CSc445 Algorithms

Everything you always wanted to know about Quick Sort,

What lessons could QuickSort teaches us about other algorithms

Alon Efrat

Based on slides curacy of Piotr Indyk and Carola Wenk

QuickSort – example of the divide-and-concourse paradigm

- Proposed by C.A.R. Hoare in 1962.
- Sorts "in place" (no need for extra space). Like insertion sort, but not like merge sort.
- Very practical (with tuning).

Divide and conquer

Quicksort an *n*-element array:

- *1. Divide:* Partition the array into two subarrays around a *pivot* x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.
- 2. *Conquer:* Recursively sort the two subarrays.
- Combine: Trivial.

Key: Linear-time partitioning subroutine.

Example of partitioning

Example of partitioning00000100000100000

Example of partitioning

6

Example of partitioning

Example of partitioning

Example of partitioning

Example of partitioning

Pseudocode for quicksort

QUICKSORT(A, p, r)if p < r //do something only if contains at least 2 keysthen $q \leftarrow$ PARTITION(A, p, r) //both perform partition, andreturn index of pivotQUICKSORT(A, p, q-1) //QS left partQUICKSORT(A, q+1, r) //QS right part

Initial call: AUICKSORT(A, 1, n)

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let T(n) = worst-case running time on an array of *n* elements.

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

= $\Theta(1) + T(n-1) + \Theta(n)$
= $T(n-1) + \Theta(n)$
= $\Theta(n^2)$ (arithmetic series)

Worst-case recursion tree

T(n) = T(0) + T(n-1) + cn

Analysis of "almost-best" case

T(*n*)

QS needs $O(n \log n)$ if partition are almost optional

Each time the algorithm invested some work, it moves a key from one location to another

Consider a key x.

When the algorithm starts, it is in an array of size *n* Then x is shifted into an array of size. $< (0.9) \cdot n$ Next, x " " " of size $< (0.9)^2 \cdot n$ دد Next. x " " " of size. $< (0.9)^3 \cdot n$

After k times that x was shifted, its array's size $\leq (0.9)^k \cdot n$

Max time that x is shifted:

 $(0.9)^k n \le 1$ $OR \quad k \le \log_{\left(\frac{10}{n}\right)} n \le 8 \log_2 n = O(\log n)$ Next we need to multiply this number of the number of keys, yielding $O(n \log n)$

33

.

Finding a good pivot for A[1..n]

5-random-elements method.

- Pick the **indices** of 5 elements at random from *A*[1..*n*],
- For k=1 to 5

A[1..n]

```
X[k] = A[|n \cdot rand()|]
```


Randomized quicksort

How can find a pivot that guarantees partitions with good ratios for A[1..n], ?

- We say that q is a **good pivot** for if
- at least 10% of the elements of A[1..n] are smaller than q, and
- at least 10% of the elements of A[1..n] are larger than q.

 $10\% \ge q$ $10\% \leq Q$

Best pivot: Pick the median of *A*[1..*n*], as pivot. (median – an element that is larger than half of the keys) Then the time would obey T(n) = cn + 2T(n/2)Problem – need to work too hard to find the median (best pivot), so

we will do with (only) a good pivot. (of course, we could first sort :-).)

Finding a good pivot for A[1..n]

5-random-elements method. : Pick 5 elements at random from A[1..n], and set q to be their median.

What it is the probability that *q* is **not** a good pivot ?

- Let *S* be the elements of *A*[1..*n*] which are the 10% smallest.
- The probability that an elements picked at random is in *S* is 0.1.
- q is in S only if at least 3 of the 5 elements that we pick are in S.
- The probability that this happens is

	$0.1^{5} +$	$5 \cdot 0.14 \cdot 0.9 +$	$10 \cdot 0.1^3 \cdot 0.9^2 =$
	all in <i>S</i>	4 in S , one not in S	3 in <i>S</i>
=	0.00001	+ 0.00045 +	0.00810 = 0.00856

- This is also the probability that q is in the 10% largest elements.
- In other words: with probability $\ge 98\%$, *q* is a good pivot.

 $S:10\% \le q$

Putting it together

- If we performed a partition which is **not** almost optimal, nothing dramatically bad happens, we just wasted some time. Each such partition takes linear time, but has no effect.
- However, each partition is, with probability ≥ 98% is good, and we obtain an almost-optimal pivot.
- Hence the expected time of QuickSort (if the 5 random keys methods is used) is

 $O(n \log n) + 0.02 \cdot O(n \log n) = O(n \log n)$

37

Randomized quicksort – cont Finding good pivots

Putting it together, during QS, each time that we need to find a pivot, we use the "5 random elements" method.

With probability 98%, we find a good pivot.

The overall time that we spend on good partitions is much smaller than the time we spent on bad partitions.

(note – bad partitions are not harmful – they are just not helpful)

- So the recursions formula T(n) = cn + T(n/10) + T(n/9/10) still apply, leading to running time O($n \log n$).
- This is expected running time there is a chance that the actual running time is $\Theta(n^2)$, but the probability that it happens is very slim.

Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- · Quicksort is typically over twice as fast as merge sort.
- · Quicksort behaves well even with caching and virtual memory.

Median Selection

- (CLRS Section 9.2, page 185).
- For *A*[1..*n*] (all different elements) we say that the rank of *x* is *i* if exactly *i*-1 elements in *A* are smaller than *x*.
- In particular, the median is the $\lfloor n/2 \rfloor$ -smallest.
- To find the median, we could sort and pick A[[n/2]] (taken O(n log n)).
- We can do better.

 $10\% \leq q$

Time analyis

- Recall: With high probability, we pick a good pivot:
 Not in the 10% smallest or largest:
- Hence, we get rid of at least 10% of the elements of A
- So, T(n) = cn + T(0.9 n). • $T(n) = c(n+0.9n+0.9^2n+0.9^3n+...) = cn(1+0.9+0.9^2+0.9^3+...) = cn(1/(1-0.9)) = O(n)$.
- So the expected time is linear. (yuppie)

As in the case of QS, partitions which are not good are not harmful, just not helpful.