

Example of an LP: The Diet problem

- In the diet problem, we will have to compute two values x and y.
- x indicates how many **bananas** we plan to consume daily

• y indicates how many **oranges** we plan to consume daily

The goal is to find a healthy diet that is as cheap as possible.

function.

Proof: Convexity ...

The Simplex Algorithm

- Assume WLOG that the cost function points "downwards".
- Construct (some of) the vertices of the feasible region.
- Walk edge by edge downwards until reaching a local minimum (which is also a global minimum).
- □ In R^d, the number of vertices might be $\Theta(n^{\lfloor d/2 \rfloor})$.

Linear Programming in d dimension - Example

Define: (amount amount consumed per day)

LP problems - definition and history

Definition: An optimization problem is a **Linear Programming Problem (LP)** if it asks us to find a set of parameters (a vector) that maximizes a linear cost function, which bounded by a set of linear constrains. That is, the solution must be in the intersection of given half space.

The Simplex Algorithm is usually used to solve such problems: It has an exponential worst case, but almost always it is extremely fast. So practically, if we could express a problem as an LP problem, we could considered it solved.

History

- 1947: George Dantzig Simplex algorithm. Extremely efficient I'm practice. Exponential in very rare cases.
- Since it is so efficient, if we have a problem and we could phrase it as a linear programming problem (constrains are half-spaces, and linear cost function)
- □ 1980's (Khachiyan) ellipsoid algorithm with time complexity poly(*n*,*d*).
- □ 1980's (Karmakar) interior-point algorithm with time complexity poly(*n*,*d*).
- □ 1984 (Megiddo) parametric search algorithm with time complexity O($C_d n$) where C_d is a constant dependent only on *d*. E.g. $C_d = 2^{d'2}$.
- □ The holy grail: An algorithm with complexity independent of *d*.
- □ In practice the simplex algorithm is used because of its linear *expected* runtime.

O(n log n) 2D Linear Programming (details left as hw)

Input:

- n half planes.
- Cost function that WLOG "points down".

Algorithm:

Partition the *n* half-planes into two groups.

- S are all halfplanes contain the point $(0, \infty)$
- S'all other halfplanes contain the point $(0, -\infty)$

Sort them by slopes

Compute the upper envelop U(S) and the lower envelop L(S')

(using question from hw1)

Scan simultaneously from left to right, and Computer intersection of two envelopes - they can intersect only at 2 points (why). Evaluate cost function at each vertex.

O(n²) Incremental Algorithm

The idea:

Start by intersecting two halfplanes.

Add halfplanes one by one and update optimal vertex by solving one-dimensional LP problem on new line *if needed*.

- Similarly, find the half-planes contain $(0, -\infty)$. Compute their intersections with ℓ Let q_{min} be the lowest intersection points.
- **Any** solution to the LP which is on ℓ must be between $p_{max and} q_{min.}$
- \square Note that it is possible that qmin is below p_{max} . In this case, we have no solution on ℓ

Incremental Algorithm - Notation

- h_i is the i'th constrained half-plane
- \mathcal{C}_i is the line bounding h_i
- $C_i = h_1 \cap h_2 \cap \ldots h_i$ is the feasible region of the first i' constrains
- v_i is the optimal solution to the first i constrains it is the lowest point of C_i

Cost function to minimize: c(x,y)=y. Returns the lowermost point in feasible region

Incremental Algorithm Basic Theorem

Theorem:

- 1. if $v_{i-1} \in h_i$, then $v_i = v_{i-1}$. // O(1) check, nothing to do
- 2. if $v_{i-1} \notin h_i$ then it is sufficient to look for v_i on ℓ_i using 1DLP (rather than searching in the whole plane)
- Conclusion: If there is no solution on l_i, then there is no solution at all. The feasible region is empty.

Proof:

- 1. Trivial. Otherwise v_i would not have been optimum before.
- 2. in the next slide

Basic Theorem - case 2.

Recall v_i is the lowest point at $C_i = h_1 \cap h_2 \cap \ldots \cap h_i$

Assume that v_i is not on ℓ_i

 v_i must be in C_{i-1} By convexity, also the segment $\overline{v_{i-1}v_i}$ (from v_i to v_{i-1}) is in C_{i-1} .

Assume WLOG: Our cost function pushes us downward.

Consider point q: the intersection of the segment $\overline{v_{i-1}v_i}$ with l_i .

Notice: q is also in $h_{i,}$ and in is C_{i-I_i} . It is lower than v_i

Contradicting the assumption that v_i is not on ℓ_i

Same theorem - in an algorithmic terms

```
Compute C_i = h_1 \cap h_2, and v_2
```

For i=3...n

{

1. Check if $v_{i-1} \in h_i$. If yes, then $v_i = v_{i-1}$. // O(1),

ELSE

- 2. // v_i must be on the line ℓ_i call 1D-LP($\ell_{i_i} h_{1...} h_{i-1}$)
- 3. If 1D-LP does not have a solution on ℓ_i stop. There is no solution anywhere.

set v_i to be the solution that 1D-LP found.

}

Complexity Analysis

Worst case, each new constrain h_h forces solving a new 1DLP

$$T(n) = \sum_{i=3}^{n} c \cdot i = \Theta(n^2)$$

Just to Make Sure ...

□ False Claim:

The probabilistic analysis is for the average input. Hence there exist bad sets of constraints for which the algorithm's expected runtime is *more* than O(n), and there exist good sets of constraints for which the algorithm's expected runtime is *less* than O(n).

True Claim:

The probabilistic analysis is valid for all inputs. The expected complexity is over all permutations of this input.

LP in 3D

□ Now the input is a collection of half-spaces $\{h_1, h_n\}$.

Now l_i is the plane bounding h_i . (notations are analogous to the 2D case).

We will define v_3 as the intersection of the **planes** l_1 l_2 and l_3

We insert the other halfspaces $\{h_{4\dots}, h_n\}$ at a random order, and update v_i according to the following Theorem:

□ Theorem:

1. if
$$v_{i-1} \in h_i$$
, then $v_i = v_{i-1}$. // O(1) check,

nothing to do

2. if $v_{i-1} \notin h_i$, then the solution (if exists) is on l_i .

 $\operatorname{run} v_i = 2\operatorname{DLP}(h_i \cap l_i, h_2 \cap l_i , h_3 \cap l_i, \dots, h_{i-1} \cap l_i).$

Terminates if there is no solution (that is, $C_i = \emptyset$)

LP in 3D and higher dimension

In 3D, the worst case running time is $\Theta(n^3)$ (prove).

However, the expected running time is O(n). In general, the running time in ddimension is O(d! n). That is, linear in any fixed (and small) dimension.

Integer Linear Programming (ILP)

- Linear programming problems at which values of the computed variables must be integers are called *Integer Linear Programming (ILP)* problems.
- If only some of the variables have to integers, we call them *Mixed Integer Linear Programming* problems.
- There is a huge number of problems that could be phrased as ILP. (include many NP-hard problems, where no polynomial-time algorithms exist)
- A few libraries could handle them, including CPLEX.
- Running time could varies a lot, and could be extremely slow for some instances.
- Yet extremely useful for instances when actual running time is acceptable.
- Also useful for comparing fast heurists to global optimum.

Integer Linear Programming (ILP) Example in Two Dimensions

- Define: (amount consumed per day) – types of foods : {oranges, bananas}
 - -j types of vitamins (1 $\leq j \leq n$).
 - -x number of pounds of oranges we recommend daily
 - y number of pounds of bananas we recommend daily // these are the only unknown we have to compute.
 - a_{ii} the amount of vitamin *j* in a unit of food *i*
 - -(i=1 for oranges, i=2 for bananas)
 - $-C_{I}$ the number of calories in an orange.
 - $-c_2$ the number of calories in a banana.
 - b_j minimal daily required amount of vitamin *j*.
- Constraints (we need to consume some minimal amount of each vitamin):

Minimize: the total number of calories consumed:

 $C((X, Y)) = C_1 X + C_2 Y$

Another constrain: both *x*,*y* in the solution are integers.

Now we have ILP problem.

 $a_{11}x + a_{12}y \ge b_1$ $a_{n1}x + a_{n2}y \ge b_n$

Vertex Cover and ILP

- Given: A graph G(V,E). A subset C ⊆ V is a vertex cover if every edge(u, v) ∈ E we have either u ∈ C or v ∈ C or both
- Finding the min-cardinality Vertex Cover is NP-Hard
- ILP for this problem: the variables are $x_1...x_n$. All are integers and between 0 and 1.
- $v_i \in C$ iff $x_i = 1$ (for i = 1...n) S.t.

 $x_i + x_i \ge 1$ $\forall (v_i, v_i) \in E$

27

