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Lists and SkipList

A (singly connected) link list 

■ Set of cells in memory. Each cell contains a key, and a pointer to the 
next cell.  

■ A pointer is the address of the next cell in memory. (in java, it is the 
reference)  

■ There is a variable (head) storing the address of the first cell 
■ The last element points to NULL.  
■ We could think about the memory as a large array, so a possible 

interpretation might looks like the example below: 

B C DA NULL

Cell 
address

102 104 106 108 110 112 114 116 118

Key D A B C

Next 
cell

0 null 110 118 104

head

Memory Snapshot: Head=106



A (singly connected) linked list 

■ Set of cells in memory. Each cell contains a key, and a pointer to the next 
cell.  

■ A pointer is the address of the next cell in memory. (in java, it is the 
reference)  

■ There is a variable (head) storing the address of the first cell 
■ The last element points to NULL.  
■ We could think about the memory as a large array, so a possible 

interpretation might looks like the example below: 

B C DA NULL

Cell address 102 104 106 108 110 112 114 116 118
Key D A B C

Next cell 0 null 110 118 104

head

Memory Snapshot: Head=106

• Constant time to move from a cell to the next cell  
• No efficient way to move to the previous cell, or to find a key. Require linear scan. 

A (doubly connected) link list 

■ Set of cells in memory. Each cell contains a key, and a pointer to the 
next cell and a pointer to the previous cell (prev) 

■ A pointer is the address of the next cell in memory. (in java, it is the 
reference)  

■ There is a variable (head) storing the address of the first cell 
■ The last element points to NULL.  
■ We could think about the memory as a large array, so a possible 

interpretation might looks like the example below: 

B C DAhead

NULL

NULL

Cell address 102 104 106 108 110 112 114 116 118
Key D A B C

Next cell 0 null 110 118 104

Prev cell 118 0 null 106 110

• Constant time to move from a cell to the next cell or to the previous cell  
• No efficient to find a key. Require linear scan. 
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Searching a key x in a sorted linked list

1. cell *p =head ;
2. while (p → key  < x )   p=p →next ; 
3. return p ; //(which is either equal or larger than x )

Note: 
■ The -∞ and ∞ elements are not “real” keys.  

■ They are in the list to prevent checking special cases 
■ Sometimes we  prefer to return the element proceeding the 

one containing x.   Then line 2 is replaced with  
while (p→next→key  < x )   p=p →next 

7 14 21 32 37 71 85 117-∞ ∞head

find(71) 
find(40)

p1

inserting a key into a Sorted linked list

To insert 35 -  
■ p= find(35); // find the proceeding element – the 

next one is > 35 
■ CELL *p1 = (CELL *) malloc(sizeof(CELL)); 
■ p1 →key=35; 
■ p1→next = p →next ;  
■ p→next  = p1 ; 

7 14 21 32 37 71 85 117-∞ ∞head

p 35



deleteing a key from a sorted list

■ To delete 37 -  
■ p=find(37); // Again find proceeding element  
■ CELL *p1 =p →next;  
■ p →next = p1→next ;  
■ free(p1); 

7 14 21 32 37 71 85 117-∞ ∞head

p
p1
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SKIP LIST - A data structure for maintaining keys in a sorted order

Rules: 
■ Consists of several levels.  
■ All keys appear in level 1 
■ Each level is a sorted list.  
■ If key x appears in level i, then 

it also appears in all levels 
below level i

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3 

top

-∞

-∞

-∞ ∞ 

∞

∞

■ First element in each level has 
key  -∞  .  

■ Last element has key +∞   
■ First element in upper level is 

pointed to by variable top.

next-pointer

down-pointer
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More rules 

■ An element in level i >1 points (via down pointer) to the element with 
the same key in the level below.  

■ Elements in the lowest level have down-pointer=NULL 
■ Also maintain a counter specifying the number of levels. 

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3 

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

Down-pointer

An empty SkipList 

Level 1

Top

-∞ ∞
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Finding an element with key x
■ p=top ;  
■ while(1){ 

■ while (p➔next➔key  ≤ x )  p=p➔next; 
■ if (p➔down == NULL ) return p   
■ p=p➔down ;  

■ }      
If the key x is in SL, we return a pointer to the lowest element contain x.  
If x is not in SL, return pointer to lowest predecessor. 

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3 

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

down-pointer

find(117), find(116)
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A “perfect” SkipList 

7 14 21 32 37 40 71 117

7137217

7121

Top

-∞

-∞

-∞ ∞

∞

∞
next-pointer

down-pointer

Find(42), find(40)

4 7

71-∞

A SL is Perfect if between every two consecutive keys of level 
i  there is exactly one key of level i-1.

∞

Scheme for creation a well-performing SL 
•Start from Level 1 (lowers level)  
•For i=2,3…  
 Generation of Level i: }  
  we scan the keys in level i-1. 
  Each second key is “promoted” to participate in  
  level i as well. 
  }

Most SL as re not perfect.  
Hard to maintain 
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Search in a “perfect” SkipList 

7 14 21 32 37 40 71 117

7137217

7121

Top

-∞

-∞

-∞ ∞

∞

∞
next-pointer

down-pointer

Find(71)

4 7

71-∞

Another example 

∞

p=top ;  
while(1){ 

while (p➔next➔key  ≤ x )      
 p=p➔next; 
if (p➔down == NULL ) return p   
p=p➔down ;  

} 
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Inserting new element x  
(the resulting SL will not be perfect)

■ Determine k ≥1  defined as the number of levels in which x 
participates (explained later how) 

■ Perform find(x), but once the search path is in one of the lowest k 
levels:  
■ x is inserted after the elements at which the search path 

branches down or terminates. 
■ The next-pointer behave like a “standard” linked list 
■ The down pointer(s) point between themselves.  

■                                  Example - inserting 119. k=2

7 14 21 32 37 71 85

7137217

3721

Level 1

Level 2

Level 3 

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

Down-pointer

119

119

find(119)
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Inserting an element - cont. 

■ If k is larger than the current number of levels, add new 
levels (and update top, and num_of_levels counter) 

■ Example - insert(119) when k=4  
■ Heuristic: Add at most one new level 
(not needed for the analysis) 

7 14 21 32 37 71 85

7137217

3721

Level 1

Level 2

Level 3 

Top

-∞

-∞

-∞ ∞

∞

∞

119

119

119

119 ∞-∞

Determining k 

■ k - the number of levels at which an element x 
participate.  

■ Use a random function OurRnd() --- returns 1 or 0 
(True/False) with equal probability.  
■ k=1 ;  
■ While( OurRnd()==1 ) k++ ; 
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Deleteing a key x  
■ Find x in all the levels it participates, using find(x).   
■ During the  “find”,  delete x from each level it participates using 

the standard “delete from a linked list” method. 
■ If one or more of the upper levels become empty, remove them 

(and update top  and num_of_levels )

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3 

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

down-pointer

delete(71)

“expected” space requirement

■ Claim: The expected number of elements is  O( n ).  

■ The term “expected” here refers to the experiments we 
do while tossing the coin (or calling OurRnd() ). No 
assumption about input distribution.  

■ So imagine a given set, given set of operations insert/del/
find, but we repeat many time the experiments of  
constructing the SL, and count the #elements. 



Facts about SL

■ Def: The height of the SL is the number of levels  
■ Claim: The expected number of levels is O( log n )      
■ (here n  is the number of keys) 
■ “≅ Proof”   (A rigorous proof coming later)  

■ The number of elements participate in the lowest level is n. 
■ Since the probability of an element to participates in level 2 is 
½, the expected number of elements in level 2 is n/2. 

■ Since the probability of an element to participates in level 3 is 
1/4, the expected number of elements in level 3 is n/4. 

■ … 
■ The probability of an element to participate in level j is (1/2) j-1  

so  number of elements in this level is  n /2 j-1  
■ So after log(n) levels, no element is left. 

 

Facts about SL
■ Claim: The expected number of elements is  O( n ).  
■ (here n is the number of keys) 
■ “≅ Proof”  (Real proof – later)  

■ The total number of elements is  
n+n/2+n/4+n/8… ≤ n(1+1/2+1/4+1/8…) =2n. QED 

And a real proof . Lets  denote a random variable which is 1 if key  participates in level l, and   =0 if 
this key does not participate in this level.  

The number of elements in the SL is clearly .     

Remember that the probability of a key to make it to level  is  

The expected number of elements is 

  

 To reduce the worst case scenario, we verify during insertion that k (the number of levels that an element participates) in) is ≤ log n 

“Conclusion”: The expected storage is O(n)     

xi,l ki xi,l

n

∑
i=1

MaxLevel

∑
l=1

xi,l

ℓ
1

2ℓ−1

E(
n

∑
i=1

MaxLevel

∑
l=1

xi,l) =
n

∑
i=1

MaxLevel

∑
l=1

E(xil) =
n

∑
i=1

MaxLevel

∑
l=1

Pr (xi,l = 1) =
n

∑
i=1

MaxLevel

∑
l=1

1
2l−1

≤
n

∑
i=1

2 = 2n



More facts 

■Thm: The expected time for find/insert/delete is 
O( log n) 

■Proof For all Insert and Delete,  the time is ≤   
expected #elements scanned during find(x) 
operation. 

■Will show: Need to scan expected O(log n ) 
elements. 

Thm: Expected time for `find’ operation is O( log n)

■ ≅Proof – we know that there are O( log n) levels. Will show 
that we spend O(1) time in each level.  

■ Assume during find(x), we scanned t  elements, (for t>8 ) in 
level r.  Assume first that r  is not the upper level.  

■ (the search visited b, branched down to b1 and then visited b2…b8 
(not sure what happed before or after) 

All smaller than x 
None of these 7 elements reached level r+1 (why?)

Level r b2

> x

≤ x

Level r+1

The probability that none of these 7 elements reached 
level r+1 is 1/27. For larger value of 7   – very slim.

b3 b4 b7

b

b1

c

b5 b6 b8



Bounding time for insert/delete/find

■ Putting it together: The expected number of elements 
scanned in each level is O(1)  

■ There are O(log n) levels  
■ Total time is O( log n ) 
■  As stated, getting bounds for time for insert/delete are 

similar

How likely is it to see a ``too-tall’’ SL ?

■ We will prove a bound on the height. Similar bounds could be proven for similar 
properties.  

■ The question what is ``too-tall’’ is up to the user. 
■ Of course, the larger n is, the more level we expect to see.  So lets ask the user 

to pick a value Z.  
■ We will compute the how likely is it that the the number of levels is is at least    
     Zlog2 n, where Z=1,2,3…   

That is, we estimate the probability that the height of the SL is  

■    log2n 

■  2 log2n 

■  3 log2n 

■  4 log2n 
■ …



Reminder from probability
■            Assume that A,B are two events. Let  

■ Pr(A ) be the probability that A  happens, 
■ Pr(B ) be the probability that B  happens 
■ Pr(A    B ) is the probability that either event A happens or event 

B  happens (or both). 
■ So probably that at least one of them happened is 
  Pr(A)+Pr(B)-Pr(A     B ) ≤ Pr(A )+Pr(B ) 
Similarly, for 3 Events A1, A2,  A3. The probability that at least one of 

them happens 
  Pr(A1      A2        A3  ) ≤ Pr(A1 )+Pr(A2 )+Pr(A3 ) 
Example: In a roulette, the result is a number k  between 1..38 
■ Event A: k is even.       Pr(A)=Pr(k is even) = 19/38 = 0.5 
■ Event B : k is divided by 3.  Pr(B)= 12/38=0.315 
■ Pr(A or B) = Pr(A    B)=  
 Pr((k is divided by 2) or (k is divided by 3)) ≤0.5+0.315=0.815 

Pr(x1 participates in more than k levels )+
Pr(x2 participates in more than k levels )+
Pr(x3 participates in more than k levels )+

Pr(xn participates in more than k levels ) =

Pr( height of the SkipList ≥ k) =
Pr{(x1 participates in more than k levels ) OR 

(x2 participates in more than k levels ) OR 

(x3 participates in more than k levels ) OR 

(xn participates in more than k levels )}
⋮

x1 x2 x3 x4 x5   xn

 x5x3
x1

x5x3-∞

-∞

-∞ ∞ 

∞

∞next-pointer

down-pointer
xn

⋮
Level 1

Level 2

Level 3 

1/2k+
1/2k+
1/2k+
1/2k =⋮ ⋮ = n/2k

Pick your favorite number k.  
What is the probability that the SL has >k levels ? 

≤ /*Apply the principle from the previous slide*/

Answer: ≤ n /2k



But how likely is that the SL is too tall ? 

■ Assume the keys in the SL are {x1, x2, … xn.} 

■ The probability that x1 participates in ≥ k+1 levels is 2–k  . 

■ (same probability for all xi ).   
■ Define: A1 is the event that x1 participates in ≥k+1 levels.  
■ Pr(A1)=2-k  
■ Define: Aj is the event that xj  participates in ≥k+1 levels. 
■ Pr(Aj) =2-k  (for every j) 
■ If the height of SL ≥k+1 then   
 at least one of the xj  participates in ≥k+1  levels.   

■ The probability that any xi (one or more) participates in≥ k+1 
levels is ≤ Pr(A1) +Pr(A2)+….+Pr(An )  =n 2-k  

■ This is the probability that the height of the SL is ≥k+1. 
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But how likely is that the SL is tall ? 

■The probability that any xi participates in at least k levels is 
≤n2-k . Then the height of the SL ≥ k+1.  
■Ignore the `+1’ 
■If none of the xi ‘s is at level ≥k then the height is ≤k. 

■Recall y(ab)=(ya)b = (yb)a  
■  
■Write  k= Z log2 n,  

■Want to find: The probability that the height is Z  times log2n.  
■That is, Twice log2n , 3 time log2n, 4 times log2n … 
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So how likely is it that the height of SL is  > Z log n
■The probability that any xi participates in > k levels is ≤n/2k     
■If none of the xi ‘s is at level ≥k then the height is ≤k. 
■Recall 2(ab)=(2a)b = (2b)a  
■Write  k=  (log2 n) Z  
■Therefor 

■So the probability of seeing a SkipList with more than Z logn levels is   
≤ n /2k = n /nZ = 1/nz−1

2k = 2(log2 n)⋅Z = (2log2 n)Z = nZ

■Lets play with some examples, to see if this is good news or bad news  
■Lets pick n=1000.   
■The probability that the heigh>7 log2n  is ≤ 1/10006=1/1018 … So the probability that the 
height 7log2n is ≥ 1-1/1018 
■The prob. that the heigh<10log2n  is ≥ 1-1/1027 

■Conclusion: In this case (and in many other randomized algorithms) the probability of success 
is so high, that practically we can ignore it (higher chance of a lighting strike) 

≤

But how likely is that the SL is tall ? 

■The probability that any xi participates in at least k levels is 
≤n2-k . Then the height of the SL ≥ k+1.  
■Want to find: The probability that the height is Z times log2n.  
■Twice log2n, 3 time log2n, 4 times log2n …  
■Then 2-k = 2- (Z log n) = ( 2 log n)-Z = n-Z  =1/nZ    
■So   n2-k≤n / n Z = 1/nZ-1 

■This is the probability that the height of SL  ≥Z log2 n   
■Example: n=1000.   
■The probability that the heigh≥7 log2n  is ≤ 1/10006=1/1018 

■The probability that the height<7log2n is ≥ 1-1/1018 
■The prob. that the heigh<10log2n  is ≥ 1-1/1027


