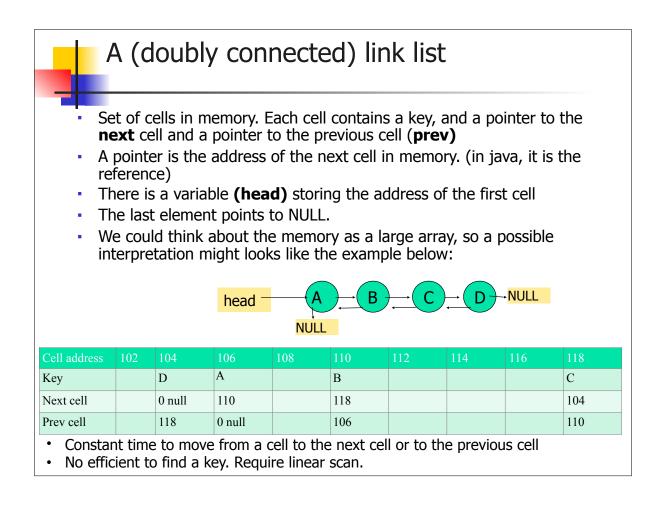


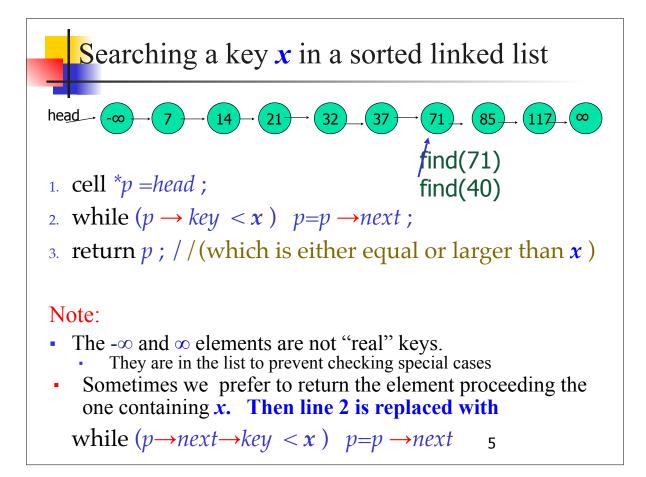
#### A (singly connected) linked list

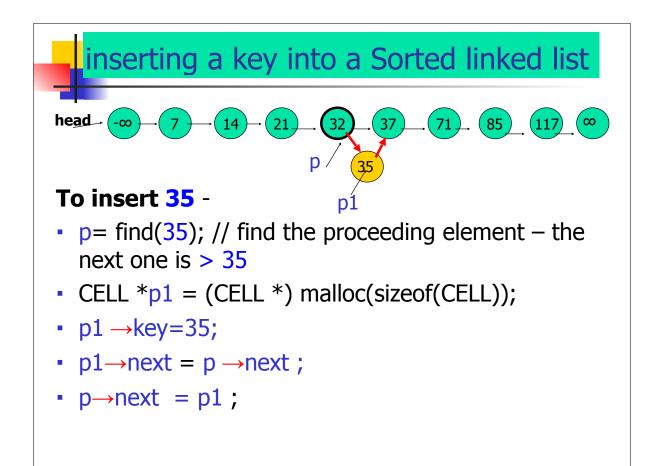
- Set of cells in memory. Each cell contains a key, and a pointer to the next cell.
- A pointer is the address of the next cell in memory. (in java, it is the reference)
- There is a variable (head) storing the address of the first cell
- The last element points to NULL.
- We could think about the memory as a large array, so a possible interpretation might looks like the example below:

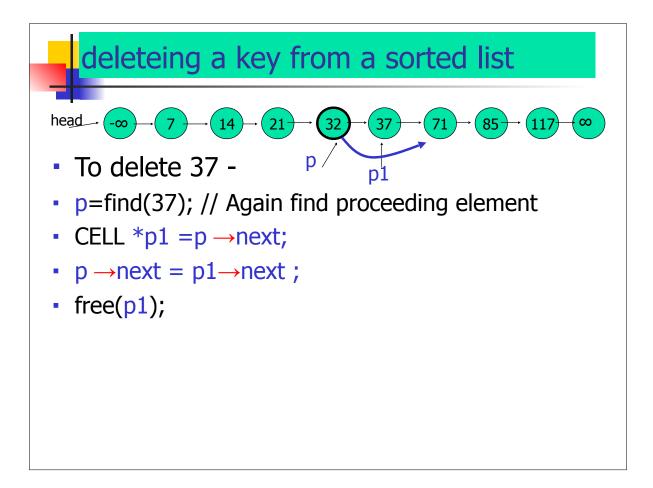
| head $\rightarrow$ $A \rightarrow$ $B \rightarrow$ $C \rightarrow$ $D \rightarrow$ NULL |        |        |      |       |     |     |     |     |     |
|-----------------------------------------------------------------------------------------|--------|--------|------|-------|-----|-----|-----|-----|-----|
| Memory Sn                                                                               | apshot | :      | Head | l=106 |     |     |     |     |     |
| Cell address                                                                            | 102    | 104    | 106  | 108   | 110 | 112 | 114 | 116 | 118 |
| Key                                                                                     |        | D      | А    |       | В   |     |     |     | С   |
| Next cell                                                                               |        | 0 null | 110  |       | 118 |     |     |     | 104 |

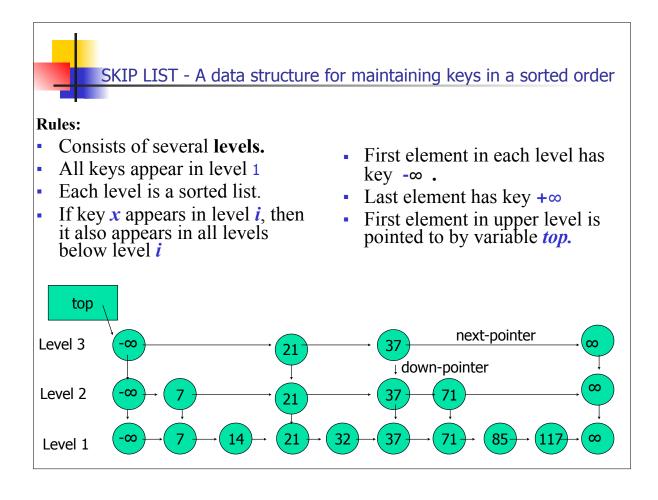
- Constant time to move from a cell to the next cell
- No efficient way to move to the previous cell, or to find a key. Require linear scan.

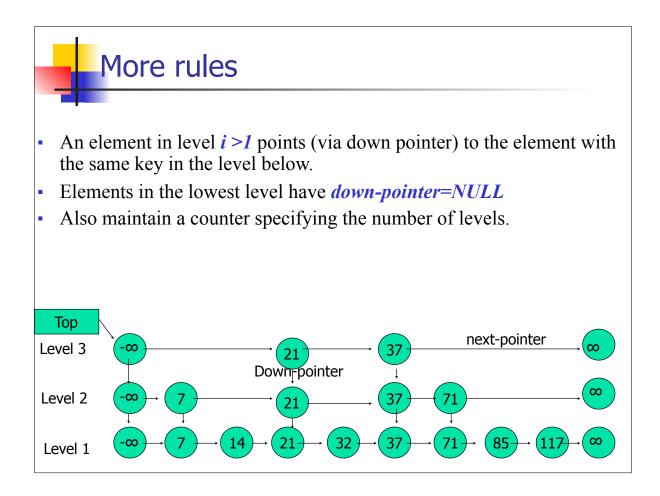


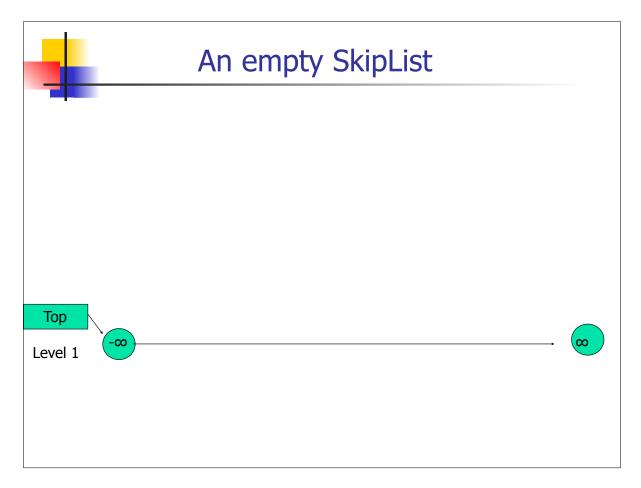


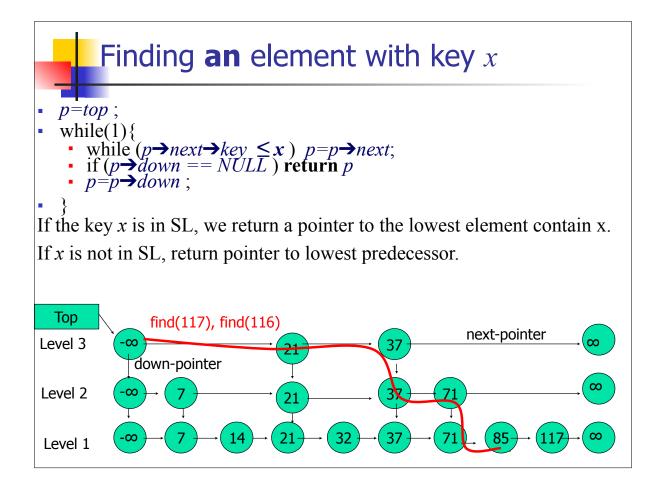


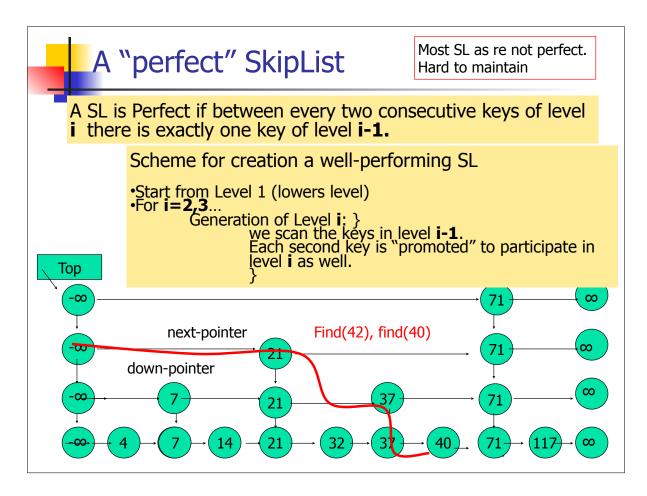


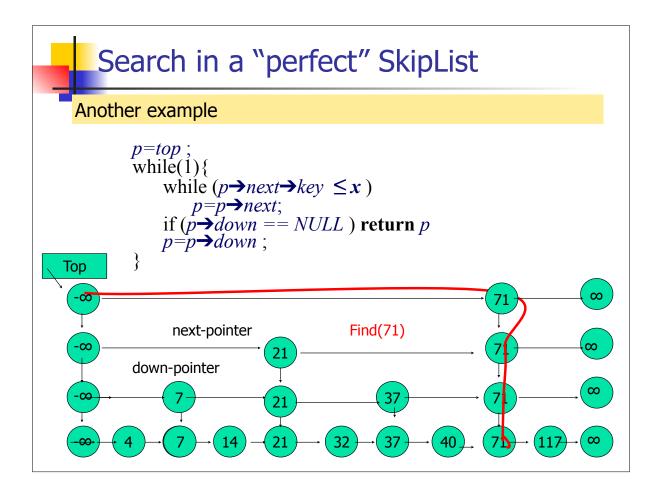


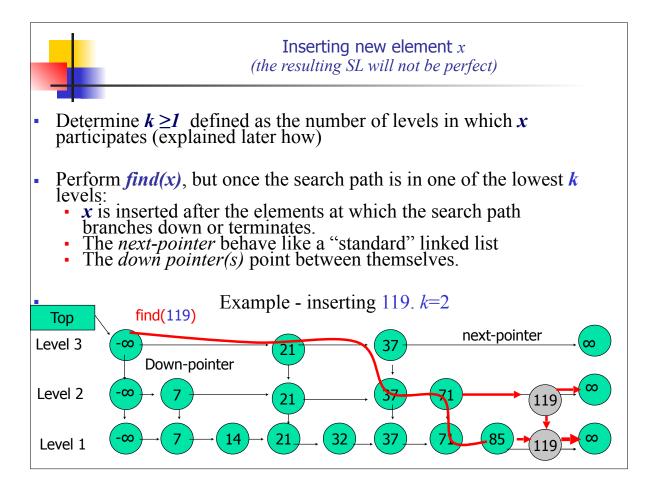


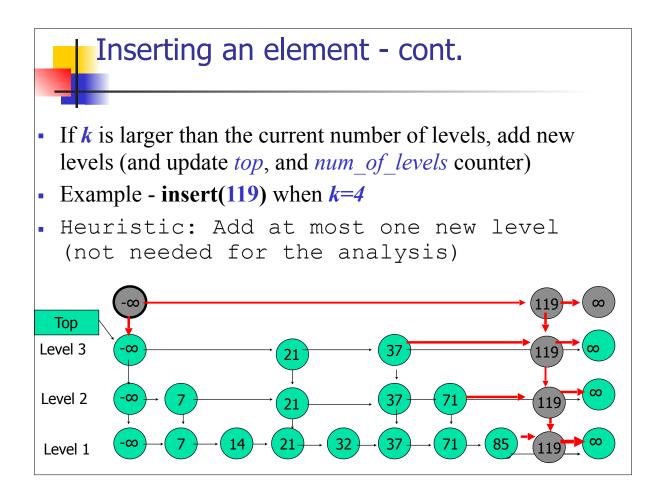






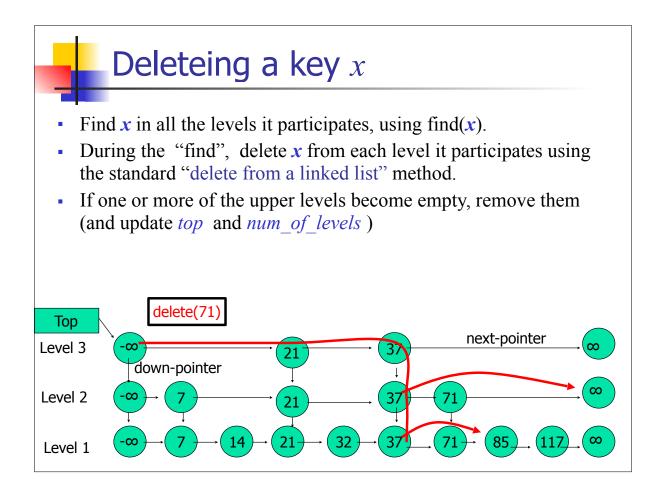






## Determining k

- *k* the number of levels at which an element *x* participate.
- Use a random function *OurRnd()* --- returns 1 or 0 (True/False) with equal probability.
  - **k**=1;
  - *While(OurRnd()==1)* **k**++;

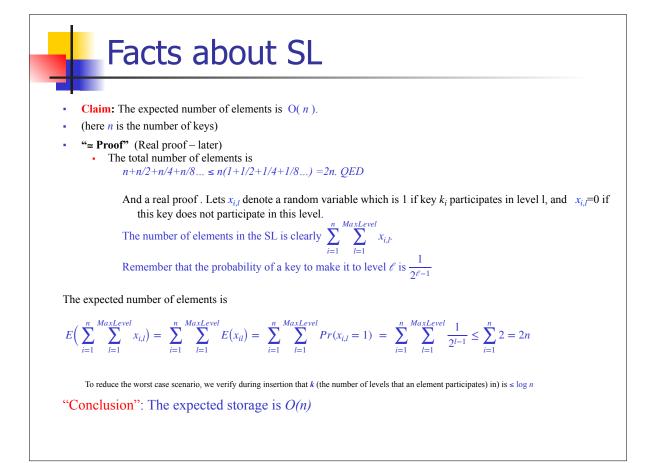


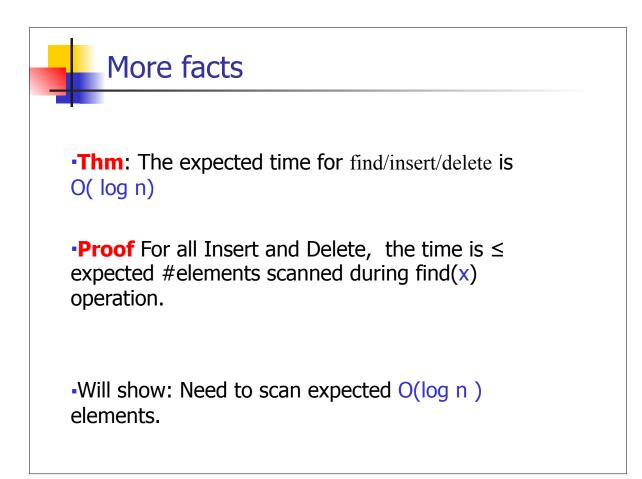
## "expected" space requirement

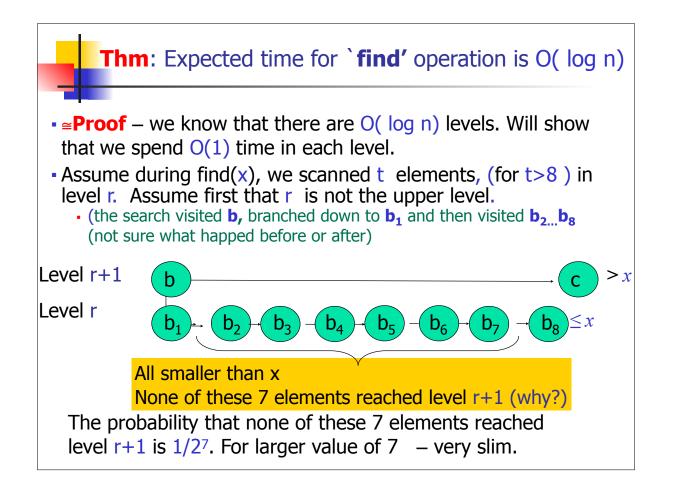
- Claim: The expected number of elements is O(n).
- The term "expected" here refers to the experiments we do while tossing the coin (or calling *OurRnd()*). No assumption about input distribution.
- So imagine a given set, given set of operations insert/del/ find, but we repeat many time the experiments of constructing the SL, and count the #elements.

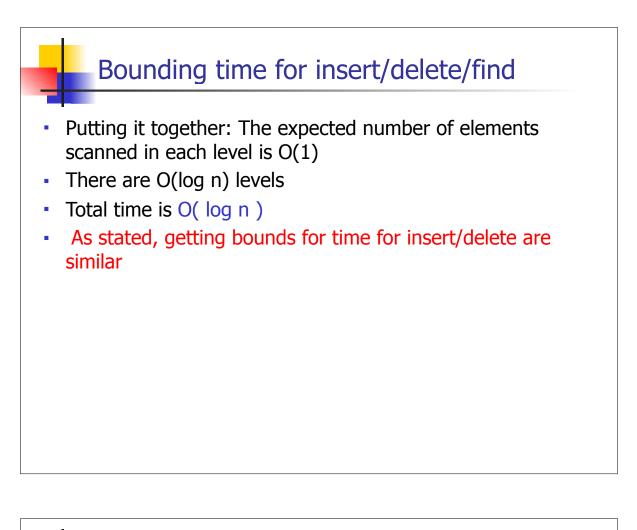
### Facts about SL

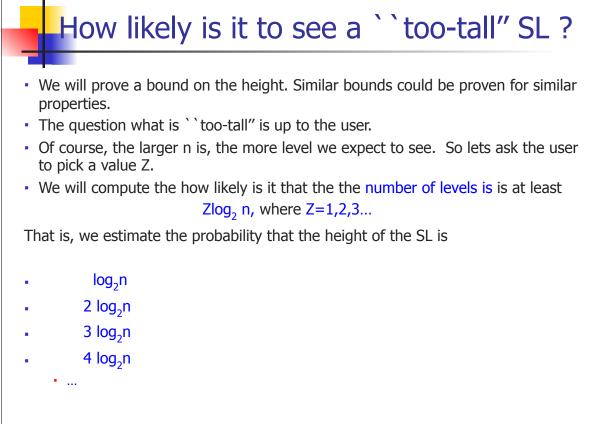
- **Def:** The **height** of the SL is the number of levels
- **Claim:** The expected number of levels is  $O(\log n)$
- (here *n* is the number of keys)
- "≅ **Proof**" (*A rigorous proof coming later*)
  - The number of elements participate in the lowest level is *n*.
  - Since the probability of an element to participates in level 2 is <sup>1</sup>/<sub>2</sub>, the expected number of elements in level 2 is n/2.
  - Since the probability of an element to participates in level 3 is 1/4, the expected number of elements in level 3 is n/4.
  - ..
  - The probability of an element to participate in level *j* is  $(1/2)^{j-1}$  so number of elements in this level is  $n/2^{j-1}$
  - So after log(n) levels, no element is left.

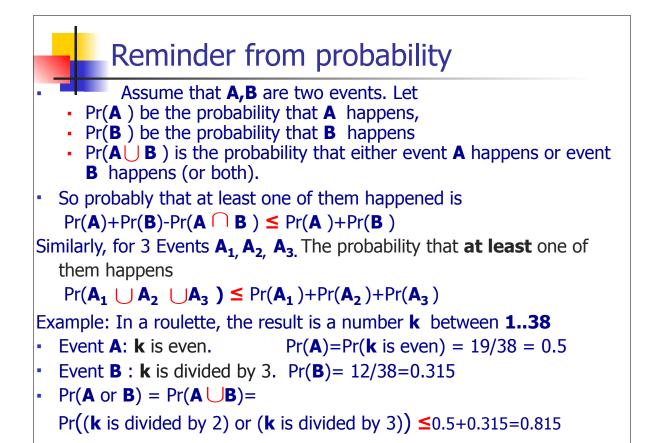


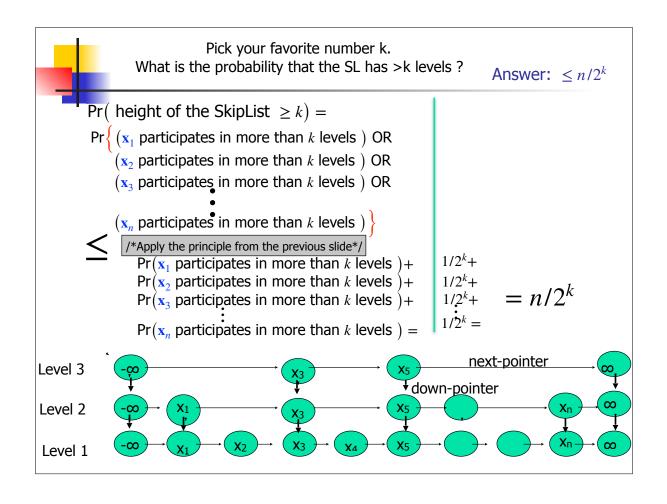


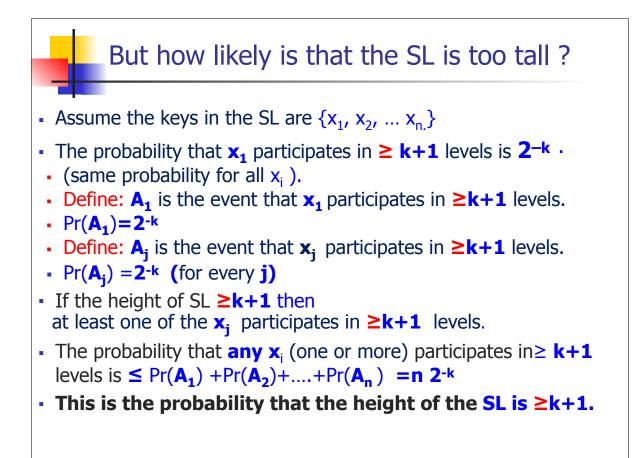




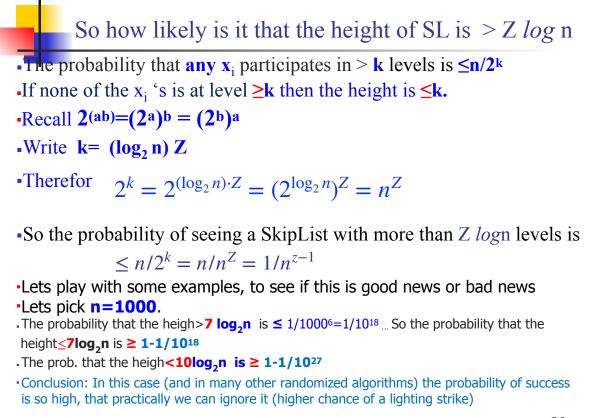








# But how likely is that the SL is tall ? •The probability that any x<sub>i</sub> participates in at least k levels is $\leq n2$ -k . Then the height of the SL $\geq$ k+1. •Ignore the `+1' •If none of the x<sub>i</sub> 's is at level $\geq$ k then the height is $\leq$ k. •Recall $y^{(ab)}=(y^a)^b = (y^b)^a$ • $2^{\log_2 n} = n$ and $2^{5(\log_2 n)} = (n)^5$ •Write k = Z log<sub>2</sub> n, and $2^{5(\log_2 n)} = (n)^5$



29

#### But how likely is that the SL is tall ?

The probability that **any**  $\mathbf{x}_i$  participates in at least  $\mathbf{k}$  levels is  $\leq \mathbf{n}\mathbf{2}^{-\mathbf{k}}$ . Then the height of the SL  $\geq \mathbf{k}+\mathbf{1}$ . Want to find: The probability that the height is  $\mathbf{Z}$  times  $\log_2 \mathbf{n}$ . Twice  $\log_2 \mathbf{n}$ , 3 time  $\log_2 \mathbf{n}$ , 4 times  $\log_2 \mathbf{n}$  ... Then  $\mathbf{2}^{-\mathbf{k}} = 2^{-(\mathbf{Z} \log \mathbf{n})} = (2 \log \mathbf{n})^{-\mathbf{Z}} = \mathbf{n}^{-\mathbf{Z}} = \mathbf{1/n^{\mathbf{Z}}}$ So  $\mathbf{n}\mathbf{2}^{-\mathbf{k}} \leq \mathbf{n} / \mathbf{n}^{\mathbf{Z}} = \mathbf{1/n^{\mathbf{Z}-1}}$ This is the probability that the height of SL  $\geq \mathbf{Z} \log_2 \mathbf{n}$  **Example:**  $\mathbf{n}=\mathbf{1000}$ . The probability that the heigh $\geq \mathbf{7} \log_2 \mathbf{n}$  is  $\leq 1/1000^6=1/10^{18}$ The probability that the height  $<\mathbf{7}\log_2 \mathbf{n}$  is  $\geq 1-1/10^{18}$ The probability that the heigh $<\mathbf{10}\log_2 \mathbf{n}$  is  $\geq 1-1/10^{27}$