=" A B C " \\
x[1 . .1]=" A " & x[1 . .0]=">
\end{array}
$$

Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

Different phrasing: Find a set of a maximum number of segments, such that

- Each segment connects a character of x to an identical character of y, - Each character is used at most once
- Segments do not intersect.

Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.
"a" not "the"

Different phrasing: Find a set of a maximum number of segments, such that

- Each segment connects a character of x to an identical character of y, - Each character is used at most once
- Segments do not intersect.

Cs445 salute

Brute-force LCS algorithm

Checking every subsequence of x whether it is also a subsequence of y.

Brute-force LCS algorithm

Checking every subsequence of x whether it is also a subsequence of y.

Analysis

- Checking $=\Theta(m+n)$ time per subsequence.
- 2^{m} subsequences of x

Worst-case running time $=\Theta\left((m+n) 2^{m}\right)$
$=$ exponential time.

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.
Strategy: Consider prefixes of x and y.

- Define $c[i, j]=|\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n]=|\operatorname{LCS}(x, y)|$.

Recursive formulation

Observation:
It is impossible that
$x[m]$ is matched to an element in $y[1 . . n-1]$ and simultaneously
$y[n]$ is matched to an element in $x[1 . . m-1]$
(since it must create a pair of crossing segments).
Conclusion - either $x[m]$ is matched to $y[n]$, or one at least of them is unmatched in OPT.
\{OPT - the optimal solution\}

Recursive formaula

Lets just consider the last character of of x and of y Case (I): $x[m]=y[n] . \quad$ Claim: $c[m, n]=c[m-1, n-1]+1$. Proof.

Recursive formaula

Lets just consider the last character of of x and of y
Case (I): $x[m]=y[n] . \quad$ Claim: $c[m, n]=c[m-1, n-1]+1$. Proof.

We claim that there is a max matching that matches $x[m]$ to $y[n]$.
Indeed, if $x[m]$ is matched to $y[k]$ (for $k<m$) then $y[n]$ is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by matching $x[m]$ to $y[n]$.

This implies that we can find an optimal matching of
$\operatorname{LCS}(x[1 . . m-1]$ to $y[1 . . n-1]$, and add the segment $(x[m], y[n])$.
So $c[m, n]=c[m-1, n-1]+1$

Recursive formulation-cont

Case (II): $x[m] \neq y[\mathrm{n}]$ Claim: $c[m, n]=\max \{c[m, n-1], c[m-1, n]\}$
Recall - in $\operatorname{LCS}(x[1 \ldots m], y[1 \ldots n])$ it cannot be that both $x[m]$ and $y[n]$ are both matched.

If $x[m]$ is unmatched in OPT then

$$
\operatorname{LCS}(x[1 \ldots m], y[1 \ldots n])=\operatorname{LCS}(x[1 \ldots m-1], y[1 \ldots n])
$$

If $y[j]$ is unmatched in OPT then

$$
\operatorname{LCS}(x[1 \ldots \boldsymbol{m}], y[1 \ldots \boldsymbol{n}])=\operatorname{LCS}(x[1 \ldots \boldsymbol{m}], y[1 \ldots \boldsymbol{n}-1])
$$

So $c[m, n]=\max \{c[m-1, n], c[m, n-1]\}$

$\mathrm{c}[\mathrm{i}, \mathrm{j}]$ For general i, j

Since we only care for OPT matching the prefixes, then Case (I): $x[i]=y[j]$.
Claim: if $x[i]=y[j]$ then $c[i, j]=c[i-1, j-1]+1$.

$\mathrm{c}[\mathrm{i}, \mathrm{j}]$ For general i, j

Since we only care for OPT matching the prefixes, then Case (I): $x[i]=y[j]$.
Claim: if $x[i]=y[j]$ then $c[i, j]=c[i-1, j-1]+1$.

$\mathrm{c}[\mathrm{i}, \mathrm{j}]$ For general i, j

Since we only care for OPT matching the prefixes, then
Case (I): $x[i]=y[j]$.
Claim: if $x[i]=y[j]$ then $c[i, j]=c[i-1, j-1]+1$.

We claim that there is a max matching that matches $x[i]$ to $y[j]$.
Indeed, if $x[i]$ is matched to $y[k]$ (for $k<j$) then $y[j]$ is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by match $x[i]$ to $y[j]$.

This implies that we can match $x[1 . . i-1]$ to $y[1 . . j-1]$, and add the match $(x[i], y[j])$. So $c[i, j]=c[i-1, j-1]+1$

Recursive formulation-cont

Case (III): if $x[i] \neq y[j]$ then $c[i, j]=\max \{c[i-1, j], c[i, j-1]\}$
Recall - in $\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])$ it cannot be that both $x[i]$ and $y[j]$ are both matched.

If $x[i]$ is unmatched then

$$
\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])=\operatorname{LCS}(x[1 \ldots i-1], y[1 \ldots j])
$$

If $y[j]$ is unmatched then

$$
\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])=\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j-1])
$$

So $c[i, j]=\max \{c[i-1, j], c[i, j-1]\}$

Dynamic-programming hallmark \#1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Dynamic-programming hallmark \#1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If $z=\operatorname{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

$\operatorname{LCS}(\mathrm{x}, \mathrm{y}, \mathrm{i}, \mathrm{j})$
if ($\mathrm{i}==0$ or $\mathrm{j}=0$) return 0
if $\mathrm{x}[\mathrm{i}]=\mathrm{y}[\mathrm{j}]$
then return $\operatorname{LCS}(x, y, i-1, j-1)+1$
else return $\max \{\operatorname{LCS}(x, y, i-1, j), \operatorname{LCS}(x, y, i, j-1)\}$
To call the function $\operatorname{LCS}(x, y, m, n)$

Recursive algorithm for LCS

$\operatorname{LCS}(\mathrm{x}, \mathrm{y}, \mathrm{i}, \mathrm{j})$
if ($\mathrm{i}==0$ or $\mathrm{j}=0$) return 0
if $\mathrm{x}[\mathrm{i}]=\mathrm{y}[\mathrm{j}]$
then return $\operatorname{LCS}(x, y, i-1, j-1)+1$
else return $\max \{\operatorname{LCS}(\mathbf{x}, \mathrm{y}, \mathrm{i}-1, \mathbf{j}), \operatorname{LCS}(\mathrm{x}, \mathrm{y}, \mathrm{i}, \mathrm{j}-1)\}$
To call the function $\operatorname{LCS}(x, y, m, n)$

Worst-case: $x[i] \neq y[j]$, for all i, j in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

Recursion tree

Height $=m+n \Rightarrow$ work potentially $2^{\mathrm{m}+\mathrm{n}}$ exponential.

Recursion tree

Height $=m+n \Rightarrow$ work potentially $2^{\mathrm{m}+\mathrm{n}}$ exponential. but we're solving subproblems already solved!

Dynamic-programming hallmark \#2

> Overlapping subproblems A recursive solution contains a
> "small" number of distinct subproblems repeated many times.

Dynamic-programming hallmark \#2

> Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only $m n$.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
LCS(x,y)
    for i=0 to m
    for }\boldsymbol{j}=0\mathrm{ 0 to }\boldsymbol{n}\quadc[0,j]=
```

 for \(i=1\) to \(m\)
 for \(j=1\) to \(n\)
 if \((x[i]=y[j])\)
 then \(c[i, j] \leftarrow c[i-1, j-1]+1\)
 else \(c[i, j] \leftarrow \max \{c[i-1, j], c[i, j-1]\}\)

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
LCS(x,y)
    for i=0 to m}\quadc[i,0]=
    for j=0 to }\boldsymbol{n}\quadc[0,j]=
```

 for \(i=1\) to \(m\)
 for \(j=1\) to \(n\)
 if \((x[i]=y[j])\)
 then \(c[i, j] \leftarrow c[i-1, j-1]+1\)
 else \(c[i, j] \leftarrow \max \{c[i-1, j], c[i, j-1]\}\)
 Time $=\Theta(m n)=$ constant work per table entry. Space $=\Theta(m n)$.

LCS: Dynamic-programming algorithm

$\operatorname{LCS}(\mathrm{X}, \mathrm{Y})=" \mathrm{BCBA} "$

Reconstruction $z=L C S(x, y)$

IDEA: Compute the table bottom-up. Fill z backward.
Observation: $c[i, j] \geq c[i-1, j]$ and $c[i, j] \geq c[i, j-1]$ Proof Sketch: We use a longer prefix, so there are more chars to be match.
$\operatorname{LCS}(x, y)=" \mathrm{BCBA} "$

LCS Reconstruction:

Set $i=m ; j=n$; $k=c[i ; j]$
While $(k>0)$ \{
if $(c[i ; j]>c[i-1 ; j]$ and $c[i ; j]>c[i ; j-1])\{$

$$
\begin{aligned}
& z[k]=x[i] ; \\
& i--; j--; k--; ~
\end{aligned}
$$

\}else // $c[i ; j]=c[i-1 ; j]$ or $c[i ; j]=c[i-1 ; j]$
if $(c[i ; j]=c c[i, j-1]) j-$ - ;
else $i--$;

Reconstruction $z=L C S(x, y)$

IDEA: Compute the table bottom-up. Fill z backward.
$\operatorname{LCS}(x, y)=" B C B A "$
Observation: $c[i, j] \geq c[i-1 ; j]$ and $c[i, j] \geq c[i, j-1]$ Proof Sketch: We use a longer prefix, so there are more chars to be match.
$y=\mathrm{AB}$ B B D AB

LCS Reconstruction:

Set $i=m ; j=n ; k=c[i ; j]$
While $(k>0)\{$
if $(c[i, j]>c[i-1 ; j]$ and $c[i, j]>c[i, j-1])\{$

$$
\begin{aligned}
& z[k]=x[i] ; \\
& i--j--; k--;
\end{aligned}
$$

\}else // $c[i ; j]=c[i-1 ; j]$ or $c[i ; j]=c[i-1 ; j]$
if $(c[i ; j]==c[i ; j-1]) j--$;
else $i-$;

Reconstruction $z=L C S(x, y)$

IDEA: Compute the table bottom-up. Fill z backward.
Observation: $c[i, j] \geq c[i-1, j]$ and $c[i, j] \geq c[i, j-1]$ Proof Sketch: We use a longer prefix, so there are more chars to be match.
$\operatorname{LCS}(x, y)=" \mathrm{BCBA} "$

LCS Reconstruction:

Set $i=m ; j=n$; $k=c[i ; j]$
While $(k>0)$ \{
if $(c[i ; j]>c[i-1 ; j]$ and $c[i ; j]>c[i ; j-1])\{$

$$
\begin{aligned}
& z[k]=x[i] ; \\
& i--; j--; k--; ~
\end{aligned}
$$

\}else // $c[i ; j]=c[i-1 ; j]$ or $c[i ; j]=c[i-1 ; j]$
if $(c[i ; j]=c c[i, j-1]) j-$ - ;
else $i--$;

Reconstruction $z=L C S(x, y)$

IDEA: Compute the table bottom-up. Fill z backward.
Observation: $c[i, j] \geq c[i-1, j]$ and $c[i ; j] \geq c[i ; j-1]$ Proof Sketch: We use a longer prefix, so there are more chars to be match.
$\operatorname{LCS}(x, y)=" \mathrm{BCBA} "$

LCS Reconstruction:

Set $i=m ; j=n$; $k=c[i ; j]$
While $(k>0)$ \{
if $(c[i ; j]>c[i-1 ; j]$ and $c[i ; j]>c[i ; j-1])\{$

$$
\begin{aligned}
& z[k]=x[i] ; \\
& i--; j--; k--;
\end{aligned}
$$

\}else // $c[i, j]=c[i-1 ; j]$ or $c[i ; j]=c[i-1 ; j]$
if $(c[i ; j]=c[i ; j-1]) j--$;
else $i--$;

Reconstruction $z=L C S(x, y)$

IDEA: Compute the table bottom-up. Fill z backward.
Observation: $c[i, j] \geq c[i-1, j]$ and $c[i, j] \geq c[i, j-1]$ Proof Sketch: We use a longer prefix, so there are more chars to be match.
$\operatorname{LCS}(x, y)=" \mathrm{BCBA} "$

LCS Reconstruction:

Set $i=m ; j=n$; $k=c[i ; j]$
While $(k>0)$ \{
if $(c[i ; j]>c[i-1 ; j]$ and $c[i ; j]>c[i ; j-1])\{$

$$
\begin{aligned}
& z[k]=x[i] ; \\
& i--; j--; k--; ~
\end{aligned}
$$

\}else // $c[i ; j]=c[i-1 ; j]$ or $c[i ; j]=c[i-1 ; j]$
if $(c[i ; j]=c c[i, j-1]) j-$ - ;
else $i--$;

Reconstruction $z=L C S(x, y)$

IDEA: Compute the table bottom-up. Fill z backward.
$\operatorname{LCS}(x, y)=" B C B A "$
Observation: $c[i, j] \geq c[i-1 ; j]$ and $c[i, j] \geq c[i, j-1]$ Proof Sketch: We use a longer prefix, so there are more chars to be match.
$y=\mathrm{AB}$ B B D AB

LCS Reconstruction:

Set $i=m ; j=n ; k=c[i ; j]$
While $(k>0)\{$
if $(c[i, j]>c[i-1 ; j]$ and $c[i, j]>c[i, j-1])\{$

$$
\begin{aligned}
& z[k]=x[i] ; \\
& i--j--; k--;
\end{aligned}
$$

\}else // $c[i ; j]=c[i-1 ; j]$ or $c[i ; j]=c[i-1 ; j]$
if $(c[i ; j]==c[i ; j-1]) j--$;
else $i-$;

Reconstruction $z=L C S(x, y)$

IDEA: Compute the table bottom-up. Fill z backward.
Observation: $c[i, j] \geq c[i-1, j]$ and $c[i, j] \geq c[i, j-1]$ Proof Sketch: We use a longer prefix, so there are more chars to be match.
$\operatorname{LCS}(x, y)=" \mathrm{BCBA} "$

LCS Reconstruction:

Set $i=m ; j=n$; $k=c[i ; j]$
While $(k>0)$ \{
if $(c[i ; j]>c[i-1 ; j]$ and $c[i ; j]>c[i ; j-1])\{$

$$
\begin{aligned}
& z[k]=x[i] ; \\
& i--; j--; k--;
\end{aligned}
$$

\}else // $c[i ; j]=c[i-1 ; j]$ or $c[i ; j]=c[i-1 ; j]$
if $(c[i ; j]=c c[i, j-1]) j-$ - ;
else $i--$;

Reconstruction $z=L C S(x, y)$

IDEA: Compute the table bottom-up. Fill z backward.
Observation: $c[i, j] \geq c[i-1, j]$ and $c[i, j] \geq c[i, j-1]$ Proof Sketch: We use a longer prefix, so there are more chars to be match.
$\operatorname{LCS}(x, y)=" \mathrm{BCBA} "$

LCS Reconstruction:

Set $i=m ; j=n$; $k=c[i ; j]$
While $(k>0)$ \{
if $(c[i ; j]>c[i-1 ; j]$ and $c[i ; j]>c[i ; j-1])\{$

$$
\begin{aligned}
& z[k]=x[i] ; \\
& i--; j--; k--;
\end{aligned}
$$

\}else // $c[i ; j]=c[i-1 ; j]$ or $c[i ; j]=c[i-1 ; j]$
if $(c[i ; j]=c c[i, j-1]) j-$ - ;
else $i--$;

Reconstruction $z=L C S(x, y)$

IDEA: Compute the table bottom-up. Fill z backward.
$\operatorname{LCS}(x, y)=" B C B A "$
Observation: $c[i, j] \geq c[i-1 ; j]$ and $c[i, j] \geq c[i, j-1]$ Proof Sketch: We use a longer prefix, so there are more chars to be match.
$y=\mathrm{AB}$ B B D AB

LCS Reconstruction:

Set $i=m ; j=n ; k=c[i ; j]$
While $(k>0)\{$
if $(c[i, j]>c[i-1 ; j]$ and $c[i, j]>c[i, j-1])\{$

$$
\begin{aligned}
& z[k]=x[i] ; \\
& i--; j--; k--,
\end{aligned}
$$

\}else // $c[i ; j]=c[i-1 ; j]$ or $c[i ; j]=c[i-1 ; j]$
if $(c[i ; j]==c[i ; j-1]) j--$;
else $i-$;

Reconstructing $z=L C S(X, Y)$

Another idea - While filling $c[]$, add arrows to each cell $c[i, j]$ specifying which neighboring cell $c[i, j]$ it got its value.

- $c[i, j]$.flag $=$ " " if $c[i, j]=c[i-1 ; j-1]+1$
- $c[i, j]$. flag $=$ " \uparrow " if $c[i, j]=c[i-1 ; j]$
$\bullet c[i, j]$.flag $=$ " \leftarrow " if $c[i, j]=c[i-1 ; j]$

Example 2: Edit distance

Given strings X, Y, the edit distance $\boldsymbol{e d}(X, Y)$ between X and Y is defined as the minimum number of operations that we need to perform on X, in order to obtain Y.

Defintion: An Operations (in this context) Insertion/Deletion/ Replacement of a single character.

Examples: ed("aaba", "aaba") = 0 ed("aaa"," "aaba") = 1
ed ("aaaa", "abaa") = 1
ed("baaa", "") =4
ed("baaa", "aaab") =2

Note that the term "distance" is a bit misleading: We need both the value (how many operations) as well as knowing which operations.

Example 3':
 ' Priced" ${ }^{\prime}$ Edit distance ed(X,Y)

Assume also given
InsCost, - the cost of a single insertion into x.
DelCost - the cost of a single deletion from x, and
RepCost - the cost of replacing one character of x
by a different character.
Definition: Given strings X, Y, the edit distance $\boldsymbol{e d}(X, Y)$ between X and Y is the cheapest sequence of operations, starting on X and ending at Y.

Problem: Compute $\boldsymbol{e d}(X, Y)$, (both the value and the optimal sequence of operations.)

Definition: $c[i, j]=\operatorname{Cost}(\operatorname{ed}(X[1 . . i], Y[1 . . j]))$.
Will first compute $\operatorname{Cost}(c[m, n])$. Then will recover the sequence.

Let $c[i, j]=\operatorname{ed}(x[1 . . i], y[1 . . j])$.
Assume $c[i-1, j-1], c[i-1, j-1], c[i-1, j] \quad$ are already computed.
If $X[i]=Y[j] \quad$ then $c[i, j]=c[i-1, j-1]$
Else // $X[i] \neq Y[j]$
$\boldsymbol{c}[\boldsymbol{i}, \boldsymbol{j}]=\min \{$
$c[i-1, j-1]+$ RepCost, //convert $X[1 . . i-1] \rightarrow Y[1 . . j-1]$, and replace $y[j$
by $x[i]$
$c[\boldsymbol{i}-1, \mathbf{j}]+$ DelCost, //delete $X[i]$ and convert $X[1 . . i-1] \rightarrow Y[1 . . j]$ $c[i, j-1]+$ InsCost $\quad / /$ convert $X[1 . . i,] \rightarrow Y[1 . . j-1]$, and insert $Y[i]$ \}

Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
ed(X,Y)
    for i=0 to m c[i,0]=i DelCost
    for j=0 to }n\quadc[0,j]=j InsCos
```

 for \(i=1\) to \(m\)
 for \(\boldsymbol{j}=1\) to \(n\)
 if \((X[i]==Y[j])\)
 then \(c[i, j] \leftarrow c[i-1, j-1]\)
 else \(c[i, j] \leftarrow \min \{\quad c[i-1, j]+\quad\) DelCost,
 \(c[i-1, j-1]+\) RepCost,
 \(c[i, j-1]+\) InsCost

Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

Time $=\Theta(m n)=$ constant work per table entry. Space $=\Theta(m n)$. Homework: Compute the sequence of operations. Compute which characters in x matches which chars in y.

Polygonal Path - definition

We definite a polygonal path $P=\left\{p_{1} \ldots p_{n}\right\}$ where - Each vertex p_{i} is a point in the plane, -Vertex p_{1} is the first vertex , p_{n} is the last,
-Vertex p_{i} is connected to the next vertex p_{i+1} by a straight segment.

Good ways to measure distance between curves

- Should not be effected by how curves are sampled
- Should reflect the "order" of the points along the curves.

$P[1 . . i]$ is the polygonal line with the first \boldsymbol{i} vertices of P $Q[1 . . j]$ is the polygonal line with the first \boldsymbol{j} vertices of P

Problem: Computing the Frechet Distance between polylines

 Frechet(P, Q,r)

Assume a person walks on $P=\left\{p_{1} \ldots p_{n}\right\}$ while a dog walks on $\boldsymbol{Q}=\left\{q_{1} . q_{n}\right\}$. r is the leash length (part of input). The person starts at p_{1} and ends at p_{n} The dog starts at q_{1} and ends at q_{n}

At each time stamp, - either the person jumps to the next vertex

- Or the dog jumps to the next vertex -Or both jumps to the next vertex
- Every instance they stop, we measure whether the distance between person \leftrightarrow dog (the length of the leash) $\leq r$.
- Frechet $(\mathbf{P}, \mathrm{Q}, \mathrm{r})=$ YES if the answer is positive for all time stamps.
- (if not, a longer leash is need. If yes, maybe a shorter one is sufficient.
- So we could use binary search.

Problem: Computing the Frechet Distance between polylines

 Frechet(P, Q,r)

Assume a person walks on $P=\left\{p_{1} \ldots p_{n}\right\}$ while a dog walks on $Q=\left\{q_{1} \cdot q_{n}\right\}$. r is the leash length (part of input). The person starts at p_{1} and ends at p_{n} The dog starts at q_{1} and ends at q_{n}

At each time stamp, - either the person jumps to the next vertex

- Or the dog jumps to the next vertex -Or both jumps to the next vertex
- Every instance they stop, we measure whether the distance between person $\leftrightarrow \operatorname{dog}$ (the length of the leash) $\leq r$.
- Frechet $(\mathbf{P}, \mathrm{Q}, \mathrm{r})=$ YES if the answer is positive for all time stamps.
- (if not, a longer leash is need. If yes, maybe a shorter one is sufficient.
- So we could use binary search.

Problem: Computing the Frechet Distance between polylines

 Frechet(P, Q,r)

Computing Frechet(P,Q,r)

Frechet(P,Q,r)
// c[1..n, 1..n] - boolean array
$/ / c[i, j]=\operatorname{Frechet}(\mathrm{P}[1 . . i], \mathrm{Q}[1 . . j], r)$
Init:
$c[1,1]=\left(\left\|\boldsymbol{p}_{1}-\boldsymbol{q}_{1}\right\| \leq r\right)(Y E S / N O)$
For $i=2$ to $n c[i, 1]=\left(\left\|\boldsymbol{p}_{i}-\boldsymbol{q}_{1}\right\| \leq r\right)$ AND $c[i-1,1] \quad(Y E S / N O)$
For $j=2$ to $n c[1, j]=\left(\left\|\boldsymbol{p}_{1}-\boldsymbol{q}_{j}\right\| \leq r\right) A N D c[1, j-1]$

Computing Frechet (P,Q,r) (cont.)

// c[1..n, 1..n] - boolean array
Init- previous slide

For $i=2$ to n
For $j=2$ to n
$c[i, j]=\left(\left\|\boldsymbol{p}_{i}-\boldsymbol{q}_{j}\right\| \leq r\right)$ AND
\{ $\quad c[i-1, j-1], / /$ both jumps
OR $\quad c[i-1, \mathbf{j}], / /$ person jumped from p_{i-1} to p_{i}, dog stays at q_{j} OR $\quad c[i, j-1] . / /$ person stayed at p_{i}, dog jumped from q_{j-1} to q_{j-} \}
Return $c[n . n]$
Note - this is only the cost (that is the distance itself. We still need to find what is the series of steps that yield this cost

Comments

- This is actually the Discrete Frechet Distance (only distances between vertices counts). We do not discuss the continuous version.
- This is only the Decision problem - we actually want the shortest leash. We could use a binary search to approximate it. Exact algorithm outside the scope of this course
- If person/dog could move backward, the problem is called the weak Frechet.

Maurice René Fréchet

Problem: Computing

 Dynamic Time Warping $d t w(P, Q)$ between polylines

$$
\vec{P}=\left\{p_{1} \ldots p_{n}\right\} \quad \text { and } \quad Q=\left\{q_{1} . q_{m}\right\},
$$

The input is the locations of their vertices (e.g. GIS coordinates)
How similar are P to Q ?
Need to come up with a number $\boldsymbol{d t w}(\mathbf{P}, \mathbf{Q})$?
So if $d t w(P, Q)<d t w\left(P, Q^{\prime}\right)$, then \boldsymbol{P} is more similar to \boldsymbol{Q}

Problem: Computing Dynamic Time Warping $\boldsymbol{d t w}(P, Q)$ between polylines

$$
P=\left\{p_{1} \ldots p_{n}\right\} \quad \text { and } \quad Q=\left\{q_{1} \cdot q_{m}\right\}
$$

The input is the locations of their vertices (e.g. GIS coordinates)
How similar are P to Q ?

Need to come up with a number $\boldsymbol{d t w}(\mathbf{P}, \boldsymbol{Q})$?
So if $d t w(P, Q)<d t w\left(P, Q^{\prime}\right)$, then \boldsymbol{P} is more similar to \boldsymbol{Q}

Dynamic Time Warping dtw(P,Q)

Definition of $\boldsymbol{d t w}(\mathbf{P}, \mathbf{Q})$

Assume a person walks on $P=\left\{p_{1} \ldots p_{n}\right\}$ while a dog walks on $Q=\left\{q_{1} \cdot q_{m}\right\}$.

They person starts at p_{1} and ends at p_{n} They $\operatorname{dog} \quad$ starts at q_{I} and ends at q_{n}

At each time stamp,

- either the person jumps to the next vertex
- Or the dog jumps to the next vertex - Or both jumps to the next vertex
- Every instance they stop, we measure the distance (the length of the leash) person \leftrightarrow dog.
- We sum the lengths of all leashes.
- ditw (\mathbb{P}, \mathbb{Q}) is the smallest sum (over all possible sequences)

Dynamic Time Warping dtw(P,Q)

Definition of $\boldsymbol{d t w}(\mathbf{P}, \mathbf{Q})$

Assume a person walks on $P=\left\{p_{1} \ldots p_{n}\right\}$ while a dog walks on $Q=\left\{q_{1} \cdot q_{m}\right\}$.

They person starts at p_{1} and ends at p_{n} They $\operatorname{dog} \quad$ starts at q_{1} and ends at q_{n}

At each time stamp,

- either the person jumps to the next vertex
- Or the dog jumps to the next vertex - Or both jumps to the next vertex
- Every instance they stop, we measure the distance (the length of the leash) person \leftrightarrow dog.
- We sum the lengths of all leashes.
- ditw (\mathbb{P}, \mathbf{Q}) is the smallest sum (over all possible sequences)

Motivation:

Definition of $\boldsymbol{d t w}(\boldsymbol{P}, \mathbf{Q})$

Assume a person walks on $P=\left\{p_{1} \ldots p_{n}\right\}$ while a dog walks on $Q=\left\{q_{1} . . q_{m}\right\}$.

Distance between trajectoris enables finding nearest neighbor, and clustering

But two very similar trajectories might have vertices in very different places

DTW is used in

- Signal processing (speech reco)
- Signature verification
- Analysis of vehicles trajectories for roads networks
- Improving locationsbased services
- Animals migrations patters
- Stocks analysis

Thm 1:

Let $c[i, j]=\operatorname{dtw}(P[1 . . i], Q[1 . . j])$.
Let $\left\|\boldsymbol{p}_{i}-\boldsymbol{q}_{j}\right\|$ be the between the points \boldsymbol{p}_{i} and \boldsymbol{q}_{j}
That is, the length of the leash.

For every $i>1, j>1$
$c[1,1]=\left\|p_{1}-q_{1}\right\|$
$c[1, j]=c[1, j-1]+\left\|p_{1}-q_{j}\right\|$
$c[i, 1]=c[i-1,1]+\left\|p_{i}-q_{1}\right\|$

Thm 2:

Assume at some time, the person is at p_{i} while dog at q_{j}.
Assume $i>1$ and $j>1$.
What (might have) happened one step ago ?

Three possibilities

Both person and the dog jumped (from p_{i-1} and from q_{j}) $O R$
Person jumped from p_{i-1} to p_{i}, dog stays at $q_{j} \quad O R$
Person stayed at p_{i}, dog jumped from q_{j-1} to q_{j-}

Thm 2 cont:

Let $c[i, j]=\operatorname{dtw}(P[1 . . i], Q[1 . . j])$.
If $i>1$ and $j>1$ then
$c[i, j]=\left\|p_{i}-q_{j}\right\|+$
$\min \{$
c[i-1,j-1], // both jumps
$\boldsymbol{c}[\boldsymbol{i}-1, \boldsymbol{j}]$, // person jumped from p_{i-1} to p_{i}, dog stays at q_{j}
$c[i, j-1]$. // person stayed at p_{i}, dog jumped from q_{j-1} to q_{j-} \}

Since we are not sure that when the person is at p_{i} the dog is at q_{j} we will compute all such pairs i, j - one of them must happened

Algorithm for computing dtw(P,Q)

Init according to Thm 1.
Fot $\mathrm{i}=2$ to n
For $\mathrm{j}=2$ to n

$$
c[i, j]=\left\|p_{i}-q_{j}\right\|+
$$

$\min \{$
c[i-1,j-1], // both jumps
$\boldsymbol{c}[\boldsymbol{i}-1, \boldsymbol{j}], / /$ person jumped from p_{i-1} to p_{i}, dog stays at q_{j} $c[i, j-1] / /$ person stayed at p_{i}, dog jumped from q_{j-1} to q_{j-}

Return $c[n . n]$
Note - this is only the cost (that is the distance itself. We still need to find what is the series of steps that yield this cost

Dynamic-programming hallmark \#1
 (we saw this slide already)

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Dynamic-programming hallmark \#1
 (we saw this slide already)

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If $z=\operatorname{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.

Dynamic-programming hallmark \#2

> Overlapping subproblems A recursive solution contains a
> "small" number of distinct subproblems repeated many times.

Dynamic-programming hallmark \#2

> Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only $m n$.

Another application of DP: Clustering (source: Kleinberg \& Tardos)

- Given points $P=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{n}, y_{n}\right)\right\}$ find a line minimizing $\operatorname{Err}(\ell, P)$

$$
\operatorname{Err}(\ell, P)=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

that is, the sum of squares of vertical distances from each $\left(x_{i}, y_{i}\right)$ to ℓ.

- Solution

$$
\begin{gathered}
a=\frac{n \Sigma x_{i} y_{i}-\left(\Sigma x_{i}\right)\left(\Sigma y_{i}\right)}{n \Sigma x_{i}^{2}-\left(\Sigma x_{i}\right)^{2}} \\
b=\frac{\Sigma y_{i}-a \Sigma x_{i}}{n}
\end{gathered}
$$

Clustering Problem

- Given points $P=\left(p_{1}, p_{2}, \ldots p_{n}\right)$ sorted from left to right, and a panelty R, find optimal k, and partition of P into k runs
$\left(p_{1}, p_{2} \ldots p_{i_{1}}\right)\left(p_{i_{1}+1}, p_{i_{1}+2} \ldots p_{i_{2}}\right),\left(p_{i_{2}+1}, \ldots p_{i_{3}}\right) \ldots\left(p_{i_{k-1}+1} \ldots p_{n}\right)$ and lines $\ell_{1} \ldots \ell_{k}$ (one per each run) So that the sum

$$
\begin{aligned}
& R+\operatorname{Err}\left(\ell_{1},\left\{p_{1}, p_{2} \ldots p_{i_{1}}\right\}\right)+ \\
& R+\operatorname{Err}\left(\ell_{2},\left\{p_{i_{1}+2} \ldots p_{i_{2}}\right\}\right)+
\end{aligned}
$$

$$
R+\operatorname{Err}\left(\ell_{k},\left\{p_{i_{k-1}+1} \ldots p_{n}\right\}\right)
$$

is as small as possible
Note that if $\mathrm{R}=0$, we will probably use $\mathrm{n} / 2$ runs $\left(p_{1} p_{2}\right),\left(p_{3}, p_{4}\right), \ldots\left(p_{n-1}, p_{n}\right)$. If R is huge, we can afford only one penalty, so only one run ($p_{1} \ldots p_{n}$). In the example, $k=3, i_{1}=5, i_{2}=8$

- Algorithm:
- Preprocessing: $\forall j<i$: compute the line ℓ minimizing the error for the set $\left\{p_{j}, p_{j+1} \ldots p_{i}\right\}$.

$$
\text { Let } e[j, i]=\operatorname{Err}\left(\ell,\left\{p_{j}, p_{j+1} \ldots p_{i}\right\}\right)
$$

- Idea: Let $c[i]=$ cost of the opt clustering problem for the set $\left\{p_{1} \ldots p_{i}\right\}$.
- Init: $c[0]=0$.
- for $i=2$ to n do \{

$$
c[i]=\min \{R+c[j]+e[j+1, i] \mid 0 \leq j<i\}
$$

\}

- return $c[n]$

Summarizing

- The algorithm takes $O\left(n^{3}\right)$ and $O\left(n^{2}\right)$ space
- (for preprocessing $d[j, i]$)
- Note - we did not discuss how to reconstruct the solution itself. We only calculated its cost

