

Example of an LP: The Diet problem

- In the diet problem, we will have to compute two values x and y.
x indicates how many bananas we plan to consume daily
y indicates how many oranges we plan to consume daily
- The goal is to find a healthy diet that is as cheap as possible.

Dot product notation (review from Linear Algebra)

- In out context, a vector \vec{v} in the d-dimension space, is an ordered list of d numbers $\overrightarrow{\mathbf{v}}=\left(v_{1} \ldots v_{d}\right)$.
- For two vectors, $\overrightarrow{\mathbf{v}}=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{d}\right)$ and $\overrightarrow{\mathbf{u}}=\left(u_{1}, u_{2}, u_{3}, \ldots, u_{d}\right)$, we define the dot product $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$ as follows:
$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{d} u_{d}=\sum_{i=1} u_{i} v_{i}$
- Note: $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$, and $\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$.
- The length of the vector \vec{v}, denoted $|\vec{v}|$ is $\sqrt{\vec{v} \cdot \vec{v}}$ (Pythagoras).
- $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$, and $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$
- Dot product strongly correlated to the angle between the vectors. If $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\mathbf{0}$, then they are orthogonal to each other.
- We distinguish between a vector and a scalar. A scalar is a single number, while a vector is a list of numbers,
- Let $\overrightarrow{\mathbf{v}}=(a, b)$. We can (sometimes) think about it as an arrow from the point $(0,0)$ to the point (a, b).
- Fix $\overrightarrow{\mathrm{v}}=(a, b)$. Think about all the points $\overrightarrow{\mathrm{x}}=(x, y)$ for which $\overrightarrow{\mathrm{y}} \cdot \overrightarrow{\mathrm{x}}=a \cdot x+b \cdot y=0$. These points form a line ℓ. We can write
$\ell:=\{\overrightarrow{\mathbf{x}} \mid \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{x}}=\mathbf{0}\}$, or sometimes abbreviated as $\ell: \overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{v}}=0$
- The line ℓ is orthogonal to \vec{v}.
- In general, if q is a point, then the line $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{q}}$ is passing through q and orthogonal to $\overrightarrow{\mathrm{v}}$
- In higher dimensions, all stay the analogous. $\overrightarrow{\mathbf{x}}=(x, y, z)$. Fix $\overrightarrow{\mathbf{v}}=(a, b, c)$. The set of points $\ell:=\left\{\overrightarrow{\mathbf{x}} \in \mathbb{R}^{3} \mid \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{x}}=\mathbf{0}\right\}$ form a plane in 3 D . $\begin{aligned} & \text { In many cases, we can } \\ & \text { think about a vector as } .\end{aligned}$

The Diet Problem as an LP problem

We will denote by x the number of bananas we consume per day.

- We will denote by y the number of bananas we consume per day
\square These x and y are the only unknown, and what we need to optimize.

$$
\overrightarrow{\mathbf{x}}=(x, y)=(\# \mathrm{bananas} / \text { day }, \# o r a n g e s / d a y)
$$

For a diet to be healthy, we need to get a sufficient dose (quantity in grams) of each type vitamins. Assume n types of vitamins $1 \ldots \mathrm{n}$
Given: $a_{i, 1}$ - the amount of vitamin i in banana. $a_{i, 2}$ the amount of vitamin i in an orange

$$
\overrightarrow{\mathbf{a}}_{\mathbf{i}}=\left(a_{i, 1}, a_{i, 2}\right)
$$

Given: b_{i}-minimum required daily dose of vitamin i (i=1..n) $\quad a_{11} x+a_{12} y \geq b_{1}$

$$
a_{n 1} x+a_{n 2} y \geq b_{n}
$$

Given: c_{1} - the cost of a banana (dollars/unit). And given: c_{2} the cost of an orange. - $\overrightarrow{\mathbf{c}}=\left(c_{1}, c_{2}\right)$ is the cost vector The daily cost of our diet is

Minimize: minimize the cost of a healthy diet

More Geometry

- The solution to the linear program is a point in the feasible region that is extreme in the direction of the target function.

Theorem: Any bounded linear program that is feasible has a solution, which is a vertex of the feasible region.

- Proof: Convexity ...

Linear Programming - The Geometry

Each constraint defines defines a half-space region in d-dimensional space.
\square The feasible region is the (convex) intersection of these half-spaces.
\square We will treat the case $d=2$, where each constraint defines a half-plane.

- The equation $y=a x+b$ defines a line, which we could also write as $(-a) x+(1) y=b$. Pointed one one side of this line forms a half-plane.

$$
\begin{aligned}
& a_{1} x+a_{2} y \geq b \\
& a_{1} x+a_{2} y \leq b
\end{aligned}
$$

Degenerate Cases

\square The feasible region may be:

Empty

Unbounded
\square The solution may be:

Not unique

The Simplex Algorithm

\square Assume WLOG that the cost function points "downwards".
Construct (some of) the vertices of the feasible region.
\square Walk edge by edge downwards until reaching a local minimum (which is also a global minimum).

- In Rd, the number of vertices might be $\Theta(n\lfloor d / 2\rfloor)$.

LP problems - definition and history

Definition: An optimization problem is a Linear Programming Problem (LP) if it asks us to find a set of parameters (a vector) that maximizes a linear cost function, which bounded by a set of linear constrains. That is, the solution must be in the intersection of given half space.

The Simplex Algorithm is usually used to solve such problems: It has an exponential worst case, but almost always it is extremely fast. So practically, if we could express a problem as an LP problem, we could considered it solved.

History

- 1947: George Dantzig Simplex algorithm. Extremely efficient l'm practice. Exponential in very rare cases.
- Since it is so efficient, if we have a problem and we could phrase it as a linear programming problem (constrains are half-spaces, and linear cost function)
1980's (Khachiyan) ellipsoid algorithm with time complexity poly (n, d)
1980's (Karmakar) interior-point algorithm with time complexity poly (n, d).
- 1984 (Megiddo) - parametric search algorithm with time complexity $\mathrm{O}\left(C_{d} n\right)$ where C_{d} is a constant dependent only on d. E.g. $C_{d}=2^{d^{\wedge}}$.
- The holy grail: An algorithm with complexity independent of d.
\square In practice the simplex algorithm is used because of its linear expected runtime

Linear Programming in d dimension - Example

Define: (amount amount consumed per day)

- - -types of foods ($1 \leq i \leq \mathrm{d}$). ($i=1 \rightarrow$ banana, $i=2 \rightarrow$ oranges, $i=3 \rightarrow$ avocado...) This is
the dimension of the LP problem.
(x_{j} - the amount of food j consumed daily $1 \leq j \leq d$)
(these are the d unknowns that we need to optimize)
$\overrightarrow{\mathbf{x}}=\left(x_{1}, x_{2} \ldots x_{d}\right)$
(i) -types of vitamins (1sisn).
$a_{i j}$ - the amount of vitamin j in one unit of food i
$\overrightarrow{\mathbf{a}}_{\mathbf{i}}=\left(a_{i, 1}, a_{i, 2} \ldots a_{i, d}\right)$
b_{j} - minimal daily dose for vitamin $\mathrm{i} . \quad(1 \leq i \leq n)$
- c_{i} - the cost of a unit of food $j(1 \leq j \leq d)$
$\overrightarrow{\mathbf{c}}=\left(c_{1}, \ldots c_{d}\right)$
- LP problem
minimize the cost $\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{x}}=\sum c_{j} x_{j}$
Such that (s.t.)
for every $1 \leq i \leq n$
$\overrightarrow{\mathbf{a}}_{\mathbf{i}} \cdot \overrightarrow{\mathbf{x}} \geq b_{i}$

$\mathrm{O}(n \log n)$ 2D Linear Programming (details left as hw)

- Input:
- n half planes.
- Cost function that WLOG "points down".
- Algorithm:

Partition the n half-planes into two groups.
S are all halfplanes contain the point $(0, \infty)$
S ' all other halfplanes contain the point $(0,-\infty)$
Sort them by slopes
Compute the upper envelop $U(S)$ and the lower envelop $L\left(S^{\prime}\right)$
(using question from hw1)
Scan simultaneously from left to right, and Computer intersection of two envelopes - they can intersect only at 2 points (why).
Evaluate cost function at each vertex.

Toward a faster algorithm in small dimensions

\square 1-dimensional linear programming
\square Given 2 n constants (constrains) $\alpha_{1}, \alpha_{2} \ldots \alpha_{n}, \beta_{1}, \beta_{2} \ldots \beta_{n}$ (not necessarily sorted)
\square find in $O(n)$ time the minimum x such that
$\square x \geq \alpha_{i} \quad($ for every $1 \leq i \leq n)$ and $\quad x \leq \beta_{i} \quad($ for every $1 \leq i \leq n)$
\square What is the feasible region? Could it be that the problem has no solution?
\square Answer

Feasible solution $\left\{x \mid \quad \max \left(\alpha_{i}\right) \leq x \leq \min \beta_{j}\right\}$

$\mathrm{O}\left(n^{2}\right)$ Incremental Algorithm

The idea:
Start by intersecting two halfplanes.
Add halfplanes one by one and update optimal vertex by solving one-dimensional LP problem on new line if needed.

Incremental Algorithm - Notation

- h_{i} is the i'th constrained half-plane
- ℓ_{i} is the line bounding h_{i}
- $C_{i}=h_{1} \cap h_{2} \cap \ldots h_{i}$ is the feasible region of the first i' constrains
v_{i} is the optimal solution to the first i constrains -

Cost function to minimize: $\quad c(x, y)=y$ Returns the lowermost point in feasible region

Incremental Algorithm Basic Theorem

- Theorem:

1. if $v_{i-1} \in h_{i}$, then $v_{i}=v_{i-1}$. // $\mathrm{O}(1)$ check, nothing to do
2. if $v_{i-1} \notin h_{i}$, then it is sufficient to look for v_{i} on ℓ_{i} using $1 D L P$ (rather than searching in the whole plane)
\square Conclusion: If there is no solution on I_{i}, then there is no solution at all. The feasible region is empty.

- Proof:

1. Trivial. Otherwise v_{i} would not have been optimum before.
2. - in the next slide

Basic Theorem - case 2.

Recall v_{i} is the lowest point at $C_{i}=h_{1} \cap h_{2} \cap \ldots \cap h_{i}$

Assume that v_{i} is not on ℓ_{i}
v_{i} must be in $\mathrm{C}_{\mathrm{i}-1}$ By convexity, also the segment $\overline{v_{i-1} v_{i}}$ (from v_{i} to v_{i-1}) is in C_{i-1}

Assume WLOG: Our cost function pushes us downward.

Consider point q : the intersection of the segment $\overline{v_{i-1} v_{i}}$ with 1_{i}.

Notice: q is also in $h_{i,}$ and in is C_{i-1}. It is lower than v

$\int_{\text {Cersen }}^{\text {cans syofins }}$

Contradicting the assumption that v_{i} is not on ℓ_{i}

Same theorem - in an algorithmic terms

Compute $C_{i}=h_{1} \cap h_{2}$, and v_{2}

For $i=3 . . . n$
\{

1. Check if $v_{i-1} \in h_{i}$. If yes, then $v_{i}=v_{i-1}$. // $\mathrm{O}(1)$, ELSE
2. // v_{i} must be on the line ℓ_{i} call 1D-LP $\left(\ell_{i,} h_{1} \ldots h_{i-1}\right)$
3. If $1 \mathrm{D}-\mathrm{LP}$ does not have a solution on ℓ_{i} - stop. There is no solution anywhere.
set v_{i} to be the solution that 1D-LP found.
\}

Complexity Analysis

\square Worst case, each new constrain h_{h} forces solving a new 1DLP
$T(n)=\sum_{i=3}^{n} c \cdot i=\Theta\left(n^{2}\right)$

Theorem s The expected time for the randorize version is o(a)

Backward analysis

Recall that if v_{i} violates h_{i} then $v_{i} \in \ell$. In words, the new optimum solution must on the line bounding h_{i}.
Question: What is the probability that at the ith step of the algorithm, v_{i-1} violates h_{i} ? (that is $v_{i-1} \neq v_{i}$)

Answer: Exactly $\frac{\mathbf{2}}{\mathbf{i}}$. Here is the reason:
v_{i} is determined by two half-planes. It does not care it which order the halfplanes were inserted.

- The probability that one of them is h_{i} is $2 /$ i.

The probability that h_{i} is one of the other halfplanes is $\frac{i-2}{i}$ which is almost 1 .
Conclusion: At the i'th step, the expected work is $1 \frac{i-2}{i} \cdot 1+c \cdot i \frac{2}{i}=1+2 c=$ constant.
Therefor, the expected work for the algorithm is (a bit hand wave) $\mathrm{n}+\mathrm{cn}=\mathrm{O}(\mathrm{n})$. Linear Algorithm

- YAY.

LP in 3D

- Now the input is a collection of half-spaces $\left\{h_{1} \ldots h_{n}\right\}$.

Now l_{i} is the plane bounding h_{i}. (notations are analogous to the 2D case).
We will define v_{3} as the intersection of the planes l_{1}, l_{2} and l_{3}.
We insert the other halfspaces $\left\{h_{4} \ldots h_{n}\right\}$ at a random order, and update v_{i} according to the following Theorem:
\square Theorem:

1. if $v_{i-1} \in h_{i}$, then $v_{i}=v_{i-1} . / / \mathrm{O}(1)$ check, nothing to do
2. if $v_{i-l} \notin h_{i}$, then the solution (if exists) is on l_{i}.

$$
\text { run } v_{i}=2 \operatorname{DLP}\left(h_{1} \cap l_{i}, h_{2} \cap l_{i}, h_{3} \cap l_{i, \ldots .}, h_{i-1} \cap l_{i}\right) .
$$

Terminates if there is no solution (that is, $C_{i}=\varnothing$)

Just to Make Sure ...

\square False Claim:
The probabilistic analysis is for the average input. Hence there exist bad sets of constraints for which the algorithm's expected runtime is more than $\mathrm{O}(n)$, and there exist good sets of constraints for which the algorithm's expected runtime is less than $\mathrm{O}(n)$.

True Claim:
The probabilistic analysis is valid for all inputs. The expected complexity is over all permutations of this input.

LP in 3D and higher dimension

In 3D, the worst case running time is $\boldsymbol{\Theta}\left(\boldsymbol{n}^{3}\right)$ (prove).
However, the expected running time is $\mathrm{O}(\mathrm{n})$. In general, the running time in $\mathrm{d}-$ dimension is $\mathrm{O}(\mathrm{d}!\mathrm{n})$. That is, linear in any fixed (and small) dimension.

Integer Linear Programming (ILP)

- Linear programming problems at which values of the computed variables must be integers are called

Integer Linear Programming (ILP) problems.

- If only some of the variables have to integers, we call them Mixed Integer Linear Programming problems.
- There is a huge number of problems that could be phrased as ILP. (include many NP-hard problems, where no polynomial-time algorithms exist)
- A few libraries could handle them, including CPLEX.
- Running time could varies a lot, and could be extremely slow for some instances.
- Yet extremely useful for instances when actual running time is acceptable.
- Also useful for comparing fast heurists to global optimum.

Vertex Cover and ILP

- Given: A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$. A subset $C \subseteq V$ is a vertex cover if every edge $(u, v) \in E$ we have either $u \in C$ or $v \in C$ or both
- Finding the min-cardinality Vertex Cover is NP-Hard
- ILP for this problem: the variables are $x_{1} \ldots x_{n}$. All are integers and between 0 and 1 .
- $v_{i} \in C$ iff $x_{i}=1$ (for $\left.i=1 \ldots n\right)$ s.t.
$x_{i}+x_{j} \geq 1 \quad \forall\left(v_{i}, v_{j}\right) \in E$
minimize $\sum_{i=1}^{n} x_{i}$
- Define: (amount consumed per day)
- types of foods : \{oranges, bananas\}
$-j-$ types of vitamins $(1 \leq j \leq n)$.
$-x$ - number of pounds of oranges we recommend daily
$-y$ - number of pounds of bananas we recommend daily
// these are the only unknown we have to compute.
$-a_{i i}$ - the amount of vitamin j in a unit of food i
- ($i=1$ for oranges, $i=2$ for bananas
$-c_{1}$ - the number of calories in an orange.
Another constrain
$-c_{2}$ - the number of calories in a banana.
- b_{j} - minimal daily required amount of vitamin j.
- Constraints (we need to consume some are integers

Now we have ILP problem.
minimal amount of each vitamin)

Minimize: the total number of calories consumed

$$
C((x, y))=c_{1} x+c_{2} y
$$

$$
\begin{aligned}
& a_{11} x+a_{12} y \geq b_{1} \\
& \vdots \\
& a_{n 1} x+a_{26} y \geq b_{n}
\end{aligned}
$$

Min-Weight Vertex Cover and ILP

- Sometimes the LP (instead of the ILP) could help us finding good approximations
- Given: A graph G(V,E). Each vertex v_{i} is given with a weight $w_{i}>0$. Think about it as the cost of this vertex.
- A subset $C \subseteq V$ is a vertex cover if every edge $(u, v) \in E$ we have either $u \in C$ or $v \in C$ or both
- The cost of C is the sum of weights of vertices in C.
- Finding the min-cardinality Vertex Cover is NP-Hard
- ILP for this problem: the variables are $x_{1} \ldots x_{n}$. All are integers and between 0 and 1 .
$v_{i} \in C$ iff $x_{i}=1($ for $i=1 \ldots n)$
 minimize $\sum_{i=1}^{n} w_{i} x_{i}$
s.t.
- $0 \leq x_{i} \leq 1$ and an integet, for every x_{i}
- $x_{i}+x_{j} \geq 1 \quad \forall\left(v_{i}, v_{j}\right) \in E$

Art Gallery - on the board

- Given a polygon, find a subset of the vertices that sees every other vertex
- Let Vis(i) be the set of vertices that vertex i sees. $\operatorname{Vis}(K)=\{G, D, C, A, K, J, I, H\}$
- For a vertex v_{i} we set $\mathrm{x}_{\mathrm{i}}=1$ if we place a guard at v_{i}. Otherwise $v_{i}=0$
- As usual, x_{i} are integers between 0 to 1 .
minimize $\sum_{i=1}^{n} x_{i}$
$\sum_{k \in V i s i)}^{\text {s.t. }} x_{k} \geq 1 \quad \forall 1 \leq i \leq n$
$k \in \operatorname{Vis}(i)$

