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Everything you always wanted to know about 
Quick Sort,  

What lessons could QuickSort teaches us about 
other algorithms    

QuickSort – 
example of the  

divide-and-concourse paradigm

• Proposed by C.A.R. Hoare in 1962. 
• Sorts “in place” (no need for extra space).  Like insertion sort, but not like merge 

sort. 
• Very practical (with tuning).

Divide and conquer
Quicksort an n-element array: 
1. Divide: Partition the array into two subarrays around a pivot x such that elements 

in lower subarray ≤ x ≤ elements in upper subarray. 

2. Conquer: Recursively sort the two subarrays. 
• Combine: Trivial.

≤ x x ≥ x

Key: Linear-time partitioning subroutine.

x

Running time = O(n) 
for n elements.

Partitioning subroutine
PARTITION(A, p, q) ⊳ A[ p . . q]  

x ← A[ p] ⊳ pivot = A[ p] 
i ← p 
for j ← p + 1 to q ⊳ j is hunting for small keys 

do if A[ j] ≤ x   ⊳ Should send A[ j] to the left. 
then{ 
 i ← i + 1   ⊳ Now A[i]>x 
 exchange A[i] ↔ A[ j] ⊳ Fix A[i]>x 
} 

exchange A[ p] ↔ A[i] 
return i

≤ x > x ?
p i qjInvariant:

x ≤ x > x ?
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Pseudocode for quicksort
QUICKSORT(A, p, r) 

if p < r //do something only if contains at least 2 keys 
then q ← PARTITION(A, p, r)  //both perform partition, and 

return index of pivot  
QUICKSORT(A, p, q–1)  //QS left part  
QUICKSORT(A, q+1, r) //QS right part

Initial call: AUICKSORT(A, 1, n)

Analysis of quicksort

• Assume all input elements are distinct. 
• In practice, there are better partitioning algorithms for when 

duplicate input elements may exist. 
• Let T(n) = worst-case running time on an array of n elements.

Worst-case of quicksort
• Input sorted or reverse sorted. 
• Partition around min or max element. 
• One side of partition always has no elements.
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T(n) = Θ(n) + Θ(n2) 
 = Θ(n2)

h = n
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Best-case and almost best-case analysis

If we are lucky, PARTITION splits the array evenly:

T(n) = 2T(n/2) + Θ(n) 
 = Θ(n lg n)

(same as merge sort)

What if the split is 
10
9

10
1 : ?

( ) ( ) )()( 10
9
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We call such a partition an almost-optimal partition. 

What is the running time in this case?

That is, both sub-arrays contains at least 10% of  
the keys (possibly more)
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Analysis of “almost-best” case
)(nT
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QS needs O(n log n) if partition are almost optiomal
Each time the algorithm invested some work, it moves a key 
from one location to another  

Consider a key x.  

When the algorithm starts, it is in an array of size  n 
Then x is shifted into an array of size.     
Next, x “  “          “           “      of size     
Next, x “  “          “           “      of size.    

 
After k times that x was shifted, its array’s size  

Max time that x is shifted: 
 

Next we need to multiply this number of the number of 
keys, yielding O(n log n)

≤ (0.9) ⋅ n
≤ (0.9)2 ⋅ n
≤ (0.9)3 ⋅ n

⋮
≤ (0.9)k ⋅ n

(0.9)kn ≤ 1 OR k ≤ log( 10
9 ) n ≤ 8 log2 n = O(log n)

Randomized quicksort
How can find a pivot that guarantees partitions with good ratios for 

A[1..n], ?  
We say that q is a good pivot  for if  
• at least 10% of the elements of A[1..n] are smaller than q, and  
• at least 10% of the elements of A[1..n] are larger   than q. 

    10% ≥ q10% ≤ q

Best pivot: Pick the median of A[1..n],  as pivot. 
(median – an element  that is larger than half of the keys ) 
Then the time would obey T(n) = cn+2T(n/2) 
Problem – need to work too hard to find the median (best pivot), so 
we will do with (only) a good pivot. (of course, we could first 
sort :-). ) 

Finding a good pivot for A[1..n]

5-random-elements method. :   
• Pick the indices of 5 elements at random from A[1..n],  
• For k=1 to 5  

   
•

•

•

• Set q to be the median of X[1..5] 

  

X[k] = A[⌊n ⋅ rand()⌋]

A[1..n]
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Finding a good pivot for A[1..n]
5-random-elements method. :  Pick 5 elements at random from 

A[1..n], and set q to be their median. 
What it is the probability that q is not a good pivot ? 
• Let S be the elements of A[1..n] which are the 10% smallest. 
• The probability that an elements picked at random is in S is 0.1.  
• q  is in S only if at least 3 of the 5 elements that we pick are in S.  
• The probability that this happens is  
  0.15 +           5•0.14 •0.9 +                       10• 0.13 •0.92  =  
      all in S      4 in S, one not in S                 3 in S  
=   0.00001     +   0.00045             +         0.00810=  0.00856 
• This is also the probability that q is in the 10% largest elements. 
• In other words: with probability  ≥98%,   q is a good pivot.  

  
     S:10% ≤ q
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Putting it together 

• If we performed a partition which is not almost optimal, 
nothing dramatically bad happens, we just wasted some 
time. Each such partition takes linear time, but has no 
effect.  

• However, each partition is, with probability is 
good, and we obtain an almost-optimal pivot.   

• Hence the expected time of QuickSort (if the 5 random 
keys methods is used) is  
            O(n log n) +0.02 O(n log n)=O(n log n) 

≥ 98 %

⋅

Randomized quicksort – cont 
Finding good pivots 

Putting it together, during QS, each time that we need to find a pivot, 
we use the “5 random elements” method.  

With probability 98%, we find a good pivot.  
The overall time that we spend on good partitions is much smaller than 

the time we spent on bad partitions.  
(note – bad partitions are not harmful – they are just not helpful) 
So the recursions formula T(n) = cn+ T(n /10 ) + T(n 9/10) still apply, 

leading to running time O( n log n).  
This is expected running time – there is a chance that the actual 

running time is Θ(n2), but the probability that it happens is very slim. 
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Quicksort in practice

• Quicksort is a great general-purpose sorting algorithm. 
• Quicksort is typically over twice as fast as merge sort. 
• Quicksort behaves well even with caching and virtual memory.
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Median Selection
• (CLRS Section 9.2, page 185). 
• For A[1..n]  (all different elements) we say that the 

rank of x is i  if  exactly i-1 elements in A are smaller 
than x.  

• In particular, the median is the ⎣n/2⎦-smallest. 
• To find the median, we could sort and pick A[⎣ n/2⎦]  

(taken O(n log n) ). 
• We can do better.



Median Selection-cont
RS( A, p, r, i){ 

//Randomize Selection: Returns i’st smallest element in  A[p..r].  
//Assumption: Input is valid and elements are different. 

•If p==r return A[p] 
•q=PARTITION(A,p,r) ;  

•//Partition using the 5-random element method 
•k=q-p 
•If i==k+1 return A[q]  
•If i<k return RS(A, p,     q-1, i  ) // Note the difference from QS 
•Else   return RS(A, q+1, r,    i-k-1)  
}  p q r

≤ x x ≥ x

k

Time analyis
• Recall: With high probability, we pick a good pivot:  

•Not in the 10% smallest or largest: 
• Hence, we get rid of at least 10% of the elements of A 
• So, T(n)=cn+T(0.9 n). 

•T(n)=c(n+0.9n+ 0.92n+0.93n+…) = 
cn(1+0.9+ 0.92+0.93+…) =  
cn(1/(1-0.9)) = O(n). 

• So the expected time is linear. (yuppie) 

As in the case of QS, partitions which are not good are not harmful, 
just not helpful. 


