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Approximation Ratios and optimizations problems 
We are trying to minimize (or maximize) some cost 

function c(S)  for an optimization problem.  E.g. 
◆Finding a minimum spanning tree of a graph. 

■ Cost function – sum of weights of edges in the 
graph 

◆Finding a cheapest traveling salesperson tour (TSP) in 
a graph.  
◆Finding a smallest vertex cover of a graph 

■ Given G(V,E), find a smallest set of vertices so that 
each edge touches at least one vertex of the set.

3

Approximation Ratios

An approximation produces a solution T 
■ T is a δ-approximation to  a minimization problem if  

c(T) ≤ δ· OPT 
■ We assume δ>1 
■ Examples:  
■ Will show how to find a p path in a graph, that visits 

all vertices, and w(p) ≤ δ w(p*).  Here p* is the 
cheapest TSP path. 
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Vertex Cover
A vertex cover of graph G=(V,E) is a subset  of vertices, such that, for every (u,v) ∈ E,  
either  
Application:  

Given graph of Facebook friends, find set of influencers - vertices that cover all edges of 
the graph.  
Given maps of roads, find junctions to place monitoring cameras, so we could monitor the 
whole traffic. 

OPT-VERTEX-COVER: Given an graph G, find a vertex cover of  G with smallest size. 

OPT-VERTEX-COVER is NP-hard.

C ⊆ V
u ∈ C  or  v ∈ C  (or both ∈ C )
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A 2-Approximation for Vertex Cover
• Analysis: How large could C be, comparing to OPT ? 
• Let OPT be the opt solution.  
• Every chosen edge e has both ends in C.  
• But e must be covered by at least one vertex of 

OPT.  So, one end of e must be in OPT. 
• |C| ≤ 2 |OPT|.  
• (there are ≤ 2  vertices of  C for each vertex of 

OPT.) 
• That is, C  is a 2-approx. of OPT 
• Running time: O(|E|)

Algorithm VertexCoverApprox(G) 
 Input graph G 
 Output a vertex cover C for G 
 C ← empty set ;  H ← E 
   /* H – what is left to be covered */ 

while H  has edges (not empty){ 
 (u,v) ← An edge of  H.  
 Add both  u and  v to  C 
 for each edge  f of H  incident  
     to v or w  
  Remove  f  from H 
} 
return C

Approximating the Traveling Salesperson Problem (TSP)
• OPT-TSP: Given a weighted graph , find a cycle of minimum cost that visits each 

vertex at least once.  

•  OPT-TSP is NP-hard 

• However, it is very easy to find a tour that costs  twice opt. 

• First Step: Compute the Minimum Spanning Tree MST(G)   (for example, using Kruskal 

algorithm)  

• Just to remind ourself: MST(G) is a set of edges which are  

1. Contains every vertex of V 

2. Connected (a path from every vertex to every other vertex). That is, it spans G.  

3. Among all the graphs satisfying (1) +(2), has the smallest sum of weights of edges.  

• Observation: The edges of TSP, they also span G 

G(V, E )

≤
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From MST to cycles

Given a MST of G,  a traversal T of MST is constructed by picking 
a source vertex s, and visit the nodes of the graph in a DFS order. 

• Let w(MST) and   be the sum of weights of edges of MST and of OPT-TSP. (an edge is 
counted once, even if appearing multiple times).  

• Cost(OPT-TSP) , since possibly the same edge was used more than once.  
• Claim:  

• (explanation: Both OPT-TSP and MST spans G, but OPT-TSP optimize other parameter, which MST 
minimizes sum of weights.   

•  T is a tour that uses twice every edge of MST. so  . 
• OPT-TSP is a spanning graph (graph that connects all vertices of ) 

 Obviously  . However  

 

Conclusion: Traversing MST gives a factor 2 approx to TSP.

w(OPT-TSP)

≥ w(OPT − TSP)
w(OPT-TSP) ≥ w(MST )

w(T ) = 2w(MST )
V .

Cost(T ) ≥ cost(OPT-TSP)

cost(OPT-TSP) ≥ w(OPT-TSP) ≥ w(MST )
2cost(OPT-TSP) ≥ 2 ⋅ w(OPT-TSP) ≥ 2 ⋅ w(MST ) = cost(T )

MST T

Set-Cover Problems
Facility location problems: Given: A map 
of Tucson, place min number of charging 
station, so every house is at distance  
miles from a charging station,  

Budget Set Cover. With a budget of  
stations, cover as much of Tucson as 
possible. 
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≤ k

• Given - a polygon domain  D, and a set  of 
potential guard - we might place a camera at  .   

• Each potential guard  sees some region  of the 
polygon, but could not see through  walls.  

• Formally,  sees every point  for which the segment  is 
fully in D.  

• Art Gallery Problem - find the smallest set of guards (all 
from P) that together see the whole D. 

• Budget Art Gallery - with at most  guards, see as much as 
possible.

P = {p1…pn}
pi

pi Vis(pi)

pi q pi q
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• Set cover is NP-hard (and extremely practical)  
•   the area (in meters^2) that it sees. ai = Area(Vis(pi))



Visibility in a polygon. The art Gallery Problem

 • Given - a polygon domain  D, and a set 
 of potential guards.   

• Each potential guard  sees some region 
 of the polygon, but could not see 

through  walls.  
• Formally,  sees every point  for which 

the segment  is fully in D.  
• Art Gallery Problem - find the smallest 

set of guards (all from P) that together 
see the whole D. 

• NP-hard (and extremely practical)  
•   the area (in 

meters^2) that it sees.  
• Budget Art-Gallery Problem: Given a 

number  (`budget’), find a set G of  
guards from P, that sees together the 
maximum area.  

P = {p1…pn}
pi

Vis(pi)

pi q
pi q

ai = Area(Vis(pi))

k ≤ k

D

q

p1

p2

“Standard” Art Gallery:  
Find the smallest set  

s.t  
 

Budget Art Galley:  
Given k, find   

Maximize  

{g1, g2…gr} ⊆ P

D = Vis(g1) ∪ Vis(gi) ∪ . . Vis(gr)

{g1, g2…gk} ⊆ P

Area( Vis(g1) ∪ Vis(g2) ∪ . . Vis(gk))

Vis(p1)
pi , q

This is a set cover problem

Vis(p1)

 
p1

• Greedy Algorithm for set cover problem 
• Given - a polygon domain  D, and a set  of potential guards.  
• Every potential guard   defines a set. This set is . A set cover 

problem is to find a collection of sets that together covers the whole domain. 
• Greedy Approach. The first camera is located at the the point of P that sees 

maximum area (in square feet) 
• The second camera   is located where it sees the maximum area that   

does not see  
•  sees the max area not seen by neither  nor ,  etc… 
• Stop when either D is covered, or (in the budget case) when used  cameras.

P = {p1…pn}
pi Vis(pi)

g2 g1

g3 g1 g2
k

D

• Greedy Approach. The first camera is located at the the point of P that sees 
maximum area 

• The second camera   is located where it sees the maximum area that   
does not see  
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• Stop when either P is covered, or (in the budget case) when used  cameras.
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Facility location problems: Given: A map 
of Tucson, place min number of charging 
station, so every house is at distance  
miles from a charging station,  

Budget Set Cover. With a budget of  
stations, cover as much of Tucson as 
possible. 

≤ 5

≤ k



Greedy Algorithm for the set of items 
 (house) 

Also given: Collections of sets R=   
(for each potential charging station at  ,   is 
a set of houses at distance  from . That 
is, houses that could be covered by .

{x1…xm}
{S1…Sm}

pi Si
≤ 5 pi

pi

 //houses yet not covered  
For i=1 to k (or when nothing left to be covered) {  

Let  be the set   that maximizing . 
//Find a charging station maximizes the number of houses 
 //not covered yet 

   //Only care for uncovered atoms  
}  

Return 

X′ = X = {x1…xm}

S′ i S ∈ R |S⋂X′ |

X′ ← X′ ∖ S′ i

[S′ 1, S′ 2…S′ k]

Dorit S. Hochbaum and  Anu Pathria. Analysis of the Greedy Approach in Problems 
of Maximum k-Coverage.  Naval Research Logistics, Vol. 45 (1998)

For non-budget version,  the only stopping  
condition is nothing left to be covered.  

S1

S2

S3

 houses 
of X’ in S
#

Greedy could be far away from opt, if we insist of covering X   

• It is known that it could be much worse than opt. 
• In the opt problem above,  (two sets) 
• Greedy might start from , then pick  … could be  
• Approximation factor:  

•  

• This is actually a tight bound (we will see shortly)  

• However, greedy is doing much better for the budget case (number of 
sets is given k - maximize the area / the number of atoms

Opt = {s7, s8}
s1 s2 ≥ log2 n

Approximation factor =
Numer of sets that greedy finds
Numer of sets that OPT finds

=
log2 n

2
= Ω(log n)

n/2n/4n/8

Analysis of greedy algorithm for  
the case of covering the whole region  

(we stop only when nothing left to cover)
  

Let Opt be the solution with the smallest number of sets that covers Tucson.  
Let C be the result of the greedy algorithm 

• |Opt|- number of set in optimal cover (e.g. number of charging stations) 

• |C| number of sets produced by the greedy solutions  

Theorem:    

(actually a better bound could be shown:   Let  be the max number of 
houses covered by a single set. Then   

In practice, this is an excellent and very popular algorithm.  

|Opt | ≤ |C | ≤ |Opt | ⋅ ln n

m0
|C | ≤ |Opt | ⋅ ln m0

Analysis of greedy algorithm for  
the budget set-cover problem

• Let k (the budget) be a given fixed positive integer.  
• Opt- set of  stations/cameras that maximizes area(Opt) - the area in 

secure feet seen by any set of k cameras. Or number of houses covered by 
k stations. 

• Let C be the set of  k cameras that the greedy algorithm returns.  
• Let area(C) be the area seen by these cameras  

• Theorem:    

 

That is, greedy covers at least  of the area that Opt covers.    

k

Area(Opt) ≥ Area(C) ≥ (1 −
1
e

) ⋅ Area(Opt) ≥ 0.64 ⋅ Area(Opt)

64 %


