
CSc445 Algorithms 

Alon Efrat 
Based on slides curacy of 

Piotr Indyk  and Carola Wenk

Everything you always wanted to know about 
Quick Sort,  

What lessons could QuickSort teaches us about 
other algorithms    

QuickSort – 
example of the  

divide-and-concourse paradigm

• Proposed by C.A.R. Hoare in 1962. 
• Sorts “in place” (no need for extra space).  Like insertion sort, but not like merge 

sort. 
• Very practical (with tuning).

Divide and conquer
Quicksort an n-element array: 
1. Divide: Partition the array into two subarrays around a pivot x such that elements 

in lower subarray ≤ x ≤ elements in upper subarray. 

2. Conquer: Recursively sort the two subarrays. 
• Combine: Trivial.

≤ x x ≥ x

Key: Linear-time partitioning subroutine.

x

Running time = O(n) 
for n elements.

Partitioning subroutine
PARTITION(A, p, q) ⊳ A[ p . . q]  

x ← A[ p] ⊳ pivot = A[ p] 
i ← p 
for j ← p + 1 to q ⊳ j is hunting for small keys 

do if A[ j] ≤ x   ⊳ Should send A[ j] to the left. 
then{ 
 i ← i + 1   ⊳ Now A[i]>x 
 exchange A[i] ↔ A[ j] ⊳ Fix A[i]>x 
} 

exchange A[ p] ↔ A[i] 
return i

≤ x > x ?
p i qjInvariant:

x ≤ x > x ?



5

Example of partitioning

i j
6 10 13 5 8 3 2 11

6

Example of partitioning

i j
6 10 13 5 8 3 2 11

Example of partitioning

i j
6 10 13 5 8 3 2 11

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11



Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

11

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11



Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

6 5 3 2 8 13 10 11

i
2 5 3 6 8 13 10 11



Pseudocode for quicksort
QUICKSORT(A, p, r) 

if p < r //do something only if contains at least 2 keys 
then q ← PARTITION(A, p, r)  //both perform partition, and 

return index of pivot  
QUICKSORT(A, p, q–1)  //QS left part  
QUICKSORT(A, q+1, r) //QS right part

Initial call: AUICKSORT(A, 1, n)

Analysis of quicksort

• Assume all input elements are distinct. 
• In practice, there are better partitioning algorithms for when 

duplicate input elements may exist. 
• Let T(n) = worst-case running time on an array of n elements.

Worst-case of quicksort
• Input sorted or reverse sorted. 
• Partition around min or max element. 
• One side of partition always has no elements.

)(
)()1(

)()1()1(
)()1()0()(

2n
nnT

nnT
nnTTnT

Θ=

Θ+−=

Θ+−+Θ=

Θ+−+=

(arithmetic series)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn



Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(n) cn

T(0) T(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

cn

T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) T(n–2)

cn

T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

Θ(1)

!



25

cn

T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

Θ(1)

!

( )2
1

nk
n

k
Θ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Θ ∑

=

cn

Θ(1) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

Θ(1) c(n–2)

Θ(1)

Θ(1)

!

( )2
1

nk
n

k
Θ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Θ ∑

=

T(n) = Θ(n) + Θ(n2) 
 = Θ(n2)

h = n

27

Best-case and almost best-case analysis

If we are lucky, PARTITION splits the array evenly:

T(n) = 2T(n/2) + Θ(n) 
 = Θ(n lg n)

(same as merge sort)

What if the split is 
10
9

10
1 : ?

( ) ( ) )()( 10
9

10
1 nnTnTnT Θ++=

We call such a partition an almost-optimal partition. 

What is the running time in this case?

That is, both sub-arrays contains at least 10% of  
the keys (possibly more)

28

Analysis of “almost-best” case
)(nT



Analysis of “almost-best” case
cn

( )nT 10
1 ( )nT 10

9

Analysis of “almost-best” case
cn

cn10
1 cn10

9

( )nT 100
1 ( )nT 100

9 ( )nT 100
9 ( )nT 100

81

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1)

Θ(1)

… …

log10/9n

cn

cn

cn

…O(n) leaves

log10n

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1)

Θ(1)

… …

log10/9n

cn

cn

cn

T(n) ≤ cn log10/9n + Ο(n) 
≤ 8 n c log2n 

…

cn log10n ≤

O(n) leaves



33

QS needs O(n log n) if partition are almost optiomal
Each time the algorithm invested some work, it moves a key 
from one location to another  

Consider a key x.  

When the algorithm starts, it is in an array of size  n 
Then x is shifted into an array of size.     
Next, x “  “          “           “      of size     
Next, x “  “          “           “      of size.    

 
After k times that x was shifted, its array’s size  

Max time that x is shifted: 
 

Next we need to multiply this number of the number of 
keys, yielding O(n log n)

≤ (0.9) ⋅ n
≤ (0.9)2 ⋅ n
≤ (0.9)3 ⋅ n

⋮
≤ (0.9)k ⋅ n

(0.9)kn ≤ 1 OR k ≤ log( 10
9 ) n ≤ 8 log2 n = O(log n)

Randomized quicksort
How can find a pivot that guarantees partitions with good ratios for 

A[1..n], ?  
We say that q is a good pivot  for if  
• at least 10% of the elements of A[1..n] are smaller than q, and  
• at least 10% of the elements of A[1..n] are larger   than q. 

    10% ≥ q10% ≤ q

Best pivot: Pick the median of A[1..n],  as pivot. 
(median – an element  that is larger than half of the keys ) 
Then the time would obey T(n) = cn+2T(n/2) 
Problem – need to work too hard to find the median (best pivot), so 
we will do with (only) a good pivot. (of course, we could first 
sort :-). ) 

Finding a good pivot for A[1..n]

5-random-elements method. :   
• Pick the indices of 5 elements at random from A[1..n],  
• For k=1 to 5  

   
•

•

•

• Set q to be the median of X[1..5] 

  

X[k] = A[⌊n ⋅ rand()⌋]

A[1..n]

36

Finding a good pivot for A[1..n]
5-random-elements method. :  Pick 5 elements at random from 

A[1..n], and set q to be their median. 
What it is the probability that q is not a good pivot ? 
• Let S be the elements of A[1..n] which are the 10% smallest. 
• The probability that an elements picked at random is in S is 0.1.  
• q  is in S only if at least 3 of the 5 elements that we pick are in S.  
• The probability that this happens is  
  0.15 +           5•0.14 •0.9 +                       10• 0.13 •0.92  =  
      all in S      4 in S, one not in S                 3 in S  
=   0.00001     +   0.00045             +         0.00810=  0.00856 
• This is also the probability that q is in the 10% largest elements. 
• In other words: with probability  ≥98%,   q is a good pivot.  

  
     S:10% ≤ q



37

Putting it together 

• If we performed a partition which is not almost optimal, 
nothing dramatically bad happens, we just wasted some 
time. Each such partition takes linear time, but has no 
effect.  

• However, each partition is, with probability is 
good, and we obtain an almost-optimal pivot.   

• Hence the expected time of QuickSort (if the 5 random 
keys methods is used) is  
            O(n log n) +0.02 O(n log n)=O(n log n) 

≥ 98 %

⋅

Randomized quicksort – cont 
Finding good pivots 

Putting it together, during QS, each time that we need to find a pivot, 
we use the “5 random elements” method.  

With probability 98%, we find a good pivot.  
The overall time that we spend on good partitions is much smaller than 

the time we spent on bad partitions.  
(note – bad partitions are not harmful – they are just not helpful) 
So the recursions formula T(n) = cn+ T(n /10 ) + T(n 9/10) still apply, 

leading to running time O( n log n).  
This is expected running time – there is a chance that the actual 

running time is Θ(n2), but the probability that it happens is very slim. 

 10%   ≥ q10%   ≤ q

cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1)

… …

cn

cn

cn

…O(n) leaves

Quicksort in practice

• Quicksort is a great general-purpose sorting algorithm. 
• Quicksort is typically over twice as fast as merge sort. 
• Quicksort behaves well even with caching and virtual memory.

40

Median Selection
• (CLRS Section 9.2, page 185). 
• For A[1..n]  (all different elements) we say that the 

rank of x is i  if  exactly i-1 elements in A are smaller 
than x.  

• In particular, the median is the ⎣n/2⎦-smallest. 
• To find the median, we could sort and pick A[⎣ n/2⎦]  

(taken O(n log n) ). 
• We can do better.



Median Selection-cont
RS( A, p, r, i){ 

//Randomize Selection: Returns i’st smallest element in  A[p..r].  
//Assumption: Input is valid and elements are different. 

•If p==r return A[p] 
•q=PARTITION(A,p,r) ;  

•//Partition using the 5-random element method 
•k=q-p 
•If i==k+1 return A[q]  
•If i<k return RS(A, p,     q-1, i  ) // Note the difference from QS 
•Else   return RS(A, q+1, r,    i-k-1)  
}  p q r

≤ x x ≥ x

k

Time analyis
• Recall: With high probability, we pick a good pivot:  

•Not in the 10% smallest or largest: 
• Hence, we get rid of at least 10% of the elements of A 
• So, T(n)=cn+T(0.9 n). 

•T(n)=c(n+0.9n+ 0.92n+0.93n+…) = 
cn(1+0.9+ 0.92+0.93+…) =  
cn(1/(1-0.9)) = O(n). 

• So the expected time is linear. (yuppie) 

As in the case of QS, partitions which are not good are not harmful, 
just not helpful. 


