
1

Linear Programming, healthy diets and ILP

2

Example of an LP: The Diet problem

In the diet problem, we will have to compute two values x
and y.
x indicates how many bananas we plan to consume daily

y indicates how many oranges we plan to consume daily

The goal is to find a healthy diet that is as cheap as possible.

3

Halfplanes and intersection of halfplanes

h3 : {(x, y) |y < 3}

h1⋂h2⋂h3

4

Dot product notation (review from Linear Algebra)

❑ In out context, a vector in the d-dimension space, is an ordered list of d numbers .

❑ For two vectors, and , we define the dot product as follows:

❑ Note:

❑ The length of the vector , denoted is (Pythagoras).

❑

❑ Dot product strongly correlated to the angle between the vectors. If , then they are orthogonal to each other.

❑ We distinguish between a vector and a scalar. A scalar is a single number, while a vector is a list of numberS.

❑ Let . We can (sometimes) think about it as an arrow from the point (0,0) to the point .

❑ Fix . Think about all the points for which . These points form a line . We can write
, or sometimes abbreviated as

❑ The line is orthogonal to .

❑ In general, if q is a point, then the line is passing through q and orthogonal to .

❑ In higher dimensions, all stay the analogous. . Fix . The set of points form a plane in 3D.

v⃗ v⃗ = (v1…vd)
v⃗ = (v1, v2, v3, …vd) ⃗u = (u1, u2 . u3, …, ud) ⃗u ⋅ v⃗

⃗u ⋅ v⃗ = u1v1 + u2v2 + … + udud =
d

∑
i=1

uivi

⃗u ⋅ ⃗u = v⃗ ⋅ ⃗u , and ⃗u ⋅ ⃗(v + ⃗w) = ⃗u ⋅ v⃗ + ⃗u ⋅ ⃗w .
v⃗ | v⃗ | v⃗ ⋅ v⃗

⃗u ⋅ v⃗ = v⃗ ⋅ ⃗u , and ⃗u ⋅ ⃗(v + ⃗w) = ⃗u ⋅ v⃗ + ⃗u ⋅ ⃗w .

⃗u ⋅ v⃗ = 0

v⃗ = (a , b) (a , b)
v⃗ = (a , b) x⃗ = (x , y) v⃗ ⋅ x⃗ = a ⋅ x + b ⋅ y = 0 ℓ

ℓ := {x⃗ | v⃗ ⋅ x⃗ = 0} ℓ : x⃗ ⋅ v⃗ = 0
ℓ v⃗

v⃗ ⋅ x⃗ = v⃗ ⋅ ⃗q v⃗
x⃗ = (x , y, z) v⃗ = (a , b, c) ℓ := {x⃗ ∈ IR3 | v⃗ ⋅ x⃗ = 0}

v⃗ = (a, b)

(0,0)

In many cases, we can
think about a vector as a

point and vice versa. the line v⃗x⃗ = 2

q
ℓ : {x⃗ | v⃗ ⋅ x⃗ = 17}

x⃗1
x⃗2

the line v⃗x⃗ = 1

the line v⃗x⃗ = 3
⃗w = x⃗2 − x⃗1

⃗wv⃗ = 0

5

The Diet Problem as an LP problem
❑ We will denote by the number of bananas we consume per day.

❑ We will denote by the number of bananas we consume per day.

❑ These and are the only unknown, and what we need to optimize.

For a diet to be healthy, we need to get a sufficient dose (quantity in grams) of each type vitamins.
Assume n types of vitamins 1…n

 Given: – the amount of vitamin i in banana. the amount of vitamin i in an orange.

 Given: bi – minimum required daily dose of vitamin i (i=1..n)

Given: – the cost of a banana (dollars/unit). And given: the cost of an orange.
 is the cost vector
 The daily cost of our diet is

Minimize: minimize the cost of a healthy diet

x
y

x y

ai,1 ai,2
a⃗i = (ai,1 , ai,2)

c1 c2
⃗c = (c1, c2)

x⃗ = (x, y) = (#bananas/day, #oranges/day)

. ⃗ai ⋅ x⃗ = ai,1 ⋅ x

vitamin i from bananas

+ ai,2 ⋅ y

vitamin i from oranges

≥ bi

. ⃗c ⋅ x⃗ = c1 ⋅ x

daily cost for bananas

+ ai,2 ⋅ y

cost for oranges

link 6

Linear Programming – The Geometry
❑ Each constraint defines defines a half-space

region in d-dimensional space.
❑ The feasible region is the (convex) intersection

of these half-spaces.

❑ We will treat the case d = 2, where each
constraint defines a half-plane.

❑ The equation y=ax+b defines a line, which we
could also write as (-a)x+(1)y=b. Pointed one
one side of this line forms a half-plane.

a1x + a2y ≥ b
a1x + a2y ≤ b

7

More Geometry

❑ The solution to the linear program is a
point in the feasible region that is
extreme in the direction of the target
function.

❑ Theorem: Any bounded linear program
that is feasible has a solution, which is a
vertex of the feasible region.

❑ Proof: Convexity …

c

8

Degenerate Cases

❑ The feasible region may be:

Empty

Unbounded

❑ The solution may be:

Not unique

https://www.geogebra.org/calculator/m2vskfth

9

The Simplex Algorithm
❑ Assume WLOG that the cost function points “downwards”.
❑ Construct (some of) the vertices of the feasible region.
❑ Walk edge by edge downwards until reaching a local minimum

(which is also a global minimum).

❑ In Rd, the number of vertices might be Θ(n ⎣d/2⎦).

c

10

Linear Programming in d dimension - Example
❑ Define: (amount amount consumed per day)

j – types of foods (1≤i≤d). (banana, oranges, avocado…) This is
the dimension of the LP problem.

 - the amount of food j consumed daily
 (these are the d unknowns that we need to optimize)

i – types of vitamins (1≤i≤n).
 – the amount of vitamin j in one unit of food i.

bj – minimal daily dose for vitamin i. (

Constrains : for every i
same using vector notation:

ci – the cost of a unit of food j ()

❑ LP problem

minimize the cost

Such that (s.t.)
for every

i = 1 → i = 2 → i = 3 →

xj 1 ≤ j ≤ d)

x⃗ = (x1, x2…xd)

aij
a⃗i = (ai,1, ai,2…ai,d)

1 ≤ i ≤ n)
∀i : ai,1x1 + ai,2x2 + …ai,d xd ≥ bi

a⃗i ⋅ x⃗ ≥ bi
1 ≤ j ≤ d

⃗c = (c1, …cd)

⃗cx⃗ = ∑ cjxj

1 ≤ i ≤ n
a⃗i ⋅ x⃗ ≥ bi :

:

TMinimize c x
Subject to Ax b≥

⃗ai ⋅ ⃗x ≥ b1

11

LP problems - definition and history

Definition: An optimization problem is a Linear Programming Problem (LP) if it asks us to find
a set of parameters (a vector) that maximizes a linear cost function, which bounded by a set of
linear constrains. That is, the solution must be in the intersection of given half space.

The Simplex Algorithm is usually used to solve such problems: It has an exponential
worst case, but almost always it is extremely fast. So practically, if we could express a
problem as an LP problem, we could considered it solved.

History
❑ 1947: George Dantzig Simplex algorithm. Extremely efficient I’m practice. Exponential in

very rare cases.
❑ Since it is so efficient, if we have a problem and we could phrase it as a linear programming

problem (constrains are half-spaces, and linear cost function)
❑ 1980’s (Khachiyan) ellipsoid algorithm with time complexity poly(n,d).
❑ 1980’s (Karmakar) interior-point algorithm with time complexity poly(n,d).
❑ 1984 (Megiddo) – parametric search algorithm with time complexity O(Cd n) where Cd is a

constant dependent only on d. E.g. Cd = 2d^2.
❑ The holy grail: An algorithm with complexity independent of d.

❑ In practice the simplex algorithm is used because of its linear expected runtime.

12

O(n log n) 2D Linear Programming (details left as hw)

❑ Input:
n half planes.
Cost function that WLOG “points down”.

❑ Algorithm:
1. Partition the n half-planes into two groups.

a. S are all halfplanes contain the point (0, ∞)
b. S’ all other halfplanes contain the point (0, -∞)

2. Sort them by slopes
3. Compute the upper envelop U(S) and the lower envelop L(S’)
4. (using question from hw1)
5. Scan simultaneously from left to right, and Computer intersection

of two envelopes - they can intersect only at 2 points (why).
6. Evaluate cost function at each vertex.

13

Toward a faster algorithm in small dimensions

❑ 1-dimensional linear programming
❑ Given 2n constants (constrains) (not

necessarily sorted)
❑ find in O(n) time the minimum x such that

❑ and
❑ What is the feasible region ? Could it be that the problem has no

solution ?
❑ Answer

Feasible solution

α1, α2…αn, β1, β2…βn

x ≥ αi (for every 1 ≤ i ≤ n) x ≤ βi (for every 1 ≤ i ≤ n)

α3⏟
(

α1⏟
(

α2⏟
(

β3⏟
)

β1⏟
)

β4⏟
)

β2⏟
)

{x | max(αi) ≤ x ≤ min βj}

. Solving LP in 2D, but the solution must be on a given line 1D − LP(ℓ, h1…hm) ℓ

Problem: Given a line and a set of half-planes , find the lowest point on which is
inside

ℓ {h1…hn} ℓm

⋂
i=1

hi = h1 ∩ h2 ∩ … ∩ hm

h1

h2

ℓ ∩ h2 is a ray

ℓ

p1

p3

h5

q5

h4

q6

h3

((
(p2

()))

pmax

qmin

 Similarly, find the half-planes contain . Compute their intersections with .
Let qmin be the lowest intersection points.

 Any solution to the LP which is on must be between pmax and qmin.

 Note that it is possible that qmin is below pmax. In this case, we have no solution on

(0, −∞) ℓ

ℓ
ℓ

 Each half-plane either contains the point or contains the point .
 Consider first only half-plane containing .
 Let be the line bounding hi. Compute
 Let be the highest such point (in the example). Any solution to the LP must be on

the portion of above

(0, +∞) (0, −∞)
(0, +∞)

ℓi pi = ℓ⋂ℓi
pmax p2

ℓ pmax

14

15

O(n2) Incremental Algorithm

❑ The idea:
Start by intersecting two halfplanes.
Add halfplanes one by one and update optimal vertex by
solving one-dimensional LP problem on new line if needed.

16

Incremental Algorithm - Notation

h1

Cost function to minimize: c(x,y)=y .
Returns the lowermost point in feasible region

 is the i’th constrained half-plane

 is the line bounding

 is the feasible region of
the first i’ constrains

 is the optimal solution to the first i constrains -
it is the lowest point of

hi

ℓi hi

Ci = h1 ∩ h2 ∩ . . . hi

vi
Ci

h1
ℓ1

ℓ2

h2

v2 h3

v3

C3

17

Incremental Algorithm
Basic Theorem

❑ Theorem:
1. if vi-1 ∈ hi, then vi = vi-1. // O(1) check, nothing to do

2. if vi-1 ∉ hi, then it is sufficient to look for vi on using 1DLP (rather than
searching in the whole plane)

❑ Conclusion: If there is no solution on li , then there is no solution at
all. The feasible region is empty.

❑ Proof:
1. Trivial. Otherwise vi would not have been optimum before.
2. - in the next slide

ℓi

Recall is the lowest point at

Assume that vi is not on

vi must be in Ci-1 By convexity, also the segment
(from vi to vi-1) is in Ci-1 .

Assume WLOG: Our cost function pushes us downward.

Consider point q: the intersection of the segment with
li.

Notice: q is also in hi, and in is Ci-1. It is lower than

Contradicting the assumption that is not on

vi Ci = h1 ∩ h2 ∩ … ∩ hi

ℓi

vi−1vi

vi−1vi

vi

vi ℓi
4.

Basic Theorem - case 2.

vi-1

hi
vi

q

vi−1vi

Ci-1

ℓi

18

19

Same theorem – in an algorithmic terms

Compute

For i=3…n
{

1. Check if vi-1 ∈ hi . If yes, then vi = vi-1. // O(1),

` ELSE

2. // vi must be on the line call 1D-LP(, h1 … hi-1)

3. If 1D-LP does not have a solution on - stop. There is no solution
anywhere.

 set vi to be the solution that 1D-LP found.

}

Ci = h1 ∩ h2, and v2

ℓi ℓi

ℓi

20

Complexity Analysis
❑ Worst case, each new constrain hh forces solving a

new 1DLP

❑
T(n) =

n

∑
i=3

c ⋅ i = Θ(n2)

21

Theorem : The expected time for the randomize version is O(n)

Backward analysis

❑ Recall that if then . In words, the new optimum solution must on the
line bounding .

❑ Question: What is the probability that at the i’th step of the algorithm, ? (that
is).

❑ Answer: Exactly . Here is the reason:

❑ is determined by two half-planes. It does not care it which order the halfplanes were
inserted.

❑ The probability that one of them is is 2/i.

❑ The probability that is one of the other halfplanes is which is almost 1.

❑ Conclusion: At the i’th step, the expected work is .

❑ Therefor, the expected work for the algorithm is (a bit hand wave) n+cn=O(n). Linear
Algorithm

❑ YAY.

vi−1 violates hi vi ∈ ℓi
hi

vi−1 violates hi
vi−1 ≠ vi

2
i

vi

hi

hi
i − 2

i
1

i − 2
i

⋅ 1 + c ⋅ i
2
i

= 1 + 2c = constant

vi

h’
h’’

22

Just to Make Sure …

❑ False Claim:
The probabilistic analysis is for the average input. Hence
there exist bad sets of constraints for which the algorithm’s
expected runtime is more than O(n), and there exist good
sets of constraints for which the algorithm’s expected runtime
is less than O(n).

❑ True Claim:
The probabilistic analysis is valid for all inputs. The expected
complexity is over all permutations of this input.

23

LP in 3D
❑ Now the input is a collection of half-spaces {h1 … hn}.
Now li is the plane bounding hi . (notations are analogous to the 2D case).
We will define v3 as the intersection of the planes l1 , l2 and l3.
We insert the other halfspaces {h4 … hn} at a random order, and update vi
according to the following Theorem:
❑ Theorem:

1. if vi-1 ∈ hi, then vi = vi-1. // O(1) check,
 nothing to do
2. if vi-1 ∉ hi, then the solution (if exists) is on li .
 run vi = 2DLP(h1∩ li , h2∩ li , h3∩ li , …. , h i-1 ∩ li).
 Terminates if there is no solution (that is, Ci=∅)

24

LP in 3D and higher dimension
In 3D, the worst case running time is 𝜣(n3) (prove).
However, the expected running time is O(n). In general, the running time in d-
dimension is O(d! n). That is, linear in any fixed (and small) dimension.

Integer Linear Programming (ILP)

▪ Linear programming problems at which values of the computed variables
must be integers are called Integer Linear
Programming (ILP) problems.

▪ If only some of the variables have to integers, we call them Mixed Integer
Linear Programming problems.

▪ There is a huge number of problems that could be phrased as ILP.
 (include many NP-hard problems, where no polynomial-time

algorithms exist)
▪ A few libraries could handle them, including CPLEX.
▪ Running time could varies a lot, and could be extremely slow for some

instances.
▪ Yet extremely useful for instances when actual running time is acceptable.
▪ Also useful for comparing fast heurists to global optimum.

25

Integer Linear Programming (ILP)
 Example in Two Dimensions

• Define: (amount consumed per day)
– types of foods : {oranges, bananas}
– j – types of vitamins (1≤j≤n).
– x – number of pounds of oranges we recommend daily
– y – number of pounds of bananas we recommend daily

// these are the only unknown we have to compute.
– aji – the amount of vitamin j in a unit of food i

– (i=1 for oranges, i=2 for bananas)
– c1 – the number of calories in an orange.

– c2 – the number of calories in a banana.

– bj – minimal daily required amount of vitamin j.

• Constraints (we need to consume some
 minimal amount of each vitamin):

Minimize: the total number of calories consumed:

C((x, y)) = c1x+ c2y

Another constrain:
both x,y in the solution
are integers.

Now we have ILP
problem.

26

Vertex Cover and ILP

• Given: A graph G(V,E). A subset is a vertex
cover if every edge we have either

• Finding the min-cardinality Vertex Cover is NP-Hard
• ILP for this problem: the variables are . All are

integers and between 0 and 1.
•

C ⊆ V
(u, v) ∈ E

u ∈ C or v ∈ C or both

x1…xn

vi ∈ C iff xi = 1 (for i = 1…n)
B

b4

b3

b5

e3

b1 b2 b3

b6

minimize
n

∑
i=1

xis.t.
xi + xj ≥ 1 ∀(vi, vj) ∈ E

27

Min-Weight Vertex Cover and ILP

• Sometimes the LP (instead of the ILP) could help us finding good approximations
• Given: A graph G(V,E). Each vertex is given with a weight Think about

it as the cost of this vertex.
• A subset is a vertex cover if every edge we have either

• The cost of C is the sum of weights of vertices in C.
• Finding the min-cardinality Vertex Cover is NP-Hard
• ILP for this problem: the variables are . All are integers and between 0 and 1.
•

vi wi > 0.

C ⊆ V (u, v) ∈ E
u ∈ C or v ∈ C or both

x1…xn

vi ∈ C iff xi = 1 (for i = 1…n)

b4

b3

b5, 9$

e3

b1 b2 b3

b6 , 4$

minimize
n

∑
i=1

wixi

s.t.
•
•

0 ≤ xi ≤ 1 and an integet, for every xi
xi + xj ≥ 1 ∀(vi, vj) ∈ E

28

Art Gallery - on the board

minimize
n

∑
i=1

xi

s.t.
 ∑

k∈Vis(i)

xk ≥ 1 ∀1 ≤ i ≤ n

• Given a polygon, find a subset of the vertices that sees every other vertex
• Let Vis(i) be the set of vertices that vertex i sees.
• For a vertex vi we set xi=1 if we place a guard at Otherwise
• As usual , xi are integers between 0 to 1.

Vis(K) = {G, D, C, A, K, J, I, H}
vi . vi = 0

29

Vis(K) = {G, D, C, A, K, J, I, H}

