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Trie: A data-structure for a set of words 

All words over the alphabet  Σ={a,b,..z}. 
In the slides, the alphabet is only {a,b,c,d}.  
S – set of words = {a,aba, a, aca, addd}. 
Need to support the operations 
• insert(w) – add a new word  w  into S. 
• delete(w) – delete the word  w  from S. 
• find(w) is w in S ?  

•Future operation: 
•Given text (many words) where is w  in the text.  

•The time for each operation should be O(k), where k is 
the number of letters in w 

•Usually each word is associated with addition info – 
not discussed here.  
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Trie (Tree+Retrive) for S
■ A tree where each node is a struct consist  
■ Struct node { 

■ char[4]  *ar; 
■ char flag ;  /* 1 if a word ends at this node. Otherwise 0 */ 

b c da

ar

flag

1

b c da
ar

flag
1

Rule:  
 Each node corresponds to a word w. 
 w∈ S  iff   flag=1  4

A trie - example

b c da

b c da b c da
b c da

b c da

b c da

a b d

b

b

1 1 0

0

0

1

The dictionary contains S={a,b,dbb}

Corr. To w=“db” 
(not in S, flag=0)

The label of an edge is the label of  
the cell from which this edge exits

p->ar[‘b’-’a’]
p

Corr.  to w=“dbb”

Corresponding to w=“d”
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Finding if word w is in the tree

p=root; i =0 // remember - each string ends with `\0’ 
While(1){ 

■ If w[i] == ‘\0’   //we have scanned all letters of w 
■ then return the flag of p ; else 

■ If    //the entry of p correspond to w[i] is NULL 

  return false; 
■  //Set p  to be the node pointed by this entry  
■ i++;   

}

(p . a[w[i] −′ a′ ]) = = NULL

p = (p . a[w[i] −′ a′ ])
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Inserting a word w

■ Try to perform find(w).  
■ If runs into a NULL pointers, create new nodes along the 

path.  
■ The flag fields of all new nodes is 0. 

■ Set the flag of the last node to 1 
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Deleting a word w

■ Find the node p corresponding to w  (using `find’ 
operation).  

■ Set the flag field of p to 0. 
■ If p is dead  (I.e. flag==0  and all pointers are NULL ) then  

free(p), set p=parent(p)  and repeat this check. 
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Heuristics for saving space

■ The space required is Θ(|Σ| |S|).  
■ To save some space, if Σ is larger,  there are a few heuristics 

we can use. Assume Σ={a,b..z} .  
■ We use  two types of nodes 

■ Type “A”, which is used when the number of children of a 
node is more than 3

p
type a flagb z

Note – the letters are not stores explicitally 
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Heuristics for space saving

■ Type “B” is used if there are 3 or less children: 
■ The “letter” of the child is also stored:

p
type letter pointer letter pointer letter pointer      flag

B F R

•The rule of the flag is the same as in type “A” nodes. 
•We only store the 3 pointers, but we need to know to which 
letters they corresponds to. 
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Another Heuristics – path compression
■ Replace a long sequence of nodes, all 

having only one a single child, with a 
single node (of type “pointer to string”) that 
maintains  
■  a point to the next node,  
■ a point to the string. 

b c da

b c da

b c da

b c da

“bbbb\0”
b c datype
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Suffix tree. 

■ Assume B (for book) is a very long text.  
■ Want to preprocess B, so when a word  w is given, we can 

quickly find if it is in B.  
■ We can find it in O(|w|). 
■ Idea:  

■ Consider B as a long string.  
■ Create a trie T of all suffixes of B.  
■ In addition to the flag (specifying if a word ends at node), 

we also stored the index in B where this word begins. 
■ Example B=“aabab”  
 S={“aabab”, “abab”, “bab”, “ab”, “b”}

Observation: w appears in B   
w is the prefix of a suffix of B. 
Example: B=“helloniceworld”, w=“nice”.

⇔
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Suffix tree. 
Example B=“aabab”  S={“aabab”, “abab”, “bab”, “ab”, “b”}

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

1

1

1

1

1

To know where a word 
appear in B, we store with 
each node the index of the 
beginning of the suffix in B.  

(we can store only the first 
appearance of the word in 
the text)
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Size of suffix tree 
Example B=“aabab”  S={“aabab”, “abab”, “bab”, “ab”, “b”}

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

1

1

1

1

1

Assume n=|B|.  
Total length of all string Θ(n2) 
Size of a node is |Σ| 
So size of the tree is Θ(n2 |Σ| ). 

Time to construct the tree Θ(n2) 

We can save some space. 
Example B=“aabab”   
S={“aabab”, “abab”, “bab”, “ab”, “b”} 
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Suffix tries on a diet 
Def: a thread is a path from node u to node v in the 

trie, consisting of nodes of outdegree 1 (except 
maybe the last one) and flag=0.  

Obs: There is a contagious part of B, identical to the 
string the shred represents. We call this part the 
shred-string 

We stores the book B itself as an array.  
We use a new type of nodes, called thread-nodes, 

maintain the first  (id1) and last (id2) indexes of 
the shred-string in B.  

 

b c da

b c da

b c da

b c da

b c da

B=“cadbdaadbd

b c datype flagid1 id2
107 7 101
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Suffix tries on a diet -  cont 
Algorithm for constructing a “thin” trie:  
Given B – create an empty trie T, and insert all n 

suffixes of B into T --- generating a trie of size 
Θ(n2). 

Traverse the tries, and each time that a shred is 
seen, replace all nodes of the shred with a 
single shred-node.  

 

b c da

b c da

b c da

b c da

b c da
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Suffix tries on a diet -  cont 

• Clearly the use of thread-nodes saves some-but can we prove something ?  

• Observations: Every leaf of T must be the end of some prefix of B. So the 
number of number of leaves of T is .   

• n=|B|   

• To bound the size of T, we will need to bound the number of internal 
nodes.  

• Observations:  
T might contain special nodes whose flag=1 (a suffix terminates at 

these nodes).  
The number of special nodes is  (since this is the number of 

suffixes).  
• What about other internal nodes of T ? 

≤ n

≤ n

b c da

b c da

b c da

b c da

b c da
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Suffix tries on a diet -  cont 
Lemma: Let T’  be a rooted tree with m leaves, where each internal node has  children.  

Then T’  has  internal nodes.  (proof - easy induction. Homework) 

Back to thin suffix tries T:  
• T has   special nodes (with flag=1) and 
• T has  leaves.  
• Every other nodes has  children.  (with flag=1). Applying the Lemma in this case, 

implies that the total number of internal nodes . 

• Conclusion: The number of nodes in T is  (much better than the uncompressed version 
that could have  nodes.  

• So the size of the trie is only a constant more than the size of the book.  

    

≥ 2
≤ m

≤ n
≤ n

≥ 2
≤ 2n

≤ 3n
Θ(n2)

: 
 
A simple data structure for geometric objects (e.g. points, houses, an 
image, 3D scene)  
 
Support efficiently a very wide variety of queries.  

Shares similarities with tries, hence taught together. 

Quadtrees
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QuadTrees 
Assume we are given a red/green 
picture defined a 2h × 2h grid. E.g. pixels. 
Each pixel is either green or red.  

(more general and interesting examples 
– soon)  

Need to represent the shape “compactly”  
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QuadTrees 
Assume we are given a red/green 
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QuadTrees 
Assume we are given a red/green 
picture defined a 2h × 2h grid. E.g. pixels. 
Each pixel is either green or red.  

(more general and interesting examples 
– soon)  

Need to represent the shape “compactly”  

Need a data structure that could answers multiple types of 
queries. For example: 
1.For a given point q, is q red or green ? 

2.For a given query disk D, are there any green points  in D ?

3.How many green points are there in D ? 
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D1
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QuadTrees 
Assume we are given a red/green 
picture defined a 2h × 2h grid. E.g. pixels. 
Each pixel is either green or red.  

(more general and interesting examples 
– soon)  

Need to represent the shape “compactly”  
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1.For a given point q, is q red or green ? 

2.For a given query disk D, are there any green points  in D ?
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QuadTrees 
Assume we are given a red/green 
picture defined a 2h × 2h grid. E.g. pixels. 
Each pixel is either green or red.  

(more general and interesting examples 
– soon)  

Need to represent the shape “compactly”  

Need a data structure that could answers multiple types of 
queries. For example: 
1.For a given point q, is q red or green ? 

2.For a given query disk D, are there any green points  in D ?

3.How many green points are there in D ? 
4.Etc etc 

D2

D1 D3
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Regions of nodes 
A tree where each internal node 
has 4 children.  

In general, every node v is 
associated with a region of the 
plane. Lets denote this region by  
R(v).  

R(root) is the whole region of 
interest (e.g. input image or USA) 

The smallest possible area of R(v) 
is a single pixel.   

For every non-root node v, we 
have  

Let NW(v) denote the North West 
child of v.  
(similarly NE, SW, SE) 
 

R(v) ⊂ R(parent(v))R(v) = is the union of  
    R(NW(v)), R(NE(v)) R(SW(v)),  R(SE(v))  

3

0

11R(NW(root))

R(root))
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QuadTrees 

• Assume we are given a red/
green picture defined on a 
2h × 2h grid of pixels. 

• Each pixel has as a unique 
color (Green or Red) 

• Every node v ∈ T  is 
associated with a 
geometric region R(v) 

Alg constructQT for a shape S. 
•input – a node v ∈ T,  and a shape S.   
•Output – a Quadtree Tv representing the shape of S within R(v) ).   

• If  S is fully green in R(v), or S is fully red in R(v) – then  
•  v is a leaf,  labeled Green or Red. Return ;   
•Otherwise, divide R(v) into 4 equal-sized quadrants, corresponding to nodes    
 v.NW, v.NE, v.SW, v.SE.  
• Call constructQT recursively for each quadrant. 

3

0
11

2

10

13
120 121

123122

NW

SW SE

NW SE
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QuadTrees 

Consider a  picture 
stored on an 2h × 2h 
grid. Each pixel is 
either red or green. 

We can represent the  
shape “compactly” 
using a QT.  

Height – at most h.  
Point location operation – given a point q, is it black or white  
 – takes time O(h)  
 - could it be much smaller ? 

Many other operations are very simple to implement. 

3

0
11

2

10

13
120 121

123122

NW SE
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QuadTree for a set of points  
Now consider a set of 
points (red) but on a 
2h × 2h grid. 

Splitting policy: Split 
until each quadrant 
contains ≤1 point.

Build a similar QT, but we stop splitting a quadrant when it contain ≤1 point (or 
some other small constant)   
Point location operation – given a point q, is it black or white  
 – takes time O(h) (in practice, usually much less) 

Many other splitting polices are very simple to implement.  
 (eg. A leaf  could contain contains ≤17 points)

3

0
11

  
a b

c

d

da

b

c

  e

e

given: a set of points S = {a , b, c, d , e}, each with its (x,y) coordinates

Comment: In practice, it is much easier to work with query region 
which is an axis-parallel rectangle (why?). We use disks in the slides 
for visualization. 

For example, to check if , it is enough to check MinX, MinY, 
MaxX,MaxY 

R(v) ⊆ Q
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QuadTrees for a set of points  
Report(Q,v) 
// Q – a query disk  
/* report all the points in stored at the subtree rooted 
at v,  which are contained inside Q. */ 

1.If v is NULL – return. 
2.If R(v) is disjoint from Q –return NULL. 
3.If R(v) is fully contained in Q – report all points in the 
subtree rooted at v.   
4.If v is a leaf – check each point in R(v) if inside Q 
5.Else  //  

Report(Q, NW(v)) and  
Report(Q, NE(v))  and  
Report(Q, SW(v)) and 
Report(Q, SE(v))

R(v) Partially overlaps Q3

0

11

a

c

da

b

c

Q

b

Q Q disjoint from R(v); Q⋂R(v) = ∅

QR(v) Q Contains R(v);

Q R(v) Partially overlaps Q
Q R(v)
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QuadTrees for a set of points  
Report(Q,v) 
// Q – a query disk  
/* report all the points in stored at the 
subtree rooted at v,  which are contained 
inside Q. */ 

1.If v is NULL – return. 
2.If R(v) is disjoint from Q –return NULL. 
3.If R(v) is fully contained in Q – report 
all points in the subtree rooted at v.   
4.If v is a leaf – check each point in R(v) 
if inside Q 
5.Else  //  

Report(Q, NW(v)) and  
Report(Q, NE(v))  and  
Report(Q, SW(v)) and 
Report(Q, SE(v))

R(v) Partially overlaps Q

Comment: In practice, it is much easier to work with query region 
which is an axis-parallel rectangle (why?). We use disks in the slides 
for visualization.

3

0

11

a

c

da

b

c

Q

b

Q Q disjoint from R(v); Q⋂R(v) = ∅

QR(v) Q Contains R(v);

Q R(v) Partially overlaps Q
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QuadTrees for shape  

Input: Set S of triangles  
S={t1…tn }    

Splitting policy: Split 
quadrant if it intersects 
more than 1 triangle of S. 3

0

11
c

d

da

b

c

a

a a 

b

Note – a triangle might be stored in multiple leaves.  
Some leaves might store no triangles.  

Finding all triangles inside a query region Q –  
essentially same Report Report(Q,v) as before  
 (minor modifications)  26
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Note – a triangle might be stored in multiple leaves.  
Some leaves might store no triangles.  

Finding all triangles inside a query region Q –  
essentially same Report Report(Q,v) as before  
 (minor modifications)  

Terrain representations 

Raw data  – a grid of points (xi, yj , zij) 
For every grid point i,j 

Triangulated terrain  
(TIN – Triangulated irregular network

Each triangle approximately fits the surface below it 



How to find good triangulation ? 

Each triangle approximately fits the surface below it 
(credit  SCALGO)

How to find good triangulation ? 
◆ Input – a very large set of points S={ (xi , yj ,  zij ) }.  
◆ zij is the elevation at  point  (xi , yi ) 
◆ Want to create a surface, consists of triangles, where 

each triangle interpolates the data points underneath it.  
◆ Idea: Build a QT T for the 2D points.  
◆ (if want triangles:  Each quadrant is split into 2 triangles) 
◆ Assign to each vertex the height of the terrain above it.   
◆ The approximated elevation of the terrain at any point is 

the linear interpolation of its elevated vertices. 

QT Split Policy: Splitting a quadrant into 4 sub-quadrants:  
◆ split a node v if for some date point (xi , yi )∈R(v),  the 

elevation of zij  is too far from the the corresponding 
triangle.      If not, leave v as a leaf.  

◆ That is, (xi ,yj  ,  zij ) it is too far from the interpolated 
elevation.  

◆ Note: A quadrant might contain a huge number of points, 
but they behave smoothly. E.g. all a the sloop of a 
mountain, but this slope is more or less linear. 

R-trees   
• Input: A set S of shapes (segments in this example. Triangles in graphics apps)   
• Build a tree that could expedite 

• (i) finding the segments intersecting a query region, 
• (ii) answering ray tracing 
• (iii) Emptiness queries. etc  

1

2

3

4
5

6

7

8

• We compute for each segment its bounding box (rectangle). 
• These are the leaves of T.  Call them ``Level 1’’. 
• Find the nearest pair of segments (say 7,8). Remove them from level 1, and replace them by a single BB encapsulate both. It corresponds to a 

node of level 2.
• Repeat until no vertex is left in level 1. 
• Next, pick the nearest two BBs from level 2, and replace them by a vertex at level 3.  
• In general, each internal node v in level j is created by merging two children nodes of level j-1.   

•
• Repeat until we are left with one bounding box. 

BB(v) = BB(BB(v . r ight)⋃BB(v . lef t))

875 6

BB(1+..+8)

431 2
Level 1

Level 2

Level 3
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R-trees   
• Input: A set S of shapes (segments in this example. Triangles in graphics apps)   
• Build a tree that could expedite 

• (i) finding the segments intersecting a query region, 
• (ii) answering ray tracing 
• (iii) Emptiness queries. etc  
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• We compute for each segment its bounding box (rectangle). 
• These are the leaves of T.  Call them ``Level 1’’. 
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BB(7 + 8)
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• Input: A set S of shapes (segments in this example. Triangles in graphics apps)   
• Build a tree that could expedite 

• (i) finding the segments intersecting a query region, 
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• We compute for each segment its bounding box (rectangle). 
• These are the leaves of T.  Call them ``Level 1’’. 
• Find the nearest pair of segments (say 7,8). Remove them from level 1, and replace them by a single BB encapsulate both. It corresponds to a 

node of level 2.
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R-trees   
• Input: A set S of shapes (segments in this example. Triangles in graphics apps)   
• Build a tree that could expedite 

• (i) finding the segments intersecting a query region, 
• (ii) answering ray tracing 
• (iii) Emptiness queries. etc  
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• We compute for each segment its bounding box (rectangle). 
• These are the leaves of T.  Call them ``Level 1’’. 
• Find the nearest pair of segments (say 7,8). Remove them from level 1, and replace them by a single BB encapsulate both. It corresponds to a 

node of level 2.
• Repeat until no vertex is left in level 1. 
• Next, pick the nearest two BBs from level 2, and replace them by a vertex at level 3.  
• In general, each internal node v in level j is created by merging two children nodes of level j-1.   

•
• Repeat until we are left with one bounding box. 

BB(v) = BB(BB(v . r ight)⋃BB(v . lef t))

875 6
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431 2
Level 1
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R-trees   
• Input: A set S of shapes (segments in this example. Triangles in graphics apps)   
• Build a tree that could expedite 

• (i) finding the segments intersecting a query region, 
• (ii) answering ray tracing 
• (iii) Emptiness queries. etc  
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• We compute for each segment its bounding box (rectangle). 
• These are the leaves of T.  Call them ``Level 1’’. 
• Find the nearest pair of segments (say 7,8). Remove them from level 1, and replace them by a single BB encapsulate both. It corresponds to a 

node of level 2.
• Repeat until no vertex is left in level 1. 
• Next, pick the nearest two BBs from level 2, and replace them by a vertex at level 3.  
• In general, each internal node v in level j is created by merging two children nodes of level j-1.   

•
• Repeat until we are left with one bounding box. 

BB(v) = BB(BB(v . r ight)⋃BB(v . lef t))

875 6

BB(7+8)BB(5+6)

BB(1+..+8)

431 2
Level 1

Level 2

Level 3

BB(7 + 8)

BB(3+4)BB(1+2)

BB(5 + 6)

BB(1 + 2)



R-trees   
• Input: A set S of shapes (segments in this example. Triangles in graphics apps)   
• Build a tree that could expedite 

• (i) finding the segments intersecting a query region, 
• (ii) answering ray tracing 
• (iii) Emptiness queries. etc  
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• We compute for each segment its bounding box (rectangle). 
• These are the leaves of T.  Call them ``Level 1’’. 
• Find the nearest pair of segments (say 7,8). Remove them from level 1, and replace them by a single BB encapsulate both. It corresponds to a 

node of level 2.
• Repeat until no vertex is left in level 1. 
• Next, pick the nearest two BBs from level 2, and replace them by a vertex at level 3.  
• In general, each internal node v in level j is created by merging two children nodes of level j-1.   

•
• Repeat until we are left with one bounding box. 

BB(v) = BB(BB(v . r ight)⋃BB(v . lef t))

875 6

BB(7+8)BB(5+6)

BB(5+6+7+8)
BB(1+..+8)

431 2
Level 1

Level 2

Level 3

BB(7 + 8)

BB(3+4)BB(1+2)

BB(5 + 6)

BB(1 + 2)

BB(5+ 6+7+ 8)

R-trees   
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Once a query region Q is given, we need to report the segments intersecting Q. 
Check if Q intersects BB(root)
If not, we are done. If yes, check recursively if Q intersects BB(v.left) and BB(v.right)

    
Q

R-trees, B-trees and hard drives  .  Large  degree helps  
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• We compute for each segment its bounding box (rectangle). 
• These are the leaves of T.  Call them ``Level 1’’. 
• Find the nearest pair of segments (say 7,8). Remove them from level 1, and replace them by a single BB encapsulate both. It 

corresponds to a node of level 2.
• Repeat until no vertex is left in level 1. 
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BB(5 + 6)

BB(1 + 2)

BB(5+ 6+7+ 8)
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• In practice, it is sometimes preferable to create trees with a very large degrees. For example, each internal node, will have between 
100 to 500 children

example of a tree with degree =3

• Lets think about the process of a search. We visit the root, then one of its children, one of its grand-children … until we reach 
a leaf.

• The seek-time in disks, and even in SSD, is much slower than the seek-time for main memory. Therefor,  once the head of 
the disks is located in the correct place, we usually read a bucket - about 4KByte of memory.

• The bottleneck of the search/insert/delete operation is the number of seek operations (number of I/Os).
• The number of seek-operation is proportional to height of the tree.
• Say . The height of a tree of degree 2 with n leaves is 
• If the each node contains about 1000 segments, or keys, then the height (and number of I/Os) is only 
• B-trees and R-trees are the most popular and important data structures for big data. 

n = 109 log2(106) ≈ 30
log1000(109) = 3


