
Alon Efrat
Computer Science Department

University of Arizona

Lists and SkipList

A (singly connected) link list

■ Set of cells in memory. Each cell contains a key, and a pointer to the
next cell.

■ A pointer is the address of the next cell in memory. (in java, it is the
reference)

■ There is a variable (head) storing the address of the first cell
■ The last element points to NULL.
■ We could think about the memory as a large array, so a possible

interpretation might looks like the example below:

B C DA NULL

Cell
address

102 104 106 108 110 112 114 116 118

Key D A B C

Next
cell

0 null 110 118 104

head

Memory Snapshot: Head=106

A (singly connected) linked list

■ Set of cells in memory. Each cell contains a key, and a pointer to the next
cell.

■ A pointer is the address of the next cell in memory. (in java, it is the
reference)

■ There is a variable (head) storing the address of the first cell
■ The last element points to NULL.
■ We could think about the memory as a large array, so a possible

interpretation might looks like the example below:

B C DA NULL

Cell address 102 104 106 108 110 112 114 116 118
Key D A B C

Next cell 0 null 110 118 104

head

Memory Snapshot: Head=106

• Constant time to move from a cell to the next cell
• No efficient way to move to the previous cell, or to find a key. Require linear scan.

A (doubly connected) link list

■ Set of cells in memory. Each cell contains a key, and a pointer to the
next cell and a pointer to the previous cell (prev)

■ A pointer is the address of the next cell in memory. (in java, it is the
reference)

■ There is a variable (head) storing the address of the first cell
■ The last element points to NULL.
■ We could think about the memory as a large array, so a possible

interpretation might looks like the example below:

B C DAhead

NULL

NULL

Cell address 102 104 106 108 110 112 114 116 118
Key D A B C

Next cell 0 null 110 118 104

Prev cell 118 0 null 106 110

• Constant time to move from a cell to the next cell or to the previous cell
• No efficient to find a key. Require linear scan.

5

Searching a key x in a sorted linked list

1. cell *p =head ;
2. while (p → key < x) p=p →next ;
3. return p ; //(which is either equal or larger than x)

Note:
■ The -∞ and ∞ elements are not “real” keys.

■ They are in the list to prevent checking special cases
■ Sometimes we prefer to return the element proceeding the

one containing x. Then line 2 is replaced with
while (p→next→key < x) p=p →next

7 14 21 32 37 71 85 117-∞ ∞head

find(71)
find(40)

p1

inserting a key into a Sorted linked list

To insert 35 -
■ p= find(35); // find the proceeding element – the

next one is > 35
■ CELL *p1 = (CELL *) malloc(sizeof(CELL));
■ p1 →key=35;
■ p1→next = p →next ;
■ p→next = p1 ;

7 14 21 32 37 71 85 117-∞ ∞head

p 35

deleteing a key from a sorted list

■ To delete 37 -
■ p=find(37); // Again find proceeding element
■ CELL *p1 =p →next;
■ p →next = p1→next ;
■ free(p1);

7 14 21 32 37 71 85 117-∞ ∞head

p
p1

8

SKIP LIST - A data structure for maintaining keys in a sorted order

Rules:
■ Consists of several levels.
■ All keys appear in level 1
■ Each level is a sorted list.
■ If key x appears in level i, then

it also appears in all levels
below level i

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

top

-∞

-∞

-∞ ∞

∞

∞

■ First element in each level has
key -∞ .

■ Last element has key +∞
■ First element in upper level is

pointed to by variable top.

next-pointer

down-pointer

9

More rules

■ An element in level i >1 points (via down pointer) to the element with
the same key in the level below.

■ Elements in the lowest level have down-pointer=NULL
■ Also maintain a counter specifying the number of levels.

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

Down-pointer

An empty SkipList

Level 1

Top

-∞ ∞

11

Finding an element with key x
■ p=top ;
■ while(1){

■ while (p➔next➔key ≤ x) p=p➔next;
■ if (p➔down == NULL) return p
■ p=p➔down ;

■ }
If the key x is in SL, we return a pointer to the lowest element contain x.
If x is not in SL, return pointer to lowest predecessor.

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

down-pointer

find(117), find(116)

12

A “perfect” SkipList

7 14 21 32 37 40 71 117

7137217

7121

Top

-∞

-∞

-∞ ∞

∞

∞
next-pointer

down-pointer

Find(42), find(40)

4 7

71-∞

A SL is Perfect if between every two consecutive keys of level
i there is exactly one key of level i-1.

∞

Scheme for creation a well-performing SL
•Start from Level 1 (lowers level)
•For i=2,3…
 Generation of Level i: }
 we scan the keys in level i-1.
 Each second key is “promoted” to participate in
 level i as well.
 }

Most SL as re not perfect.
Hard to maintain

13

Search in a “perfect” SkipList

7 14 21 32 37 40 71 117

7137217

7121

Top

-∞

-∞

-∞ ∞

∞

∞
next-pointer

down-pointer

Find(71)

4 7

71-∞

Another example

∞

p=top ;
while(1){

while (p➔next➔key ≤ x)
 p=p➔next;
if (p➔down == NULL) return p
p=p➔down ;

}

14

Inserting new element x
(the resulting SL will not be perfect)

■ Determine k ≥1 defined as the number of levels in which x
participates (explained later how)

■ Perform find(x), but once the search path is in one of the lowest k
levels:
■ x is inserted after the elements at which the search path

branches down or terminates.
■ The next-pointer behave like a “standard” linked list
■ The down pointer(s) point between themselves.

■ Example - inserting 119. k=2

7 14 21 32 37 71 85

7137217

3721

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

Down-pointer

119

119

find(119)

15

Inserting an element - cont.

■ If k is larger than the current number of levels, add new
levels (and update top, and num_of_levels counter)

■ Example - insert(119) when k=4
■ Heuristic: Add at most one new level
(not needed for the analysis)

7 14 21 32 37 71 85

7137217

3721

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞

119

119

119

119 ∞-∞

Determining k

■ k - the number of levels at which an element x
participate.

■ Use a random function OurRnd() --- returns 1 or 0
(True/False) with equal probability.
■ k=1 ;
■ While(OurRnd()==1) k++ ;

17

Deleteing a key x
■ Find x in all the levels it participates, using find(x).
■ During the “find”, delete x from each level it participates using

the standard “delete from a linked list” method.
■ If one or more of the upper levels become empty, remove them

(and update top and num_of_levels)

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

down-pointer

delete(71)

“expected” space requirement

■ Claim: The expected number of elements is O(n).

■ The term “expected” here refers to the experiments we
do while tossing the coin (or calling OurRnd()). No
assumption about input distribution.

■ So imagine a given set, given set of operations insert/del/
find, but we repeat many time the experiments of
constructing the SL, and count the #elements.

Facts about SL

■ Def: The height of the SL is the number of levels
■ Claim: The expected number of levels is O(log n)
■ (here n is the number of keys)
■ “≅ Proof” (A rigorous proof coming later)

■ The number of elements participate in the lowest level is n.
■ Since the probability of an element to participates in level 2 is
½, the expected number of elements in level 2 is n/2.

■ Since the probability of an element to participates in level 3 is
1/4, the expected number of elements in level 3 is n/4.

■ …
■ The probability of an element to participate in level j is (1/2) j-1

so number of elements in this level is n /2 j-1
■ So after log(n) levels, no element is left.

Facts about SL
■ Claim: The expected number of elements is O(n).
■ (here n is the number of keys)
■ “≅ Proof” (Real proof – later)

■ The total number of elements is
n+n/2+n/4+n/8… ≤ n(1+1/2+1/4+1/8…) =2n. QED

And a real proof . Lets denote a random variable which is 1 if key participates in level l, and =0 if
this key does not participate in this level.

The number of elements in the SL is clearly .

Remember that the probability of a key to make it to level is

The expected number of elements is

 To reduce the worst case scenario, we verify during insertion that k (the number of levels that an element participates) in) is ≤ log n

“Conclusion”: The expected storage is O(n)

xi,l ki xi,l

n

∑
i=1

MaxLevel

∑
l=1

xi,l

ℓ
1

2ℓ−1

E(
n

∑
i=1

MaxLevel

∑
l=1

xi,l) =
n

∑
i=1

MaxLevel

∑
l=1

E(xil) =
n

∑
i=1

MaxLevel

∑
l=1

Pr (xi,l = 1) =
n

∑
i=1

MaxLevel

∑
l=1

1
2l−1

≤
n

∑
i=1

2 = 2n

More facts

■Thm: The expected time for find/insert/delete is
O(log n)

■Proof For all Insert and Delete, the time is ≤
expected #elements scanned during find(x)
operation.

■Will show: Need to scan expected O(log n)
elements.

Thm: Expected time for `find’ operation is O(log n)

■ ≅Proof – we know that there are O(log n) levels. Will show
that we spend O(1) time in each level.

■ Assume during find(x), we scanned t elements, (for t>8) in
level r. Assume first that r is not the upper level.

■ (the search visited b, branched down to b1 and then visited b2…b8
(not sure what happed before or after)

All smaller than x
None of these 7 elements reached level r+1 (why?)

Level r b2

> x

≤ x

Level r+1

The probability that none of these 7 elements reached
level r+1 is 1/27. For larger value of 7 – very slim.

b3 b4 b7

b

b1

c

b5 b6 b8

Bounding time for insert/delete/find

■ Putting it together: The expected number of elements
scanned in each level is O(1)

■ There are O(log n) levels
■ Total time is O(log n)
■ As stated, getting bounds for time for insert/delete are

similar

How likely is it to see a ``too-tall’’ SL ?

■ We will prove a bound on the height. Similar bounds could be proven for similar
properties.

■ The question what is ``too-tall’’ is up to the user.
■ Of course, the larger n is, the more level we expect to see. So lets ask the user

to pick a value Z.
■ We will compute the how likely is it that the the number of levels is is at least
 Zlog2 n, where Z=1,2,3…

That is, we estimate the probability that the height of the SL is

■ log2n

■ 2 log2n

■ 3 log2n

■ 4 log2n
■ …

Reminder from probability
■ Assume that A,B are two events. Let

■ Pr(A) be the probability that A happens,
■ Pr(B) be the probability that B happens
■ Pr(A B) is the probability that either event A happens or event

B happens (or both).
■ So probably that at least one of them happened is
 Pr(A)+Pr(B)-Pr(A B) ≤ Pr(A)+Pr(B)
Similarly, for 3 Events A1, A2, A3. The probability that at least one of

them happens
 Pr(A1 A2 A3) ≤ Pr(A1)+Pr(A2)+Pr(A3)
Example: In a roulette, the result is a number k between 1..38
■ Event A: k is even. Pr(A)=Pr(k is even) = 19/38 = 0.5
■ Event B : k is divided by 3. Pr(B)= 12/38=0.315
■ Pr(A or B) = Pr(A B)=
 Pr((k is divided by 2) or (k is divided by 3)) ≤0.5+0.315=0.815

Pr(x1 participates in more than k levels)+
Pr(x2 participates in more than k levels)+
Pr(x3 participates in more than k levels)+

Pr(xn participates in more than k levels) =

Pr(height of the SkipList ≥ k) =
Pr{(x1 participates in more than k levels) OR

(x2 participates in more than k levels) OR

(x3 participates in more than k levels) OR

(xn participates in more than k levels)}
⋮

x1 x2 x3 x4 x5 xn

 x5x3
x1

x5x3-∞

-∞

-∞ ∞

∞

∞next-pointer

down-pointer
xn

⋮
Level 1

Level 2

Level 3

1/2k+
1/2k+
1/2k+
1/2k =⋮ ⋮ = n/2k

Pick your favorite number k.
What is the probability that the SL has >k levels ?

≤ /*Apply the principle from the previous slide*/

Answer: ≤ n /2k

But how likely is that the SL is too tall ?

■ Assume the keys in the SL are {x1, x2, … xn.}

■ The probability that x1 participates in ≥ k+1 levels is 2–k .

■ (same probability for all xi).
■ Define: A1 is the event that x1 participates in ≥k+1 levels.
■ Pr(A1)=2-k
■ Define: Aj is the event that xj participates in ≥k+1 levels.
■ Pr(Aj) =2-k (for every j)
■ If the height of SL ≥k+1 then
 at least one of the xj participates in ≥k+1 levels.

■ The probability that any xi (one or more) participates in≥ k+1
levels is ≤ Pr(A1) +Pr(A2)+….+Pr(An) =n 2-k

■ This is the probability that the height of the SL is ≥k+1.

28

But how likely is that the SL is tall ?

■The probability that any xi participates in at least k levels is
≤n2-k . Then the height of the SL ≥ k+1.
■Ignore the `+1’
■If none of the xi ‘s is at level ≥k then the height is ≤k.

■Recall y(ab)=(ya)b = (yb)a
■
■Write k= Z log2 n,

■Want to find: The probability that the height is Z times log2n.
■That is, Twice log2n , 3 time log2n, 4 times log2n …

29

So how likely is it that the height of SL is > Z log n
■The probability that any xi participates in > k levels is ≤n/2k
■If none of the xi ‘s is at level ≥k then the height is ≤k.
■Recall 2(ab)=(2a)b = (2b)a
■Write k= (log2 n) Z
■Therefor

■So the probability of seeing a SkipList with more than Z logn levels is
≤ n /2k = n /nZ = 1/nz−1

2k = 2(log2 n)⋅Z = (2log2 n)Z = nZ

■Lets play with some examples, to see if this is good news or bad news
■Lets pick n=1000.
■The probability that the heigh>7 log2n is ≤ 1/10006=1/1018 … So the probability that the
height 7log2n is ≥ 1-1/1018
■The prob. that the heigh<10log2n is ≥ 1-1/1027

■Conclusion: In this case (and in many other randomized algorithms) the probability of success
is so high, that practically we can ignore it (higher chance of a lighting strike)

≤

But how likely is that the SL is tall ?

■The probability that any xi participates in at least k levels is
≤n2-k . Then the height of the SL ≥ k+1.
■Want to find: The probability that the height is Z times log2n.
■Twice log2n, 3 time log2n, 4 times log2n …
■Then 2-k = 2- (Z log n) = (2 log n)-Z = n-Z =1/nZ
■So n2-k≤n / n Z = 1/nZ-1

■This is the probability that the height of SL ≥Z log2 n
■Example: n=1000.
■The probability that the heigh≥7 log2n is ≤ 1/10006=1/1018

■The probability that the height<7log2n is ≥ 1-1/1018
■The prob. that the heigh<10log2n is ≥ 1-1/1027

