
cs445

Bipartite Matching and Max-Flow in a Network
Alon Efrat

Application: Bipartite Matching.
• A graph G(V,E) is called bipartite if V can be partitioned into two sets V=A∪B,

and each edge of E connects a vertex of A to a vertex of B. We sometimes
denote these graphs by G(A∪B,E)

• Example: The set is a set of instructors, the set
 is the set of courses. There is an edge iff

instructor could teach course

• A matching is a set of edges M of E, where each vertex of A is adjacent to at
most one vertex of B, and vice versa.

• (in the example, each instructor will teach at most one course,
and vice versa)

•Maximum-cardinality matching: Find a matching with as
many edges as possible

• This problem could be solved with in O(nm) time using Ford-Fulkerson
algorithm. Faster algorithms exist as well. However, we will use it as an
example to the ease of using ILP.

A = {a1…an}
B = {b1…bn} (ai, bj) ∈ E

ai bj

BA

a1

a2

a3

a4

b1

b2

b3

b4

In red: Edge of the matching

Matching and flow problem

• If we know how to find a max-flow in a network, we could use it so solve a matching
problem: For this, we need to express the matching problem as a flow problem:

A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u,v).

• Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1.

• Each edge of G that carries flow is in the matching.
• Each edge of G that does not carry flow is not in the matching.

• Claim: The edge between A and B that carry flow form a matching M.
• Proof: We just need to show that no instructor is matched to two courses , and vice

versa
ai bj, bk

BA

a1

a2

a3

a4

b1

b2

b3

b4

Matching and flow problem

• If we know how to find a max-flow in a network, we could use it so solve a matching
problem: For this, we need to express the matching problem as a flow problem:

A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u,v).

• Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1.

• Each edge of G that carries flow is in the matching.
• Each edge of G that does not carry flow is not in the matching.

• Claim: The edge between A and B that carry flow form a matching M.
• Proof: We just need to show that no instructor is matched to two courses , and vice

versa
ai bj, bk

s

BA

a1

a2

a3

a4

b1

b2

b3

b4

Matching and flow problem

• If we know how to find a max-flow in a network, we could use it so solve a matching
problem: For this, we need to express the matching problem as a flow problem:

A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u,v).

• Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1.

• Each edge of G that carries flow is in the matching.
• Each edge of G that does not carry flow is not in the matching.

• Claim: The edge between A and B that carry flow form a matching M.
• Proof: We just need to show that no instructor is matched to two courses , and vice

versa
ai bj, bk

s
t

BA

a1

a2

a3

a4

b1

b2

b3

b4

Matching and flow problem

• If we know how to find a max-flow in a network, we could use it so solve a matching
problem: For this, we need to express the matching problem as a flow problem:

A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u,v).

• Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1.

• Each edge of G that carries flow is in the matching.
• Each edge of G that does not carry flow is not in the matching.

• Claim: The edge between A and B that carry flow form a matching M.
• Proof: We just need to show that no instructor is matched to two courses , and vice

versa
ai bj, bk

s
t

1:1
0:1

1:11:1

BA

a1

a2

a3

a4

b1

b2

b3

b4

Matching and flow problem

• If we know how to find a max-flow in a network, we could use it so solve a matching
problem: For this, we need to express the matching problem as a flow problem:

A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u,v).

• Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1.

• Each edge of G that carries flow is in the matching.
• Each edge of G that does not carry flow is not in the matching.

• Claim: The edge between A and B that carry flow form a matching M.
• Proof: We just need to show that no instructor is matched to two courses , and vice

versa
ai bj, bk

s
t

1:1
0:1

1:11:1

BA

a1

a2

a3

a4

b1

b2

b3

b4

Matching and flow problem

• If we know how to find a max-flow in a network, we could use it so solve a matching
problem: For this, we need to express the matching problem as a flow problem:

A. Add a vertex s, and connect it to each vertex of A.
B. Add a vertex t, and connect each vertex of B to t.
C. Assign capacity of 1 to each edge (u,v).

• Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1.

• Each edge of G that carries flow is in the matching.
• Each edge of G that does not carry flow is not in the matching.

• Claim: The edge between A and B that carry flow form a matching M.
• Proof: We just need to show that no instructor is matched to two courses , and vice

versa
ai bj, bk

s
t

1:1
0:1

1:11:1

BA

a1

a2

a3

a4

b1

b2

b3

b4

Ford-Fulkerson algorithm for finding max bipartite matching
• This algorithm is actually appropriate for any network flow problem, but

notations and proofs are simpler if we concentrate on the matching directly.

• Algorithm: Start then . No edge is in the matching.
• Output: is as large as possible
• At each step of the algorithm, we increase the cardinality of M by 1.

• General Step: Assume M is given. Terminology:
• A matched vertex is a vertex which is an edgepoint of an edge of M.

Vertices that are not matched are called exposed vertices.

• We will denote all matched edge by a thick red segments, and edge
of are depicted by a straight edge. Sometimes we will denote these
edges by

•An augmenting path is a path that starts with an expose vertex of A,
ends at an exposed vertex of B, and its edges alternates: An edge
followed by an edge , followed by an edge and so on.

•An Augmented path might include a single edge, which is

M = ∅
|M |

M ⊆ E
E∖M

∉ M
∈ M ∉ M

∉ M

BA

a1

a2

a3

a4

b1

b2

b3

b4

A matching is a set of edges M of
E, where each vertex of A is
adjacent to at most one vertex of B,
and vice versa.

In red: Edge of the matching

⇝

a1 bk b1a1 b1

∉ M ∉ M ∉ M∈ M ∈ M

∉ M

Ford-Fulkerson algorithm for finding max bipartite matching
This algorithm is actually appropriate for any network flow problem, but notations and proofs are simpler if we concentrate on the matching directly.

Algorithm: Start then . No edge is in the matching.
Output: is as large as possible
At each step of the algorithm, we increase the cardinality of M by 1.

General Step: Assume M is given. Terminology:
A matched vertex is a vertex which is an edgepoint of an edge of M. Vertices that are not matched are called exposed vertices.

We will denote all matched edge by a thick red segments, and edge of are depicted by a straight edge. Sometimes we will denote these edge s by

An augmenting path is a path that starts with an expose vertex of A, ends at an exposed vertex of B, and its edges alternates: An edge followed by an edge , followed by an edge and so on.

M = ∅
|M |

M ⊆ E E ∖M bk
∉ M ∈ M ∉ M

BA

a1

a2

a3

a4

b1

b2

b3

b4

a1 bk b1
a1 b1

a1 bk b1
a1 b1

∉ M ∉ M ∉ M∈ M ∈ M

∈ M ∈ M ∈ M ∈ M∉ M

ai aibℓ

Claims:
1. A vertex that was matched before the augmentation, is matched after the augmentation
2. Matching is 1-1 (no course taught by two teaches, no teacher teaches two courses.
3. Augmentation increases the number of edges in the matching by 1.

•An augmenting path is a path that starts with an expose vertex of A, ends at an
exposed vertex of B, and its edges alternates: An edge followed by an edge

, followed by an edge and so on.

•Augmented path might include a single edge, which is
•Lets p be an augmenting path. The operation of augmentation a path
consists of

•Insert into M all edges of p which are , and remove from M all
edges that originally were in M.

∉ M
∈ M ∉ M

∉ M

∉ M

How to find augmenting paths

A

a1

a2

a3

a4

b1

b2

b3

b4

• Makes the graph a directed graph:
• Edges are directed from right to left
• Edges are directed from left to right

• Add a vertex s, and connect it to every
exposed

• Run DFS or BFS from s.
• Every path that leads to an exposed vertex must be

an augmented path. And
• If there is an augmented path, this process will

find this path.

Once an augmented bath is found, we augment its
edges, and restart (re-bulding the directed graph).

If no augmented path is found, stop - M is maximum
cardinality matching. (we will need to prove it)

Running time: Each iteration, we increase |M| by 1,
so the number of iterations is

.

• Finding an augmented path is done via DFS or
BFS, so its time is

• Overall time

∈ M
∉ M

ai ∈ A

≤ min{ |A | , |B |} ≤ n

O(|E | + |V |)

O(|E | |V |) = O(mn)

s

a5 b1b5

B

Optimality Theorem : M is maximum iff there is no augmenting path
Proof: One direction is trivial: If there is an augmenting path, then we could
increase |M|, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M’ be another matching such
that .

2. Let think about . These are the edges which are either in M
or in M’, but not in both. Some edges of E are in neither M nor in M’.

3. Each vertex is on one edge of M and on one edge of M’.
4. Every path of U is an alternating path - an edge from M followed by an edge

from M’ and so on.
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since |M|<|M’|, one of the alternating path contains more edges from

M’. This must be a path whose first and last edge are from M’. This is an
augmenting path. QED

|M | < |M′ |
U def= M ⊕ M′ ⊆ E

v ∈ V ≤ ≤

a1 b1

∈ M′ ∈ M′ ∈ M ∈ M
a2 ai′ bℓ

a3
∈ M′ ∈ M′ ∈ M

a4 b4

a5 b4

∈ M′ ∈ M′ ∈ M ∈ M
a6 a7b5

∈ M′

A

a1

a3

a4

a5

b1

b2

b3

b4

a6 b1b5

B

a2

b6
a7

b6

∈ M′

∈ M′
∈ M′

∈ M′

∈ M′

∈ M′

∈ M

∈ M

∈ M

∈ M

∈ M

b2

Optimality Theorem : M is maximum iff there is no augmenting path
Proof: One direction is trivial: If there is an augmenting path, then we could
increase |M|, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M’ be another matching such
that .

2. Let think about . These are the edges which are either in M
or in M’, but not in both. Some edges of E are in neither M nor in M’.

3. Each vertex is on one edge of M and on one edge of M’.
4. Every path of U is an alternating path - an edge from M followed by an edge

from M’ and so on.
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since |M|<|M’|, one of the alternating path contains more edges from

M’. This must be a path whose first and last edge are from M’. This is an
augmenting path. QED

|M | < |M′ |
U def= M ⊕ M′ ⊆ E

v ∈ V ≤ ≤

a1 b1

∈ M′ ∈ M′ ∈ M ∈ M
a2 ai′ bℓ

a3
∈ M′ ∈ M′ ∈ M

a4 b4

a5 b4

∈ M′ ∈ M′ ∈ M ∈ M
a6 a7b5

∈ M′

A

a1

a3

a4

a5

b1

b2

b3

b4

a6 b1b5

B

a2

b6
a7

b6

∈ M′

∈ M′
∈ M′

∈ M′

∈ M′

∈ M′

∈ M

∈ M

∈ M

∈ M

∈ M

b2

Optimality Theorem : M is maximum iff there is no augmenting path
Proof: One direction is trivial: If there is an augmenting path, then we could
increase |M|, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M’ be another matching such
that .

2. Let think about . These are the edges which are either in M
or in M’, but not in both. Some edges of E are in neither M nor in M’.

3. Each vertex is on one edge of M and on one edge of M’.
4. Every path of U is an alternating path - an edge from M followed by an edge

from M’ and so on.
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since |M|<|M’|, one of the alternating path contains more edges from

M’. This must be a path whose first and last edge are from M’. This is an
augmenting path. QED

|M | < |M′ |
U def= M ⊕ M′ ⊆ E

v ∈ V ≤ ≤

a1 b1

∈ M′ ∈ M′ ∈ M ∈ M
a2 ai′ bℓ

a3
∈ M′ ∈ M′ ∈ M

a4 b4

a5 b4

∈ M′ ∈ M′ ∈ M ∈ M
a6 a7b5

∈ M′

A

a1

a3

a4

a5

b1

b2

b3

b4

a6 b1b5

B

a2

b6
a7

b6

∈ M′

∈ M′
∈ M′

∈ M′

∈ M′

∈ M′

∈ M

∈ M

∈ M

∈ M

∈ M

b2

Optimality Theorem : M is maximum iff there is no augmenting path
Proof: One direction is trivial: If there is an augmenting path, then we could
increase |M|, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M’ be another matching such
that .

2. Let think about . These are the edges which are either in M
or in M’, but not in both. Some edges of E are in neither M nor in M’.

3. Each vertex is on one edge of M and on one edge of M’.
4. Every path of U is an alternating path - an edge from M followed by an edge

from M’ and so on.
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since |M|<|M’|, one of the alternating path contains more edges from

M’. This must be a path whose first and last edge are from M’. This is an
augmenting path. QED

|M | < |M′ |
U def= M ⊕ M′ ⊆ E

v ∈ V ≤ ≤

a1 b1

∈ M′ ∈ M′ ∈ M ∈ M
a2 ai′ bℓ

a3
∈ M′ ∈ M′ ∈ M

a4 b4

a5 b4

∈ M′ ∈ M′ ∈ M ∈ M
a6 a7b5

∈ M′

A

a1

a3

a4

a5

b1

b2

b3

b4

a6 b1b5

B

a2

b6
a7

b6

∈ M′

∈ M′
∈ M′

∈ M′

∈ M′

∈ M′

∈ M

∈ M

∈ M

∈ M

∈ M

b2

Optimality Theorem : M is maximum iff there is no augmenting path
Proof: One direction is trivial: If there is an augmenting path, then we could
increase |M|, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M’ be another matching such
that .

2. Let think about . These are the edges which are either in M
or in M’, but not in both. Some edges of E are in neither M nor in M’.

3. Each vertex is on one edge of M and on one edge of M’.
4. Every path of U is an alternating path - an edge from M followed by an edge

from M’ and so on.
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since |M|<|M’|, one of the alternating path contains more edges from

M’. This must be a path whose first and last edge are from M’. This is an
augmenting path. QED

|M | < |M′ |
U def= M ⊕ M′ ⊆ E

v ∈ V ≤ ≤

a1 b1

∈ M′ ∈ M′ ∈ M ∈ M
a2 ai′ bℓ

a3
∈ M′ ∈ M′ ∈ M

a4 b4

a5 b4

∈ M′ ∈ M′ ∈ M ∈ M
a6 a7b5

∈ M′

A

a1

a3

a4

a5

b1

b2

b3

b4

a6 b1b5

B

a2

b6
a7

b6

∈ M′

∈ M′
∈ M′

∈ M′

∈ M′

∈ M′

∈ M

∈ M

∈ M

∈ M

∈ M

b2

Optimality Theorem : M is maximum iff there is no augmenting path
Proof: One direction is trivial: If there is an augmenting path, then we could
increase |M|, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M’ be another matching such
that .

2. Let think about . These are the edges which are either in M
or in M’, but not in both. Some edges of E are in neither M nor in M’.

3. Each vertex is on one edge of M and on one edge of M’.
4. Every path of U is an alternating path - an edge from M followed by an edge

from M’ and so on.
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since |M|<|M’|, one of the alternating path contains more edges from

M’. This must be a path whose first and last edge are from M’. This is an
augmenting path. QED

|M | < |M′ |
U def= M ⊕ M′ ⊆ E

v ∈ V ≤ ≤

a1 b1

∈ M′ ∈ M′ ∈ M ∈ M
a2 ai′ bℓ

a3
∈ M′ ∈ M′ ∈ M

a4 b4

a5 b4

∈ M′ ∈ M′ ∈ M ∈ M
a6 a7b5

∈ M′

A

a1

a3

a4

a5

b1

b2

b3

b4

a6 b1b5

B

a2

b6
a7

b6

∈ M′

∈ M′
∈ M′

∈ M′

∈ M′

∈ M′

∈ M

∈ M

∈ M

∈ M

∈ M

b2

Optimality Theorem : M is maximum iff there is no augmenting path
Proof: One direction is trivial: If there is an augmenting path, then we could
increase |M|, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M’ be another matching such
that .

2. Let think about . These are the edges which are either in M
or in M’, but not in both. Some edges of E are in neither M nor in M’.

3. Each vertex is on one edge of M and on one edge of M’.
4. Every path of U is an alternating path - an edge from M followed by an edge

from M’ and so on.
5. U might consists of several pathS and several cycleS.
6. Every cycle must have an even length (why?).
7. However, since |M|<|M’|, one of the alternating path contains more edges from

M’. This must be a path whose first and last edge are from M’. This is an
augmenting path. QED

|M | < |M′ |
U def= M ⊕ M′ ⊆ E

v ∈ V ≤ ≤

a1 b1

∈ M′ ∈ M′ ∈ M ∈ M
a2 ai′ bℓ

a3
∈ M′ ∈ M′ ∈ M

a4 b4

a5 b4

∈ M′ ∈ M′ ∈ M ∈ M
a6 a7b5

∈ M′

A

a1

a3

a4

a5

b1

b2

b3

b4

a6 b1b5

B

a2

b6
a7

b6

∈ M′

∈ M′
∈ M′

∈ M′

∈ M′

∈ M′

∈ M

∈ M

∈ M

∈ M

∈ M

b2

Max Flow in 0/1 Network
• A 0/1 network is a directed graph G(V,E), where there are given special vertices and the

capacity of every edge is 1. (instead of)
• A flow is legal if

• for every edge we are given the flow across the edge .
•
• For every vertex we have

•

• The value of the flow is . This is the value we want to maximize.

• The gaol is to maximize the value of the flow.

• The matching problem is a special case of this problem.

s, t ∈ V,
c(u, v)

(u, v) ∈ E f (u, v) (u, v)
0 ≤ f (u, v) ≤ 1. (capacity constrains)

v ∈ V − {s, t}

∑
(w,v)∈E

f (w, v) = ∑
(v,x)∈E

f (v, x) Flow conservation

| f | := ∑
(s,x)∈E

f (s, x) flow from s

s
v1 v2

v3 v4

v5

t
1:1

1:1

1:1

0 :1
0:1

0:10:1

0:1

(in this example) | f | := ∑
(s,x)∈E

f (s, x) = 1

Max Flow in 0/1 Network
• A 0/1 network is a directed graph G(V,E), where there are given special vertices and the capacity of every edge is 1.
• A flow is legal if

• for every edge we are given the flow across the edge .
•
• For every vertex we have

•

• The value of the flow is . This is the value we want to maximize.

s, t ∈ V,

(u , v) ∈ E f (u , v) (u , v)
0 ≤ f (u , v) ≤ 1 Capacity constrains

v ∈ V − {s, t}

∑
(w,v)∈E

f (w, v) = ∑
(v,x)∈E

f (v, x) Flow conservation

∑
(s,x)∈E

f (s, x) flow from s

s
v1

v2

v3 v4

v5

t
1:1

1:1
1:1

0 :1
0 :1

0:10:1

0:1

• When we solve this problem using LP, we might find solutions that are non-
integers.

• We can use ILP. Sometimes very efficient. Sometimes very slow.
• Ford-Fulkerson Algorithm: A sequence of iteration, at each, the value of the

flow, |f| will be increased by 1.
• Under this algorithm, the flow across every edge is either 0 or 1. (but never 0.5)
• A greedy approach would be: Find a path of edges that carry zero flow.

Increase the flow along this path, and repeat.
• This approach might not work (we saw a similar example in matching). Heavy

edges carry flow.

Ford-Fulkerson Algorithm: Assume that some (legit) flow f is given.
Create a new graph . In the textbook, it is called the residual graph.

if f(u,v)=0 then .

if f(u,v)=1 then . (that is, reverse the direction of the edges that
carry flow.)

s ⇝ t

Gf (V, Ef)
(u, v) ∈ Ef

(v, u) ∈ Ef

s
v1

v2

t
1:1

1 :1
0 :1

0:1

0 :1 1:1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

s
v2

t
v1

Gf :

Gf:G

G

Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

Gf:G

G

Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

π2

Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

π2

Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

π2

s
v2

t
1:1

0 :1

G v1

1:1 1:1

1:1
Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

π2

s
v2

t
1:1

0 :1

G v1

1:1 1:1

1:1
Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

π2

s
v2

t
1:1

0 :1

G v1

1:1 1:1

1:1
Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

π2

s
v2

t
1:1

0 :1

G v1

1:1 1:1

1:1
Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

π2

s
v2

t
1:1

0 :1

G v1

1:1 1:1

1:1
Gf:
s

v2

t
v1

Ford-Fulkerson Algorithm:
1.Assume that some 0/1 (legit) flow f is given.
2.Create a new graph . In the textbook, it is called the residual network.

For every edge
• if f(u,v)=0 then insert .
• if f(u,v)=1 then insert . (that is, reverse the direction of the edges that carry flow.)

3.Find a path . If no path exists, |f| is maximum. Exit
4. Increase by 1 the flow along as follows:

For every edge
• If (edge not reversed) then
• If (edge reversed) then // cancel the flow

5.The addition of the 1 to the flow along the edge of increases by 1.

Gf (V, Ef)
(u, v) ∈ E

(u, v)
(v, u) into Ef

π : s ⇝ t in the residual network Gf

π
(u, v) ∈ π

(u, v) ∈ E f (u, v) = f (u, v) + 1
(v, u) ∈ E f (u, v) = f (u, v) − 1 1 → 0

π | f |

s
v1

v2

t
0

0
0

0

0
s

v1

v2

t

π

s
v2

t
v1

Gf :

s
v1

v2

t
1:1

1 :1
0 :1

0 :1

Gf:G

G

π2

s
v2

t
1:1

0 :1

G v1

1:1 1:1

1:1
Gf:
s

v2

t
v1

Example – maximum matching

.A B
s

t

.A B
s

t

1:1

0:1 0:1 0:1 0:1

1:1
1:1

1

1

1

1 1 1

1Gf :

G :

Example – maximum matching

.A B
s

t

.A B
s

t

1:1

0:1 0:1 0:1 0:1

1:1
1:1

1

1

1

1 1 1

1Gf :

G :

Ford-Fulkerson max-flow algorithm
•Start: f [u, v] ← 0 for all
•While (1) {

•construct Gf
• if an augmenting path p in Gf exists then

augment f //Any path would do
• else exit }

(u, v) ∈ E

Cuts
Definitions. A cut of a flow network G =(V, E) is a partition of V such that s ∈ S and t ∈ T.

 If f is a flow on G, then the flow across the cut denoted is

(S, T)

f (S, T)

s t

1
1

1
1 10

1

∈ S

∈ T

S={s,a}

s t

a

1 1

1 1

1

b

c

d

e

f (S, T) := ∑
(u,v)∈E, u∈S,v∈T

f (u, v) − ∑
(u,v)∈E, v∈S, u∈T

f (u, v)

f(S, T) = f(s, b) + f(s, c) + f(a, t) + f(a, c)−f(b, a) − f(e, a)

flow from S to T flow from T to S

Lemma: Flow across the cut

Remember That is, it is the flow leaving s

Lemma. For any flow f and any cut (S, T), we have | f | = f(S,T) (flow from T to S).

| f | := ∑
(s,v)∈E

f (s, v)

Proof: On whiteboard

Capacity of a cut
Definition. The capacity of a cut (S, T) is the number of
edges across the cut

s t

∈ S

∈ T

s t

c(S, T) = ∑
(u,v)∈E, u∈S, v∈T

c(u, v)

s

Upper bound on the maximum
flow value

Theorem. The value of any flow no larger than the capacity of any cut: |f| ≤ c(S,T) .

.

| f | = f (S, T)

= ∑
(u,v)∈E, u∈S,v∈T

f (u , v) − ∑
(u,v)∈E, v∈S, u∈T

f (u , v)

≤ ∑
(u,v)∈E, u∈S,v∈T

f (u , v)

≤ ∑
(u,v)∈E, u∈S,v∈T

c(u , v) = C(S, T)

Max-flow, min-cut theorem
Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.

Max-flow, min-cut theorem
Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.

Proof.
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T) (by the theorem

from a few slides back), the assumption that | f | = c(S, T)
implies that f is a maximum flow.

(2) ⇒ (3): If there were an augmenting path, the flow value could
be increased, contradicting the maximality of f.

Max-flow, min-cut theorem
Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.

Proof.
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T) (by the theorem

from a few slides back), the assumption that | f | = c(S, T)
implies that f is a maximum flow.

(2) ⇒ (3): If there were an augmenting path, the flow value could
be increased, contradicting the maximality of f.

min-cut

(3) ⇒ (1): Define S = {v ∈ V | there exists a path in Gf from s to v},

Let T = V – S. Since f admits no augmenting paths, there is no path
from s to t in Gf .
Hence, s ∈ S and t ∉ S, So t∈Τ.

Thus (S, T) is a cut.

Consider edge (u,v) u ∈ S, v ∈ T. Observe that f(u,v)=1, since if it was
zero, we would add (u,v) to the path.

Thus, f (u, v) = c(u, v)

Summing over all u ∈ S and v ∈ T yields f (S, T) = c(S, T), and since
| f | = f (S, T), the theorem follows.

s u v

S Tpath in Gf

