
Approximation Algorithm

2

Approximation Ratios and optimizations problems
We are trying to minimize (or maximize) some cost

function c(S) for an optimization problem. E.g.
◆Finding a minimum spanning tree of a graph.

■ Cost function – sum of weights of edges in the
graph

◆Finding a cheapest traveling salesperson tour (TSP) in
a graph.
◆Finding a smallest vertex cover of a graph

■ Given G(V,E), find a smallest set of vertices so that
each edge touches at least one vertex of the set.

3

Approximation Ratios

An approximation produces a solution T
■ T is a δ-approximation to a minimization problem if

c(T) ≤ δ· OPT
■ We assume δ>1
■ Examples:
■ Will show how to find a p path in a graph, that visits

all vertices, and w(p) ≤ δ w(p*). Here p* is the
cheapest TSP path.

4

Vertex Cover
A vertex cover of graph G=(V,E) is a subset of vertices, such that, for every (u,v) ∈ E,
either
Application:

Given graph of Facebook friends, find set of influencers - vertices that cover all edges of
the graph.
Given maps of roads, find junctions to place monitoring cameras, so we could monitor the
whole traffic.

OPT-VERTEX-COVER: Given an graph G, find a vertex cover of G with smallest size.

OPT-VERTEX-COVER is NP-hard.

C ⊆ V
u ∈ C or v ∈ C (or both ∈ C)

5

A 2-Approximation for Vertex Cover
• Analysis: How large could C be, comparing to OPT ?
• Let OPT be the opt solution.
• Every chosen edge e has both ends in C.
• But e must be covered by at least one vertex of

OPT. So, one end of e must be in OPT.
• |C| ≤ 2 |OPT|.
• (there are ≤ 2 vertices of C for each vertex of

OPT.)
• That is, C is a 2-approx. of OPT
• Running time: O(|E|)

Algorithm VertexCoverApprox(G)
 Input graph G
 Output a vertex cover C for G
 C ← empty set ; H ← E
 /* H – what is left to be covered */

while H has edges (not empty){
 (u,v) ← An edge of H.
 Add both u and v to C
 for each edge f of H incident
 to v or w
 Remove f from H
}
return C

Approximating the Traveling Salesperson Problem (TSP)
• OPT-TSP: Given a weighted graph , find a cycle of minimum cost that visits each

vertex at least once.

• OPT-TSP is NP-hard

• However, it is very easy to find a tour that costs twice opt.

• First Step: Compute the Minimum Spanning Tree MST(G) (for example, using Kruskal

algorithm)

• Just to remind ourself: MST(G) is a set of edges which are

1. Contains every vertex of V

2. Connected (a path from every vertex to every other vertex). That is, it spans G.

3. Among all the graphs satisfying (1) +(2), has the smallest sum of weights of edges.

• Observation: The edges of TSP, they also span G

G(V, E)

≤

7

From MST to cycles

Given a MST of G, a traversal T of MST is constructed by picking
a source vertex s, and visit the nodes of the graph in a DFS order.

• Let w(MST) and be the sum of weights of edges of MST and of OPT-TSP. (an edge is
counted once, even if appearing multiple times).

• Cost(OPT-TSP) , since possibly the same edge was used more than once.
• Claim:

• (explanation: Both OPT-TSP and MST spans G, but OPT-TSP optimize other parameter, which MST
minimizes sum of weights.

• T is a tour that uses twice every edge of MST. so .
• OPT-TSP is a spanning graph (graph that connects all vertices of)

 Obviously . However

Conclusion: Traversing MST gives a factor 2 approx to TSP.

w(OPT-TSP)

≥ w(OPT − TSP)
w(OPT-TSP) ≥ w(MST)

w(T) = 2w(MST)
V .

Cost(T) ≥ cost(OPT-TSP)

cost(OPT-TSP) ≥ w(OPT-TSP) ≥ w(MST)
2cost(OPT-TSP) ≥ 2 ⋅ w(OPT-TSP) ≥ 2 ⋅ w(MST) = cost(T)

MST T

Set-Cover Problems
Facility location problems: Given: A map
of Tucson, place min number of charging
station, so every house is at distance
miles from a charging station,

Budget Set Cover. With a budget of
stations, cover as much of Tucson as
possible.

≤ 5

≤ k

• Given - a polygon domain D, and a set of
potential guard - we might place a camera at .

• Each potential guard sees some region of the
polygon, but could not see through walls.

• Formally, sees every point for which the segment is
fully in D.

• Art Gallery Problem - find the smallest set of guards (all
from P) that together see the whole D.

• Budget Art Gallery - with at most guards, see as much as
possible.

P = {p1…pn}
pi

pi Vis(pi)

pi q pi q

k

D

q

p1

p2
Vis(p1)

pi , q

• Set cover is NP-hard (and extremely practical)
• the area (in meters^2) that it sees. ai = Area(Vis(pi))

Visibility in a polygon. The art Gallery Problem

 • Given - a polygon domain D, and a set
 of potential guards.

• Each potential guard sees some region
 of the polygon, but could not see

through walls.
• Formally, sees every point for which

the segment is fully in D.
• Art Gallery Problem - find the smallest

set of guards (all from P) that together
see the whole D.

• NP-hard (and extremely practical)
• the area (in

meters^2) that it sees.
• Budget Art-Gallery Problem: Given a

number (`budget’), find a set G of
guards from P, that sees together the
maximum area.

P = {p1…pn}
pi

Vis(pi)

pi q
pi q

ai = Area(Vis(pi))

k ≤ k

D

q

p1

p2

“Standard” Art Gallery:
Find the smallest set

s.t

Budget Art Galley:
Given k, find

Maximize

{g1, g2…gr} ⊆ P

D = Vis(g1) ∪ Vis(gi) ∪ . . Vis(gr)

{g1, g2…gk} ⊆ P

Area(Vis(g1) ∪ Vis(g2) ∪ . . Vis(gk))

Vis(p1)
pi , q

This is a set cover problem

Vis(p1)

p1

• Greedy Algorithm for set cover problem
• Given - a polygon domain D, and a set of potential guards.
• Every potential guard defines a set. This set is . A set cover

problem is to find a collection of sets that together covers the whole domain.
• Greedy Approach. The first camera is located at the the point of P that sees

maximum area (in square feet)
• The second camera is located where it sees the maximum area that

does not see
• sees the max area not seen by neither nor , etc…
• Stop when either D is covered, or (in the budget case) when used cameras.

P = {p1…pn}
pi Vis(pi)

g2 g1

g3 g1 g2
k

D

• Greedy Approach. The first camera is located at the the point of P that sees
maximum area

• The second camera is located where it sees the maximum area that
does not see

• sees the max area not seen by neither nor , etc…
• Stop when either P is covered, or (in the budget case) when used cameras.

g2 g1

g3 g1 g2
k

• Greedy Approach. The first camera is located at the the point of P that sees
maximum area

• The second camera is located where it sees the maximum area that
does not see

• sees the max area not seen by neither nor , etc…
• Stop when either P is covered, or (in the budget case) when used cameras.

g2 g1

g3 g1 g2
k

• Greedy Approach. The first camera is located at the the point of P that sees
maximum area

• The second camera is located where it sees the maximum area that
does not see

• sees the max area not seen by neither nor , etc…
• Stop when either P is covered, or (in the budget case) when used cameras.

g2 g1

g3 g1 g2
k

• Greedy Approach. The first camera is located at the the point of P that sees
maximum area

• The second camera is located where it sees the maximum area that
does not see

• sees the max area not seen by neither nor , etc…
• Stop when either P is covered, or (in the budget case) when used cameras.

g2 g1

g3 g1 g2
k

Facility location problems: Given: A map
of Tucson, place min number of charging
station, so every house is at distance
miles from a charging station,

Budget Set Cover. With a budget of
stations, cover as much of Tucson as
possible.

≤ 5

≤ k

Greedy Algorithm for the set of items
 (house)

Also given: Collections of sets R=
(for each potential charging station at , is
a set of houses at distance from . That
is, houses that could be covered by .

{x1…xm}
{S1…Sm}

pi Si
≤ 5 pi

pi

 //houses yet not covered
For i=1 to k (or when nothing left to be covered) {

Let be the set that maximizing .
//Find a charging station maximizes the number of houses
 //not covered yet

 //Only care for uncovered atoms
}

Return

X′ = X = {x1…xm}

S′ i S ∈ R |S⋂X′ |

X′ ← X′ ∖ S′ i

[S′ 1, S′ 2…S′ k]

Dorit S. Hochbaum and Anu Pathria. Analysis of the Greedy Approach in Problems
of Maximum k-Coverage. Naval Research Logistics, Vol. 45 (1998)

For non-budget version, the only stopping
condition is nothing left to be covered.

S1

S2

S3

 houses
of X’ in S
#

Greedy could be far away from opt, if we insist of covering X

• It is known that it could be much worse than opt.
• In the opt problem above, (two sets)
• Greedy might start from , then pick … could be
• Approximation factor:

•

• This is actually a tight bound (we will see shortly)

• However, greedy is doing much better for the budget case (number of
sets is given k - maximize the area / the number of atoms

Opt = {s7, s8}
s1 s2 ≥ log2 n

Approximation factor =
Numer of sets that greedy finds
Numer of sets that OPT finds

=
log2 n

2
= Ω(log n)

n/2n/4n/8

Analysis of greedy algorithm for
the case of covering the whole region

(we stop only when nothing left to cover)

Let Opt be the solution with the smallest number of sets that covers Tucson.
Let C be the result of the greedy algorithm

• |Opt|- number of set in optimal cover (e.g. number of charging stations)

• |C| number of sets produced by the greedy solutions

Theorem:

(actually a better bound could be shown: Let be the max number of
houses covered by a single set. Then

In practice, this is an excellent and very popular algorithm.

|Opt | ≤ |C | ≤ |Opt | ⋅ ln n

m0
|C | ≤ |Opt | ⋅ ln m0

Analysis of greedy algorithm for
the budget set-cover problem

• Let k (the budget) be a given fixed positive integer.
• Opt- set of stations/cameras that maximizes area(Opt) - the area in

secure feet seen by any set of k cameras. Or number of houses covered by
k stations.

• Let C be the set of k cameras that the greedy algorithm returns.
• Let area(C) be the area seen by these cameras

• Theorem:

That is, greedy covers at least of the area that Opt covers.

k

Area(Opt) ≥ Area(C) ≥ (1 −
1
e

) ⋅ Area(Opt) ≥ 0.64 ⋅ Area(Opt)

64 %

