Application: Bipartite Matching. cs445 • A graph G(V,E) is called **bipartite** if V can be partitioned into two sets $V=A\cup B$, and each edge of *E* connects a vertex of *A* to a vertex of *B*. We sometimes denote these graphs by $G(A \cup B, E)$ • Example: The set $A = \{a_1 \dots a_n\}$ is a set of instructors, the set **Bipartite Matching and Max-Flow in a Network** $B = \{b_1 \dots b_n\}$ is the set of courses. There is an edge $(\mathbf{a}_i, \mathbf{b}_i) \in \mathbf{E}$ iff instructor a_i could teach course b_i **Alon Efrat** • A matching is a set of edges M of E, where each vertex of A is adjacent to at most one vertex of B, and vice versa. • (in the example, each instructor will teach at most one course, and vice versa) In red: Edge of the matching • Maximum-cardinality matching: Find a matching with as many edges as possible • This problem could be solved with in O(nm) time using Ford-Fulkerson algorithm. Faster algorithms exist as well. However, we will use it as an example to the ease of using ILP.

Matching and flow problem

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
 - A. Add a vertex *s*, and connect it to each vertex of *A*.
 - B. Add a vertex t, and connect each vertex of B to t.
 - C. Assign capacity of 1 to each edge (u,v).
- Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1
- Each edge of G that carries flow is in the matching.
- Each edge of G that does not carry flow is not in the matching.
- <u>Claim</u>: The edge between *A* and *B* that carry flow form a matching M.
- Proof: We just need to show that no instructor a_i is matched to two courses b_j, b_k, and vice versa

Matching and flow problem

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
 - A. Add a vertex s, and connect it to each vertex of A.
 - B. Add a vertex t, and connect each vertex of B to t.
 - C. Assign capacity of 1 to each edge (u,v).
- Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1
- Each edge of G that carries flow is in the matching.
- Each edge of G that **does not** carry flow is **not in** the matching.
- <u>Claim</u>: The edge between *A* and *B* that carry flow form a matching M.
- Proof: We just need to show that no instructor a_i is matched to two courses b_j, b_k, and vice versa

Matching and flow problem

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
 - A. Add a vertex s, and connect it to each vertex of A.
 - B. Add a vertex t and connect each vertex of B to t.
 - C. Assign capacity of 1 to each edge (u,v).
- Find max flow. Assume it is an **integer** flow, so the flow across each edge is either 0 or 1
- Each edge of G that carries flow is in the matching.
- Each edge of G that does not carry flow is not in the matching.
- <u>Claim</u>: The edge between *A* and *B* that carry flow form a matching M.
- Proof: We just need to show that no instructor a_i is matched to two courses b_i , b_k , and vice versa

Matching and flow problem

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
 - A. Add a vertex s, and connect it to each vertex of A.
 - B. Add a vertex t, and connect each vertex of B to t.
 - C. Assign capacity of 1 to each edge (u,v).
- Find max flow. Assume it is an **integer** flow, so the flow across each edge is either 0 or 1
- Each edge of G that carries flow is in the matching.
- Each edge of G that **does not** carry flow is **not** in the matching.
- **<u>Claim</u>**: The edge between *A* and *B* that carry flow form a matching M. ٠
- Proof: We just need to show that no instructor a_i is matched to two courses b_i , b_k , and vice versa

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
 - A. Add a vertex s, and connect it to each vertex of A.
 - B. Add a vertex t, and connect each vertex of B to t.
 - C. Assign capacity of 1 to each edge (u,v).
- Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1
- Each edge of *G* that carries flow is in the matching.
 Each edge of *G* that **does not** carry flow is **not in** the matching.
- <u>Claim</u>: The edge between *A* and *B* that carry flow form a matching M.
- Proof: We just need to show that no instructor a_i is matched to two courses b_i , b_{i_2} and vice versa

Matching and flow problem

- If we know how to find a max-flow in a network, we could use it so solve a matching problem: For this, we need to express the matching problem as a flow problem:
 - A. Add a vertex s, and connect it to each vertex of A.
 - B. Add a vertex t, and connect each vertex of B to t.
 - C. Assign capacity of 1 to each edge (u,v).
- Find max flow. Assume it is an integer flow, so the flow across each edge is either 0 or 1
- Each edge of G that carries flow is in the matching.
 Each edge of G that does not carry flow is not in the matching.
- Claim: The edge between A and B that carry flow form a matching M.
- Proof: We just need to show that no instructor a_i is matched to two courses b_i , b_k , and vice versa

- Makes the graph a directed graph:
 Edges ∈ M are directed from right to left
 - Edges $\notin M$ are directed from left to right
 - Add a vertex s, and connect it to every exposed $a_i \in A$
- Run DFS or BFS from s.
- Every path that leads to an exposed vertex must be an augmented path. And
- If there is an augmented path, this process will find this path.

Once an augmented bath is found, we augment its edges, and restart (re-bulding the directed graph).

If no augmented path is found, stop - M is maximum cardinality matching. (we will need to prove it)

Running time: Each iteration, we increase |M| by 1, so the number of iterations is $\leq \min\{|A|, |B|\} \leq n.$

• Finding an augmented path is done via DFS or BFS, so its time is O(|E| + |V|)

• Overall time O(|E||V|) = O(mn)

- 1. On the other hand, assume M is not optimum. Let M' be another matching such that |M| < |M'|.
- 2. Let think about $U \stackrel{def}{=} M \oplus M' \subseteq E$. These are the edges which are either in M or in M', but not in both. Some edges of E are in neither M nor in M'.
- 3. Each vertex $v \in V$ is on \leq one edge of M and on \leq one edge of M'.
- 4. Every path of U is an alternating path an edge from M followed by an edge from M' and so on.
- 5. U might consists of several pathS and several cycleS.
- 6. Every cycle must have an even length (why?).
- 7. However, since $|\mathbf{M}| \leq |\mathbf{M}'|$, one of the alternating path contains more edges from M[']. This must be a path whose first and last edge are from M[']. This is an augmenting path. QED

Optimality Theorem : M is maximum iff there is no augmenting path **Proof**: One direction is trivial: If there is an augmenting path, then we could increase |M|, so M it is not optimum. Lets prove the second direction:

- 1. On the other hand, assume M is not optimum. Let M' be another matching such that |M| < |M'|.
- 2. Let think about $U \stackrel{def}{=} M \bigoplus M' \subseteq E$. These are the edges which are either in M or in M', but not in both. Some edges of E are in neither M nor in M'.
- 3. Each vertex $v \in V$ is on \leq one edge of M and on \leq one edge of M'.
- 4. Every path of U is an alternating path an edge from M followed by an edge from M' and so on.
- 5. U might consists of several pathS and several cycleS.
- 6. Every cycle must have an even length (why?).
- However, since |M|≤|M'|, one of the alternating path contains more edges from M'. This must be a path whose first and last edge are from M'. This is an augmenting path. QED

 $\begin{array}{c} A \\ a_1 \\ \hline a_2 \\ \hline a_3 \\ \hline \end{array} \begin{array}{c} B \\ b_1 \\ \hline b_1 \\ \hline \end{array}$

 $a_3 \in M \qquad b_2$ $a_4 \in M \qquad b_3$

 $\in M$

Optimality Theorem : M is maximum iff there is no augmenting path **Proof**: One direction is trivial: If there is an augmenting path, then we could increase |M|, so M it is not optimum. Lets prove the second direction:

1. On the other hand, assume M is not optimum. Let M' be another matching such that |M| < |M'|.

 $\in M$

- 2. Let think about $U \stackrel{def}{=} M \bigoplus M' \subseteq E$. These are the edges which are either in M or in M', but not in both. Some edges of E are in neither M nor in M'.
- 3. Each vertex $v \in V$ is on \leq one edge of M and on \leq one edge of M'.
- 4. Every path of U is an alternating path an edge from M followed by an edge from M' and so on.
- 5. U might consists of several pathS and several cycleS.
- 6. Every cycle must have an even length (why?).
- However, since |M|<|M'|, one of the alternating path contains more edges from M'. This must be a path whose first and last edge are from M'. This is an augmenting path. QED

Max Flow in 0/1 Network

- A 0/1 network is a directed graph G(V,E), where there are given special vertices $s, t \in V$, and the capacity of every edge is 1. (instead of c(u, v))
- A flow is legal if
 - for every edge $(u, v) \in E$ we are given the flow f(u, v) across the edge (u, v).
 - $0 \le f(u, v) \le 1$. (capacity constrains)
 - For every vertex $v \in V \{s, t\}$ we have

$$\sum_{w,v)\in E} f(w,v) = \sum_{(v,x)\in E} f(v,x)$$
 Flow conservation

• The value of the flow is $|f| := \sum_{(s,x)\in E} f(s,x)$ flow from s. This is the value we want to maximize.

- The gaol is to maximize the value of the flow.
- The matching problem is a special case of this problem.

Max Flow in 0/1 Network A 0/1 network is a directed graph G(V,E), where there are given special vertices $s, t \in V$, and the capacity of every edge is 1. A flow is legal if Fight II for every edge (u, v) ∈ E we are given the flow f(u, v) across the edge (u, v). 0 ≤ f(u, v) ≤ 1 Capacity constrains For every vertex v ∈ V - {s,t} we have • $\sum_{(w,v)\in E} f(w,v) = \sum_{(v,x)\in E} f(v,x)$ Flow conservation The value of the flow is $\sum f(s, x)$ flow from s. This is the value we want to **maximize** · When we solve this problem using LP, we might find solutions that are nonintegers. · We can use ILP. Sometimes very efficient. Sometimes very slow. · Ford-Fulkerson Algorithm: A sequence of iteration, at each, the value of the flow, $|\mathbf{f}|$ will be increased by 1. • Under this algorithm, the flow across every edge is either 0 or 1. (but never 0.5) • A greedy approach would be: Find a path $s \rightsquigarrow t$ of edges that carry zero flow. Increase the flow along this path, and repeat. • This approach might not work (we saw a similar example in matching). Heavy edges carry flow. Ford-Fulkerson Algorithm: Assume that some (legit) flow f is given. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the residual graph. \odot if f(u,v)=0 then $(u, v) \in E_e$

● if f(u,v)=1 then $(v, u) \in E_f$. (that is, reverse the direction of the edges that carry flow.)

1. Assume that some 0/1 (legit) flow f is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

- For every edge $(u, v) \in E$
- if f(u,v)=0 then insert (u, v).
- if f(u,v)=1 then insert (v, u) into E_f . (that is, **reverse** the direction of the edges that carry flow.)
- 3. Find a path π : $s \rightsquigarrow t$ in the residual network G_f . If no path exists, $|\mathbf{f}|$ is maximum. Exit
- 4. Increase by 1 the flow along π as follows:
- For every edge $(u, v) \in \pi$
- If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

- 1. Assume that some 0/1 (legit) flow *f* is given.
- 2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

For every edge $(u, v) \in E$

- if f(u,v)=0 then insert (u, v).
- if f(u,v)=1 then insert (v, u) into $\mathbf{E}_{\mathbf{f}}$. (that is, **reverse** the direction of the edges that carry flow.) 3. Find a path $\pi : s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f] is maximum. **Exit**

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

1. Assume that some 0/1 (legit) flow *f* is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

- For every edge $(u, v) \in E$
- if f(u,v)=0 then insert (u, v).

• if f(u,v)=1 then insert (v, u) into E_f . (that is, **reverse** the direction of the edges that carry flow.) 3. Find a path $\pi : s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f| is maximum. **Exit**

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

• If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1

• If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) - \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

1. Assume that some 0/1 (legit) flow f is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

For every edge $(u, v) \in E$

• if f(u,v)=0 then insert (u, v).

• if f(u,v)=1 then insert (v, u) into E_f . (that is, reverse the direction of the edges that carry flow.)

3. Find a path π : $s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f| is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

• If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1

1. Assume that some 0/1 (legit) flow f is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

- For every edge $(u, v) \in E$
 - if f(u,v)=0 then insert (u, v).
- if f(u,v)=1 then insert (v, u) into $\mathbf{E}_{\mathbf{f}}$. (that is, **reverse** the direction of the edges that carry flow.)
- 3. Find a path π : $s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f| is maximum. Exit
- 4. Increase by 1 the flow along π as follows:
- For every edge $(u, v) \in \pi$
- If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

- 1. Assume that some 0/1 (legit) flow f is given.
- 2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

For every edge $(u, v) \in E$

- if f(u,v)=0 then insert (u, v).
- if f(u,v)=1 then insert (v, u) into $\mathbf{E}_{\mathbf{f}}$. (that is, **reverse** the direction of the edges that carry flow.) 3. Find a path $\pi : s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f] is maximum. **Exit**

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

1. Assume that some 0/1 (legit) flow f is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

- For every edge $(u, v) \in E$
- if f(u,v)=0 then insert (u, v).

• if f(u,v)=1 then insert (v, u) into E_f . (that is, **reverse** the direction of the edges that carry flow.) 3. Find a path $\pi : s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f| is maximum. **Exit**

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

• If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1

• If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) - \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

1. Assume that some 0/1 (legit) flow f is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

For every edge $(u, v) \in E$

• if f(u,v)=0 then insert (u, v).

• if f(u,v)=1 then insert (v, u) into E_f . (that is, reverse the direction of the edges that carry flow.)

3. Find a path π : $s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f| is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

• If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1

1. Assume that some 0/1 (legit) flow f is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

- For every edge $(u, v) \in E$
 - if f(u,v)=0 then insert (u, v).
- if f(u,v)=1 then insert (v, u) into $\mathbf{E}_{\mathbf{f}}$. (that is, **reverse** the direction of the edges that carry flow.)
- 3. Find a path $\pi : s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f| is maximum. Exit
- 4. Increase by 1 the flow along π as follows:
- For every edge $(u, v) \in \pi$
- If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

- 1. Assume that some 0/1 (legit) flow f is given.
- 2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

For every edge $(u, v) \in E$

- if f(u,v)=0 then insert (u, v).
- if f(u,v)=1 then insert (v, u) into $\mathbf{E}_{\mathbf{f}}$. (that is, **reverse** the direction of the edges that carry flow.) 3. Find a path $\pi : s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f] is maximum. **Exit**

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

1. Assume that some 0/1 (legit) flow f is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

- For every edge $(u, v) \in E$
- if f(u,v)=0 then insert (u, v).

• if f(u,v)=1 then insert (v, u) into E_f . (that is, **reverse** the direction of the edges that carry flow.) 3. Find a path $\pi : s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f| is maximum. **Exit**

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

• If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1

• If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) - \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

1. Assume that some 0/1 (legit) flow f is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

For every edge $(u, v) \in E$

• if f(u,v)=0 then insert (u, v).

• if f(u,v)=1 then insert (v, u) into E_f . (that is, reverse the direction of the edges that carry flow.)

3. Find a path π : $s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f| is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

• If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1

1. Assume that some 0/1 (legit) flow f is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

- For every edge $(u, v) \in E$
- if f(u,v)=0 then insert (u, v).
- if f(u,v)=1 then insert (v, u) into E_f. (that is, reverse the direction of the edges that carry flow.)
 3. Find a path π : s → t in the residual network G_f. If no path exists, |f| is maximum. Exit
- 4. Increase by 1 the flow along π as follows:
- For every edge $(u, v) \in \pi$
- If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

1. Assume that some 0/1 (legit) flow f is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

- For every edge $(u, v) \in E$
- if f(u,v)=0 then insert (u, v).

• if f(u,v)=1 then insert (v, u) into E_f . (that is, **reverse** the direction of the edges that carry flow.) 3. Find a path $\pi : s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f| is maximum. **Exit**

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

• If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1

• If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) - \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

- 1. Assume that some 0/1 (legit) flow f is given.
- 2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

For every edge $(u, v) \in E$

- if f(u,v)=0 then insert (u, v).
- if f(u,v)=1 then insert (v, u) into $\mathbf{E}_{\mathbf{f}}$. (that is, **reverse** the direction of the edges that carry flow.) 3. Find a path $\pi : s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f] is maximum. **Exit**

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

- If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1
- If $(\mathbf{v}, \mathbf{u}) \in E$ (edge reversed) then $f(u, v) = f(u, v) \mathbf{1}$ // cancel the flow $1 \to 0$ 5. The addition of the 1 to the flow along the edge of π increases |f| by 1.

Ford-Fulkerson Algorithm:

1. Assume that some 0/1 (legit) flow f is given.

2. Create a new graph $G_f(V, E_f)$. In the textbook, it is called the **residual network**.

For every edge $(u, v) \in E$

• if f(u,v)=0 then insert (u, v).

• if f(u,v)=1 then insert (v, u) into E_f . (that is, reverse the direction of the edges that carry flow.)

3. Find a path π : $s \rightsquigarrow t$ in the residual network G_f . If no path exists, |f| is maximum. Exit

4. Increase by 1 the flow along π as follows:

For every edge $(u, v) \in \pi$

• If $(u, v) \in E$ (edge not reversed) then f(u, v) = f(u, v) + 1

Ford-Fulkerson max-flow algorithm

Start: f[u, v] ← 0 for all (u, v) ∈ E
While (1) {

construct G_f
if an augmenting path p in G_f exists then augment f //Any path would do

• else exit }

Cuts

Definitions. A *cut* (S, T) of a flow network G = (V, E) is a partition of V such that $s \in S$ and $t \in T$.

If f is a flow on G, then the *flow across the cut* denoted $f(\mathbf{S}, \mathbf{T})$ is

Lemma: Flow across the cut

Remember $|f| := \sum_{(s,v)\in E} f(s,v)$ That is, it is the flow leaving s

Lemma. For any flow f and any cut (S, T), we have |f| = f(S,T) (flow from T to S).

Proof: On whiteboard

Upper bound on the maximum flow value

Theorem. The value of any flow no larger than the capacity of any cut: $|f| \le c(S, T)$.

Max-flow, min-cut theorem

Theorem. The following are equivalent:

- 1. |f| = c(S, T) for some cut (\overline{S}, T) .
- 2. f is a maximum flow.
- 3. f admits no augmenting paths.

Max-flow, min-cut theorem

Theorem. The following are equivalent:

- 1. |f| = c(S, T) for some cut (\dot{S}, T) .
- 2. f is a maximum flow.
- 3. \tilde{f} admits no augmenting paths.

Proof.

- (1) \Rightarrow (2): Since $|f| \le c(S, T)$ for any cut (S, T) (by the theorem from a few slides back), the assumption that |f| = c(S, T) implies that f is a maximum flow.
- (2) \Rightarrow (3): If there were an augmenting path, the flow value could be increased, contradicting the maximality of *f*.

Max-flow, min-cut theorem

min-cut

Theorem. The following are equivalent:

- 1. |f| = c(S, T) for some cut (\hat{S}, T) .
- 2. f is a maximum flow.
- 3. f admits no augmenting paths.

Proof.

- (1) \Rightarrow (2): Since $|f| \le c(S, T)$ for any cut (S, T) (by the theorem from a few slides back), the assumption that |f| = c(S, T) implies that f is a maximum flow.
- (2) \Rightarrow (3): If there were an augmenting path, the flow value could be increased, contradicting the maximality of *f*.

(3) \Rightarrow (1): Define $S = \{v \in V \mid \text{there exists a path in } G_f \text{ from } s \text{ to } v\},$ Let T = V - S. Since f admits no augmenting paths, there is no path

from *s* to *t* in G_f . Hence, $s \in S$ and $t \notin S$, So $t \in T$.

Thus (S, T) is a cut.

Consider edge (u,v) $u \in S$, $v \in T$. Observe that f(u,v)=1, since if it was zero, we would add (u,v) to the path.

Thus, f(u, v) = c(u, v)

Summing over all $u \in S$ and $v \in T$ yields f(S, T) = c(S, T), and since |f| = f(S, T), the theorem follows.