cs445

Bipartite Matching and Max-Flow in a Network Alon Efrat

Matching and flow problem

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u, v).
- Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1
- Each edge of G that carries flow is in the matching.
- Each edge of G that does not carry flow is not in the matching.
- Claim: The edge between A and B that carry flow form a matching M.
- Proof: We just need to show that no instructor a_{i} is matched to two courses b_{j}, b_{k}, and vice versa

Application: Bipartite Matching.

- A graph $G(V, E)$ is called bipartite if V can be partitioned into two sets $V=A \cup B$ and each edge of E connects a vertex of A to a vertex of B. We sometimes denote these graphs by $G(A \cup B, E)$
- Example: The set $A=\left\{a_{1} \ldots a_{n}\right\}$ is a set of instructors, the set $B=\left\{b_{1} \ldots b_{n}\right\}$ is the set of courses. There is an edge $\left(\mathrm{a}_{\mathrm{i}}, \mathbf{b}_{\mathbf{j}}\right) \in \mathbf{E}$ iff instructor a_{i} could teach course b_{j}
- A matching is a set of edges M of E, where each vertex of A is adjacent to at most one vertex of B, and vice versa.
- (in the example, each instructor will teach at most one course,
 and vice versa)
- Maximum-cardinality matching: Find a matching with as many edges as possible
- This problem could be solved with in $\mathrm{O}(\mathrm{nm})$ time using Ford-Fulkerson algorithm. Faster algorithms exist as well. However, we will use it as an example to the ease of using ILP.

Matching and flow problem

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u, v).
- Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1
- Each edge of G that carries flow is in the matching.
- Each edge of G that does not carry flow is not in the matching.
- Claim: The edge between A and B that carry flow form a matching M.
- Proof: We just need to show that no instructor a_{i} is matched to two courses b_{j}, b_{k}, and vice versa

Matching and flow problem

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u, v).
- Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1
- Each edge of G that carries flow is in the matching.
- Each edge of G that does not carry flow is not in the matching.
- Claim: The edge between A and B that carry flow form a matching M.
- Proof: We just need to show that no instructor a_{i} is matched to two courses b_{j}, b_{k}, and vice versa

Matching and flow problem

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u, v).
- Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1
- Each edge of G that carries flow is in the matching.
- Each edge of G that does not carry flow is not in the matching.
- Claim: The edge between A and B that carry flow form a matching M.
- Proof: We just need to show that no instructor a_{i} is matched to two courses b_{j}, b_{k}, and vice versa

Matching and flow problem

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u, v).
- Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1
- Each edge of G that carries flow is in the matching.
- Each edge of G that does not carry flow is not in the matching.
- Claim: The edge between A and B that carry flow form a matching M.
- Proof: We just need to show that no instructor a_{i} is matched to two courses b_{j}, b_{k}, and vice versa

Matching and flow problem

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u, v).
- Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1
- Each edge of G that carries flow is in the matching.
- Each edge of G that does not carry flow is not in the matching.
- Claim: The edge between A and B that carry flow form a matching M.
- Proof: We just need to show that no instructor a_{i} is matched to two courses b_{j}, b_{k}, and vice versa

Ford-Fulkerson algorithm for finding max bipartite matching

- This algorithm is actually appropriate for any network flow problem, but notations and proofs are simpler if we concentrate on the matching directly.
- Algorithm: Start then $M=\varnothing$. No edge is in the matching.
- Output: $|M|$ is as large as possible
- At each step of the algorithm, we increase the cardinality of M by 1 .
- General Step: Assume M is given. Terminology:
- A matched vertex is a vertex which is an edgepoint of an edge of M. Vertices that are not matched are called exposed vertices.

We will denote all matched edge $M \subseteq E$ by a thick red segments, and edge of $E \backslash M$ are depicted by a straight edge. Sometimes we will denote these
 edges by \rightarrow

- An augmenting path is a path that starts with an expose vertex of A ends at an exposed vertex of B , and its edges alternates: An edge $\notin M$ followed by an edge $\in M$, followed by an edge $\notin M$ and so on

-An Augmented path might include a single edge, which is $\notin M$

How to find augmenting paths

- Makes the graph a directed graph:
- Edges $\in M$ are directed from right to left
- Edges $\notin M$ are directed from left to right
- Add a vertex s, and connect it to every exposed $a_{i} \in A$
- Run DFS or BFS from s.
- Every path that leads to an exposed vertex must be an augmented path. And
If there is an augmented path, this process will find this path.

Once an augmented bath is found, we augment its edges, and restart (re-bulding the directed graph).

If no augmented path is found, stop - M is maximum cardinality matching. (we will need to prove it)

Running time: Each iteration, we increase $|\mathrm{M}|$ by 1 , so the number of iterations is
$\leq \min \{|A|,|B|\} \leq n$.

- Finding an augmented path is done via DFS or BFS, so its time is $O(|E|+|V|)$
- Overall time $O(|E||V|)=O(m n)$

Ford-Fulkerson algorithm for finding max bipartite matching
 edges that originally were in M.

$$
\begin{aligned}
& \text { Claims: } \\
& \text { 1. A vertex that was matched before the augmentation, is matched after the augment } \\
& \text { 2. Matching is } 1-1 \text { (no course taught by two teaches, no teacher teaches two courses. }
\end{aligned}
$$

$$
\text { 3. Augmentation increases the number of edges in the matching by } 1 \text {. }
$$

Optimality Theorem : M is maximum iff there is no augmenting path Proof: One direction is trivial: If there is an augmenting path, then we could increase $|M|$, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M^{\prime} be another matching such that $|M|<\left|M^{\prime}\right|$.
2. Let think about $U \stackrel{\text { def }}{=} M \oplus M^{\prime} \subseteq E$. These are the edges which are either in M or in M^{\prime}, but not in both. Some edges of E are in neither M nor in M^{\prime}
3. Each vertex $v \in V$ is on \leq one edge of M and on \leq one edge of M '
4. Every path of U is an alternating path - an edge from M followed by an edge from M' and so on
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since $|\mathrm{M}|<\left|\mathrm{M}^{\prime}\right|$, one of the alternating path contains more edges from M'. This must be a path whose first and last edge are from M'. This is an augmenting path. QED
$\stackrel{\bullet}{a_{1}} b_{1} \quad \in M \quad a_{2} \quad b_{l} \quad \in M$

Optimality Theorem : M is maximum iff there is no augmenting path Proof: One direction is trivial: If there is an augmenting path, then we could increase $|M|$, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M^{\prime} be another matching such that $|M|<\left|M^{\prime}\right|$.
2. Let think about $U \stackrel{\text { def }}{=} M \oplus M^{\prime} \subseteq E$. These are the edges which are either in M or in M^{\prime}, but not in both. Some edges of E are in neither M nor in M^{\prime}.
3. Each vertex $v \in V$ is on \leq one edge of M and on \leq one edge of M^{\prime} '.
4. Every path of U is an alternating path - an edge from M followed by an edge from M' and so on.
5. U might consists of several pathS and several cycleS
6. Every cycle must have an even length (why?).
7. However, since $|\mathrm{M}|<\left|\mathrm{M}^{\prime}\right|$, one of the alternating path contains more edges from M'. This must be a path whose first and last edge are from M'. This is an augmenting path. QED

Optimality Theorem : M is maximum iff there is no augmenting path

 Proof: One direction is trivial: If there is an augmenting path, then we could increase $|M|$, so M it is not optimum. Lets prove the second direction:1. On the other hand, assume M is not optimum. Let M^{\prime} be another matching such that $|M|<\left|M^{\prime}\right|$.
2. Let think about $U \stackrel{\text { def }}{=} M \oplus M^{\prime} \subseteq E$. These are the edges which are either in M or in M^{\prime}, but not in both. Some edges of E are in neither M nor in M^{\prime}
3. Each vertex $v \in V$ is on \leq one edge of M and on \leq one edge of M^{\prime}.
4. Every path of U is an alternating path - an edge from M followed by an edge from M' and so on.
5. U might consists of several pathS and several cycleS
6. Every cycle must have an even length (why?).
7. However, since $|\mathrm{M}|<\left|\mathrm{M}^{\prime}\right|$, one of the alternating path contains more edges from M'. This must be a path whose first and last edge are from M'. This is an augmenting path. QED

$a_{3} \stackrel{\in M^{\prime}}{b_{2}} \quad a_{4} \quad b_{4}$

Optimality Theorem : M is maximum iff there is no augmenting path Proof: One direction is trivial: If there is an augmenting path, then we could increase $|M|$, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M^{\prime} be another matching such that $|M|<\left|M^{\prime}\right|$.
2. Let think about $U \stackrel{\text { def }}{=} M \oplus M^{\prime} \subseteq E$. These are the edges which are either in M or in M^{\prime}, but not in both. Some edges of E are in neither M nor in M^{\prime}
3. Each vertex $v \in V$ is on \leq one edge of M and on \leq one edge of M^{\prime}.
4. Every path of U is an alternating path - an edge from M followed by an edge from M' and so on.
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since $|\mathrm{M}|<\left|\mathrm{M}^{\prime}\right|$, one of the alternating path contains more edges from M^{\prime}. This must be a path whose first and last edge are from M'. This is an augmenting path. QED

Optimality Theorem : M is maximum iff there is no augmenting path

 Proof: One direction is trivial: If there is an augmenting path, then we could increase $|M|$, so M it is not optimum. Lets prove the second direction:1. On the other hand, assume M is not optimum. Let M^{\prime} be another matching such that $|M|<\left|M^{\prime}\right|$.
2. Let think about $U \stackrel{\text { def }}{=} M \oplus M^{\prime} \subseteq E$. These are the edges which are either in M or in M^{\prime}, but not in both. Some edges of E are in neither M nor in M^{\prime}
3. Each vertex $v \in V$ is on \leq one edge of M and on \leq one edge of M^{\prime}.
4. Every path of U is an alternating path - an edge from M followed by an edge from M' and so on
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since $|\mathrm{M}|<\left|\mathrm{M}^{\prime}\right|$, one of the alternating path contains more edges from M'. This must be a path whose first and last edge are from M'. This is an augmenting path. QED

$$
\stackrel{a}{1}^{\in M_{1}^{\prime}} \in M \quad a_{2} \quad b_{l} \quad a_{i^{\prime}}
$$

Optimality Theorem : M is maximum iff there is no augmenting path Proof: One direction is trivial: If there is an augmenting path, then we could increase $|M|$, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M^{\prime} be another matching such that $|M|<\left|M^{\prime}\right|$.
2. Let think about $U \stackrel{\text { def }}{=} M \oplus M^{\prime} \subseteq E$. These are the edges which are either in M or in M^{\prime}, but not in both. Some edges of E are in neither M nor in M^{\prime}.
3. Each vertex $v \in V$ is on \leq one edge of M and on \leq one edge of M^{\prime} '.
4. Every path of U is an alternating path - an edge from M followed by an edge from M' and so on.
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since $|\mathrm{M}|<\left|\mathrm{M}^{\prime}\right|$, one of the alternating path contains more edges from M'. This must be a path whose first and last edge are from M'. This is an augmenting path. QED

Max Flow in 0/1 Network

- A $0 / 1$ network is a directed graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$, where there are given special vertices $s, t \in V$, and the capacity of every edge is 1 . (instead of $c(u, v)$)
- A flow is legal if
- for every edge $(u, v) \in E$ we are given the flow $f(u, v)$ across the edge (u, v).
- $0 \leq f(u, v) \leq 1$. (capacity constrains)
- For every vertex $v \in V-\{s, t\}$ we have

$$
\sum_{(w, v) \in E} f(w, v)=\sum_{(v, x) \in E} f(v, x) \text { Flow conservation }
$$

- The value of the flow is $|f|:=\sum_{(s, x) \in E} f(s, x)$ flow from s. This is the value we want to maximize.
- The gaol is to maximize the value of the flow.
- The matching problem is a special case of this problem.

Optimality Theorem : M is maximum iff there is no augmenting path Proof: One direction is trivial: If there is an augmenting path, then we could increase $|M|$, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M^{\prime} be another matching such that $|M|<\left|M^{\prime}\right|$.
2. Let think about $U \stackrel{\text { def }}{=} M \oplus M^{\prime} \subseteq E$. These are the edges which are either in M or in M^{\prime}, but not in both. Some edges of E are in neither M nor in M^{\prime}
3. Each vertex $v \in V$ is on \leq one edge of M and on \leq one edge of M^{\prime} '.
4. Every path of U is an alternating path - an edge from M followed by an edge from M' and so on.
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since $|M|<\left|M^{\prime}\right|$, one of the alternating path contains more edges from M'. This must be a path whose first and last edge are from M'. This is an augmenting path. QED

Max Flow in 0/1 Network

- When we solve this problem using LP, we might find solutions that are nonintegers.
- We can use ILP. Sometimes very efficient. Sometimes very slow.
- Ford-Fulkerson Algorithm: A sequence of iteration, at each, the value of the flow, $|\mathbf{f}|$ will be increased by 1 .
- Under this algorithm, the flow across every edge is either 0 or 1 . (but never 0.5)
- A greedy approach would be: Find a path $s \rightsquigarrow t$ of edges that carry zero flow. Increase the flow along this path, and repeat.
- This approach might not work (we saw a similar example in matching). Heavy edges carry flow.

Ford-Fulkerson Algorithm: Assume that some (legit) flow f is given.
Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual graph.

if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then $(u, v) \in E_{f}$.
if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then $(v, u) \in E_{f}$. (that is, reverse the direction of the edges that carry flow.)

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $f(u, v)=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit 4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

G

| $\mathrm{G}_{\mathrm{f}:}$ | ν_{1} | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (s) | | (t) | $\mathrm{G}_{\mathrm{f}:}$ | ν_{1} |
| | $\left(v_{2}\right.$ | | | |
| | | | | |

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.)

3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit
4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

$\begin{array}{llll}\mathrm{G}_{\mathrm{f}} & \nu_{1} & \\ \text { s } & & \\ & & \left(v_{2}\right) & \end{array}$

| $\mathrm{G}:$ | | |
| :--- | :--- | :--- | :--- |
| S | v_{1} | |
| | | t |
| | v_{2} | |

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

G

| $\mathrm{G}_{\mathrm{f}}:$ | ν_{1} | | $\mathrm{G}_{\mathrm{f}}:$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| S | | t | v_{1} | |
| | v_{2} | | s | |
| | | | | v_{2} |

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.)

3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit
4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

$\mathrm{G}_{1: 1}$

$\mathrm{G}:$		
s	v_{1}	
		t
	v_{2}	

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit 4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

$\mathrm{G}_{\mathrm{f}}: \quad v_{1}$ v_{2}

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

$\mathrm{G}_{\mathrm{f}}:$	
S.	v_{1}
	v_{2}

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

$\begin{array}{ll}\mathrm{G}: & \\ S & v_{1}\end{array}$

v_{2}

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.)

3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit
4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

$\mathrm{G}_{\mathrm{f}}: s$
$\mathrm{G}_{1: 1}$

| $\mathrm{G}_{\mathrm{f}}:$ | | |
| :--- | :--- | :--- | :--- |
| s | v_{1} | |
| | | t |
| | v_{2} | |
| | | |

Ford-Fulkerson Algorithm

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit 4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

Ford-Fulkerson Algorithm

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$ 5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into $\mathbf{E}_{\mathbf{f}}$. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

Ford-Fulkerson Algorithm:

1. Assume that some $0 / 1$ (legit) flow f is given.
2. Create a new graph $G_{f}\left(V, E_{f}\right)$. In the textbook, it is called the residual network.

For every edge $(u, v) \in E$

- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=0$ then insert (u, v).
- if $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$ then insert (\mathbf{v}, \mathbf{u}) into \mathbf{E}_{f}. (that is, reverse the direction of the edges that carry flow.) 3. Find a path $\pi: s \rightsquigarrow t$ in the residual network G_{f}. If no path exists, $|\mathrm{f}|$ is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then $f(u, v)=f(u, v)+1$
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v)=f(u, v)-\mathbf{1} / /$ cancel the flow $1 \rightarrow 0$

5. The addition of the 1 to the flow along the edge of π increases $|f|$ by 1 .

Example - maximum matching

G :

$G_{f}:$

Ford-Fulkerson max-flow algorithm

-Start: $f[u, v] \leftarrow 0$ for all $(u, v) \in E$
-While (1) \{
-construct G_{f}

- if an augmenting path p in G_{f} exists then augment f //Any path would do
- else exit \}

Example - maximum matching

$G:$

$G_{f}:$

Cuts

Definitions. A cut (\mathbf{S}, \mathbf{T}) of a flow network $G=(V, E)$ is a partition of V such that $s \in S$ and $t \in T$. If f is a flow on G, then the flow across the cut $\operatorname{denoted} f(\mathbf{S}, \mathbf{T})$ is

Lemma: Flow across the cut

Remember $|f|:=\sum_{(s, v) \in E} f(s, v)$ That is, it is the flow leaving s
Lemma. For any flow f and any cut $(\boldsymbol{S}, \boldsymbol{T})$, we have $|f|=\mathrm{f}(\mathbf{S}, \mathbf{T})$ (flow from T to S).

Proof: On whiteboard

Upper bound on the maximum flow value

Theorem. The value of any flow no larger than the capacity of any cut: $|f| \leq c(S, T)$.

$$
\begin{aligned}
& |f|=f(\mathbf{S}, \mathbf{T})
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{\left(u, v \in E_{R} .\right.} \sum_{u \in S, v \in \mathbf{T}} f(u, v) \\
& \leq \sum_{(u, v) \in \mathbb{L}, u \in \mathbf{S}, v \in \mathrm{~T}} c(u, v) \quad=\mathbf{C}(\mathbf{S}, \mathbf{T})
\end{aligned}
$$

Max-flow, min-cut theorem

Theorem. The following are equivalent:

1. $|f|=c(S, T)$ for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.

Proof.
(1) \Rightarrow (2): Since $|f| \leq c(S, T)$ for any cut (S, T) (by the theorem from a few slides back), the assumption that $|f|=c(S, T)$ implies that f is a maximum flow.
$(2) \Rightarrow(3)$: If there were an augmenting path, the flow value could be increased, contradicting the maximality of f.

Max-flow, min-cut theorem

Theorem. The following are equivalent:

1. $|f|=c(S, T)$ for some cut (S, T). \qquad
2. f is a maximum flow.
3. f admits no augmenting paths.

Proof.
(1) \Rightarrow (2): Since $|f| \leq c(S, T)$ for any cut (S, T) (by the theorem from a few slides back), the assumption that $|f|=c(S, T)$ implies that f is a maximum flow.
$(2) \Rightarrow(3)$: If there were an augmenting path, the flow value could be increased, contradicting the maximality of f.
(3) $\Rightarrow(1)$: Define $S=\left\{v \in V \mid\right.$ there exists a path in G_{f} from s to $\left.v\right\}$,

Let $T=V-S$. Since f admits no augmenting paths, there is no path from s to t in G_{f}.
Hence, $s \in S$ and $t \notin S$, So $t \in T$.
Thus (S, T) is a cut.

Consider edge $(u, v) u \in S, v \in T$. Observe that $\mathrm{f}(\mathrm{u}, \mathrm{v})=1$, since if it was zero, we would add (u, v) to the path.

Thus, $f(u, v)=c(u, v)$
Summing over all $u \in S$ and $v \in T$ yields $f(S, T)=c(S, T)$, and since $|f|=f(S, T)$, the theorem follows.

