## CSc445 Algorithms

Everything you always wanted to know about Quick Sort,

What lessons could QuickSort teaches us about other algorithms

## Alon Efrat

Based on slides curacy of Piotr Indyk and Carola Wenk

```
QuickSort example of the divide-and-concourse paradigm
```

- Proposed by C.A.R. Hoare in 1962.
- Sorts "in place" (no need for extra space). Like insertion sort, but not like merge sort.


## Divide and conquer

## Quicksort an $n$-element array:

1. Divide: Partition the array into two subarrays around a pivot $x$ such that elements in lower subarray $\leq x \leq$ elements in upper subarray.
2. Conquer: Recursively sort the two subarrays.

- Combine: Trivial

- Very practical (with tuning).


## Partitioning subroutine

## Partitioning subroutine

$\operatorname{PARTITION}(A, p, q) \triangleright A[p \ldots q]$
$x \leftarrow A[p]$
$\triangleright$ pivot $=A[p]$
Running time $=O(n)$ for $n$ elements.
$i \leftarrow p$
for $j \leftarrow p+1 \mathbf{t o} q \triangleright \mathbf{j}$ is hunting for small keys
do if $A[j] \leq x \quad \triangleright$ Should send $A[j]$ to the left. then\{
$i \leftarrow i+1 \quad \triangleright$ Now $A[i]>x$ exchange $A[i] \leftrightarrow A[j] \triangleright \operatorname{Fix} A[i]>\mathrm{x}$
exchange $\stackrel{\}}{A}[p] \leftrightarrow A[i]$
return $i$

Invariant:


## Example of partitioning

$\square$


Example of partitioning


| 6 | 5 | 13 | 10 | 8 | 3 | 2 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |




Example of partitioning


Example of partitioning


Example of partitioning




## Pseudocode for quicksort

$\operatorname{QUICKSORT}_{(A, p, r)}$
if $p<r / /$ do something only if contains at least 2 keys
then $q \leftarrow \operatorname{PARTITION}(A, p, r) / /$ both perform partition, and return index of pivot
QUICKSORT $(A, p, q-1) / / Q \operatorname{Qs}$ left part QUICKSORT $(A, q+1, r) / / \mathrm{QS}$ right part

Initial call: $\operatorname{AUICKSORT}(A, 1, n)$

## Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$
\begin{aligned}
T(n) & =T(0)+T(n-1)+\Theta(n) \\
& =\Theta(1)+T(n-1)+\Theta(n) \\
& =T(n-1)+\Theta(n) \\
& =\Theta\left(n^{2}\right) \quad \text { (arithmetic series) }
\end{aligned}
$$

## Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let $T(n)=$ worst-case running time on an array of $n$ elements


## Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Worst-case recursion tree
$T(n)=T(0)+T(n-1)+c n$
$T(n)$

## Worst-case recursion tree

$T(n)=T(0)+T(n-1)+c n$


Worst-case recursion tree
$T(n)=T(0)+T(n-1)+c n$



Worst-case recursion tree
$T(n)=T(0)+T(n-1)+c n$


## Worst-case recursion tree

$T(n)=T(0)+T(n-1)+c n$


Best-case and almost best-case analysis

If we are lucky, PARTITION splits the array evenly:
$\begin{aligned} T(n) \quad & =2 T(n / 2)+\Theta(n) \\ & =\Theta(n 1 g n)\end{aligned}$
$=\Theta(n \lg n)$
(same as merge sort)
What if the solit is $\frac{1}{10}: \frac{9}{10}$ ?
That is, both sub-arrays contains at least $10 \%$ of the keys (possibly more)

$$
T(n)=T\left(\frac{1}{10} n\right)+T\left(\frac{9}{10} n\right)+\Theta(n)
$$

We call such a partition an almost-optimal partition.
What is the running time in this case?

## Worst-case recursion tree

$T(n)=T(0)+T(n-1)+c n$


Analysis of "almost-best" case
$T(n)$

Analysis of "almost-best" case


Analysis of "almost-best" case



Analysis of "almost-best" case


QS needs $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ if partition are almost optiomal
Each time the algorithm invested some work, it moves a key from one location to another

Consider a key x .
When the algorithm starts, it is in an array of size $n$
Then x is shifted into an array of size. $\leq(0.9) \cdot n$
Next, x " " " of size $\leq(0.9)^{2} \cdot n$

Next, x " " " of size. $\leq(0.9)^{3} \cdot n$
$\vdots$
After $\boldsymbol{k}$ times that x was shifted, its array's size $\leq(0.9)^{\mathbf{k}} \cdot n$
Max time that $x$ is shifted:
$(0.9)^{k} n \leq 1 \quad$ OR $\quad k \leq \log _{\left(\frac{10}{9}\right)} n \leq 8 \log _{2} n=O(\log n)$
Next we need to multiply this number of the number of keys, yielding $O(n \log n)$

## Finding a good pivot for $A[1 . . n]$

## 5-random-elements method. :

- Pick the indices of 5 elements at random from $A[1 . . n]$,
- For $k=1$ to 5

$$
X[k]=A[\lfloor n \cdot \operatorname{rand}()\rfloor]
$$

A[1..n]


- Set $q$ to be the median of $X[1 . .5]$


## Randomized quicksort

How can find a pivot that guarantees partitions with good ratios for A[1..n],?
We say that $q$ is a good pivot for if

- at least $10 \%$ of the elements of $A[1 . . n]$ are smaller than $q$, and
- at least $10 \%$ of the elements of $A[1 . . n]$ are larger than $q$.

$$
\begin{array}{l|l|l|}
\hline 10 \% \leq q & 10 \% \geq q \\
\hline
\end{array}
$$

Best pivot: Pick the median of $A[1 . . n]$, as pivot.
(median - an element that is larger than half of the keys )
Then the time would obey $T(n)=c n+2 T(n / 2)$
Problem - need to work too hard to find the median (best pivot), so we will do with (only) a good pivot. (of course, we could first sort :-). )

## Finding a good pivot for $A[1 . . n]$

5-random-elements method. : Pick 5 elements at random from $A[1 . . n]$, and set $q$ to be their median.
What it is the probability that $q$ is not a good pivot?

- Let $S$ be the elements of $A[1 . . n]$ which are the $10 \%$ smallest.
- The probability that an elements picked at random is in $S$ is 0.1.
- $q$ is in $S$ only if at least $\mathbf{3}$ of the 5 elements that we pick are in $S$.
- The probability that this happens is

| $0.15+$ | $5 \cdot 0.14 \cdot 0.9+$ | $10 \cdot 0.1^{3} \cdot 0.92=$ |
| :--- | :--- | :--- |
| all in $S$ | 4 in $S$, one not in $S$ | 3 in $S$ |

$=0.00001+0.00045+0.00810=0.00856$

- This is also the probability that $q$ is in the $10 \%$ largest elements.
- In other words: with probability $\geq 98 \%, q$ is a good pivot.


## Putting it together

- If we performed a partition which is not almost optimal, nothing dramatically bad happens, we just wasted some time. Each such partition takes linear time, but has no effect.
- However, each partition is, with probability $\geq 98 \%$ is good, and we obtain an almost-optimal pivot.
- Hence the expected time of QuickSort (if the 5 random keys methods is used) is
$\mathrm{O}(\mathrm{n} \log \mathrm{n})+0.02 \cdot \mathrm{O}(\mathrm{n} \log \mathrm{n})=\mathrm{O}(\mathrm{n} \log \mathrm{n})$


## Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort behaves well even with caching and virtual memory.

Putting it together, during QS, each time that we need to find a pivot, we use the " 5 random elements" method.
With probability $98 \%$, we find a good pivot.
The overall time that we spend on good partitions is much smaller than the time we spent on bad partitions.
(note - bad partitions are not harmful - they are just not helpful)
So the recursions formula $T(n)=c n+T(n / 10)+T(n 9 / 10)$ still apply, leading to running time $\mathrm{O}(n \log n)$.
This is expected running time - there is a chance that the actual running time is $\Theta\left(n^{2}\right)$, but the probability that it happens is very slim.


## Median Selection

- (CLRS Section 9.2, page 185).
- For $A[1 . . n]$ (all different elements) we say that the rank of $x$ is $\boldsymbol{i}$ if exactly $i$ - 1 elements in $A$ are smaller than $x$.
- In particular, the median is the $\lfloor n / 2\rfloor$-smallest.
- To find the median, we could sort and pick $A[\lfloor n / 2\rfloor]$ (taken $\mathrm{O}(n \log n)$ ).
- We can do better.


## Median Selection-cont

$\operatorname{RS}(A, p, r, i)\{$
//Randomize Selection: Returns $i$ 'st smallest element in $A[p . r]$.
//Assumption: Input is valid and elements are different.

- If $p==r$ return $\mathrm{A}[p]$
- $q=$ PARTITION $(A, p, r)$;
-//Partition using the 5-random element method
- $k=q-p$
-If $i==k+1$ return $A[q]$
-If $i<k$ return $\operatorname{RS}(A, p, \quad q-1, i) / /$ Note the difference from QS
-Else return $\operatorname{RS}(A, q+1, r, i-k-1)$
\}



## Time analyis

- Recall: With high probability, we pick a good pivot: - Not in the $10 \%$ smallest or largest:
- Hence, we get rid of at least $10 \%$ of the elements of $A$
- So, $T(n)=c n+T(0.9 n)$.
- $T(n)=c\left(n+0.9 n+0.9^{2} n+0.9^{3} n+\ldots\right)=$ $c n(1+0.9+0.92+0.93+\ldots)=$ $c n(1 /(1-0.9))=O(n)$.
- So the expected time is linear. (yuppie)

As in the case of QS, partitions which are not good are not harmful, just not helpful.

