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Bipartite Matching and Max-Flow in a Network 
Alon Efrat 

 

Application: Bipartite Matching. 
• A graph G(V,E) is called bipartite if V can be partitioned into two sets V=A∪B, 

and each edge of E connects a vertex of A to a vertex of B. We sometimes 
denote these graphs by G(A∪B,E) 

• Example: The set  is a set of instructors, the set 
 is the set of courses. There is an edge  iff 

instructor  could teach course 

• A matching is a set of edges M of E, where each vertex of A is adjacent to at 
most one vertex of B, and vice versa.  

• (in the example, each instructor will teach at most one course, 
and vice versa) 

•Maximum-cardinality matching: Find a matching with as 
many edges as possible 

• This problem could be solved with in O(nm) time using Ford-Fulkerson 
algorithm. Faster algorithms exist as well. However, we will use it as an 
example to the ease of using ILP. 
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In red: Edge of the matching

Matching and flow problem 

• If we know how to find a max-flow in a network, we could use it so solve a matching 
problem: For this, we need to express the matching problem as a flow problem:  

A. Add a vertex s, and connect it to each vertex of A.   
B. Add a vertex t, and connect each vertex of B to t. 
C. Assign capacity of 1 to each edge (u,v).   

• Find max flow. Assume it is an integer flow, so the flow across  each edge is either 0 or 1.  

• Each edge of G that carries flow is in the matching.  
• Each edge of G that does not carry flow is not in the matching. 

• Claim: The edge between A and B that carry flow form a matching M.   
• Proof: We just need to show that no instructor  is matched to two courses , and vice 

versa
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Ford-Fulkerson algorithm for finding  max bipartite matching 
• This algorithm is actually appropriate for any network flow problem, but 

notations and proofs are simpler if we concentrate on the matching directly.  

• Algorithm: Start then .  No edge is in the matching. 
• Output:  is as large as possible
• At each step of the algorithm, we increase the cardinality of M by 1.

• General Step: Assume M is given. Terminology: 
• A matched vertex is a vertex which is an edgepoint of an edge of M. 

Vertices that are not matched are called exposed vertices. 

• We will denote all matched edge  by a thick red segments, and edge 
of  are depicted by a straight edge. Sometimes we will denote these 
edges by

•An augmenting path is a path that starts with an expose vertex of A, 
ends at an exposed vertex of B, and its edges alternates: An edge  
followed by an edge , followed by an edge   and so on.

•An Augmented path might include a single edge, which is 

M = ∅
|M |

M ⊆ E
E∖M

∉ M
∈ M ∉ M

∉ M
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A matching is a set of edges M of 
E, where each vertex of A is 
adjacent to at most one vertex of B, 
and vice versa.  

In red: Edge of the matching
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Claims:  
1. A vertex that was matched before the augmentation, is matched after the augmentation  
2. Matching is 1-1 (no course taught by two teaches, no teacher teaches two courses.  
3. Augmentation increases the number of edges in the matching by 1. 

•An augmenting path is a path that starts with an expose vertex of A, ends at an 
exposed vertex of B, and its edges alternates: An edge  followed by an edge 

, followed by an edge   and so on.

•Augmented path might include a single edge, which is 
•Lets p be an augmenting path. The operation of augmentation a path  
consists of 

•Insert into M all edges of p which are , and remove from M all 
edges that originally were in M.  

∉ M
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• Makes the graph a directed graph:  
• Edges  are directed from right to left 
• Edges  are directed from left to right 

• Add a vertex s, and connect it to every 
exposed   

• Run DFS or BFS from s. 
• Every path that leads to an exposed vertex must be 

an augmented path. And  
• If there is an augmented path, this process will 

find this path. 

Once an augmented bath is found, we augment its 
edges, and restart (re-bulding the directed graph).  

If no augmented path is found, stop - M is maximum 
cardinality matching. (we will need to prove it) 

Running time: Each iteration, we increase |M| by 1, 
so the number of iterations is 

. 

• Finding an augmented path is done via DFS or 
BFS, so its time is  

• Overall time 

∈ M
∉ M

ai ∈ A

≤ min{ |A | , |B |} ≤ n

O( |E | + |V | )

O( |E | |V | ) = O(mn)

s
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Optimality Theorem : M is maximum iff there is no augmenting path 
Proof: One direction is trivial: If there is an augmenting path, then we could 
increase |M|, so  M it is not optimum.  Lets prove the second direction:  

1. On the other hand, assume M is not optimum. Let M’ be another matching such 
that . 

2. Let think about .  These are the edges which are either in M 
or in M’, but not in both. Some edges of E are in neither M nor in M’. 

3. Each vertex  is on  one edge of M and on   one edge of M’. 
4. Every path of U is an alternating  path - an edge from M followed by an edge 

from M’ and so on.   
5. U might consists of several pathS and several cycleS.     
6. Every cycle must have an even length (why?).  
7. However, since |M|<|M’|, one of the alternating path contains more edges from 

M’. This must be a path whose first and last edge are from M’.   This is an 
augmenting path. QED

|M | < |M′ |
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Max Flow in 0/1 Network
• A 0/1 network is a directed graph G(V,E), where there are given special vertices  and the 

capacity of every edge is 1.  (instead of  )  
• A flow is legal if  

• for every edge  we are given the flow  across the edge . 
•   
• For every vertex  we have  

•    

• The value of the flow is . This is the value we want to maximize.  

• The gaol is to maximize the value of the flow.  

• The matching problem is a special case of this problem. 

s, t ∈ V,
c(u, v)

(u, v) ∈ E f (u, v) (u, v)
0 ≤ f (u, v) ≤ 1.  (capacity constrains) 

v ∈ V − {s, t}

∑
(w,v)∈E

f (w, v) = ∑
(v,x)∈E

f (v, x)   Flow conservation

| f | := ∑
(s,x)∈E

f (s, x)   flow from s

s
v1 v2

v3 v4

v5

t
1:1
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0 :1
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0:10:1

0:1

(in this example) | f | := ∑
(s,x)∈E

f (s, x) = 1

Max Flow in 0/1 Network
• A 0/1 network is a directed graph G(V,E), where there are given special vertices  and the capacity of every edge is 1.  
• A flow is legal if  

• for every edge  we are given the flow  across the edge . 
•   
• For every vertex  we have  

•    

• The value of the flow is . This is the value we want to maximize. 

s, t ∈ V,

(u , v) ∈ E f (u , v) (u , v)
0 ≤ f (u , v) ≤ 1 Capacity constrains

v ∈ V − {s, t}

∑
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• When we solve this problem using LP, we might find solutions that are non-
integers. 

• We can use ILP. Sometimes very efficient. Sometimes very slow.  
• Ford-Fulkerson Algorithm: A sequence of iteration, at each, the value of the 

flow, |f| will be increased by 1.  
• Under this algorithm, the flow across every edge is either 0 or 1. (but never 0.5) 
• A greedy approach would be: Find a path  of edges that carry zero flow. 

Increase the flow along this path, and repeat. 
• This approach might not work (we saw a similar example in matching). Heavy 

edges carry flow.  

Ford-Fulkerson Algorithm: Assume that some (legit) flow f is given.  
Create a new graph . In the textbook, it is called the residual graph.  

if f(u,v)=0 then . 

if f(u,v)=1 then  .  (that is, reverse the direction of the edges that 
carry flow.)

s ⇝ t

Gf (V, Ef )
(u, v) ∈ Ef

(v, u) ∈ Ef

s
v1

v2

t
1:1

1 :1
0 :1

0:1

0 :1 1:1



Ford-Fulkerson Algorithm:   
1.Assume that some 0/1 (legit) flow f is given.  
2.Create a new graph . In the textbook, it is called the residual network.  

For every edge  
• if f(u,v)=0 then insert   . 
• if f(u,v)=1 then insert  .  (that is, reverse the direction of the edges that carry flow.) 

3.Find a path  .  If no path exists, |f| is maximum. Exit 
4. Increase by 1 the flow along  as follows:  

For every edge     
• If    (edge not reversed)  then    
• If    (edge reversed)  then   // cancel the flow  

5.The addition of the 1 to the flow along the edge of  increases  by 1. 

Gf (V, Ef )
(u, v) ∈ E

(u, v)
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Example  – maximum matching
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Ford-Fulkerson max-flow algorithm
•Start: f [u, v] ← 0 for all   
•While (1) {  

•construct Gf  
• if an augmenting path p in Gf  exists then 

augment  f   //Any path would do 
• else exit } 

(u, v) ∈ E

Cuts
Definitions. A cut  of a flow network G =(V, E) is a partition of V such that s ∈ S and t ∈ T.  

 If  f  is a flow on G, then the  flow across the cut denoted  is

(S, T)

f (S, T)

s t

1
1

1
1 10

1

∈ S

∈ T

S={s,a}  

s t

a

1 1

1 1

1

b

c

d

e

f (S, T) := ∑
(u,v)∈E, u∈S,v∈T

f (u, v) − ∑
(u,v)∈E, v∈S, u∈T

f (u, v)

f(S, T) = f(s, b) + f(s, c) + f(a, t) + f(a, c)−f(b, a) − f(e, a)

flow from S to T  flow from T to S 



Lemma: Flow across the cut

Remember   That is, it is the flow leaving s 

Lemma.  For any flow f and any cut (S, T), we have | f | =  f(S,T)  (flow from T to S).

| f | := ∑
(s,v)∈E

f (s, v)

Proof: On whiteboard

Capacity of a cut
Definition. The capacity of a cut (S, T) is the number of 
edges across the cut 

s t

∈ S

∈ T

s t

c(S, T ) = ∑
(u,v)∈E, u∈S, v∈T

c(u, v)

s

Upper bound on the maximum 
flow value

Theorem.  The value of any flow no larger than the  capacity of any cut: |f| ≤ c(S,T) .  

.

| f | = f (S, T)

= ∑
(u,v)∈E, u∈S,v∈T

f (u , v) − ∑
(u,v)∈E, v∈S, u∈T

f (u , v)

≤ ∑
(u,v)∈E, u∈S,v∈T

f (u , v)

≤ ∑
(u,v)∈E, u∈S,v∈T

c(u , v) = C(S, T)

Max-flow, min-cut theorem
Theorem.  The following are equivalent: 
1.  | f | = c(S, T) for some cut (S, T). 
2.   f is a maximum flow. 
3.  f  admits no augmenting paths.



Max-flow, min-cut theorem
Theorem.  The following are equivalent: 
1.  | f | = c(S, T) for some cut (S, T). 
2.   f is a maximum flow. 
3.  f  admits no augmenting paths.

Proof.  
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T) (by the theorem 

from a few slides back), the assumption that  | f | = c(S, T) 
implies that  f  is a maximum flow. 

(2) ⇒ (3): If there were an augmenting path, the flow value could 
be increased, contradicting the maximality of  f.

Max-flow, min-cut theorem
Theorem.  The following are equivalent: 
1.  | f | = c(S, T) for some cut (S, T). 
2.   f is a maximum flow. 
3.  f  admits no augmenting paths.

Proof.  
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T) (by the theorem 

from a few slides back), the assumption that  | f | = c(S, T) 
implies that  f  is a maximum flow. 

(2) ⇒ (3): If there were an augmenting path, the flow value could 
be increased, contradicting the maximality of  f.

min-cut

(3) ⇒ (1): Define S = {v ∈ V | there exists a path in Gf  from s to v},  

Let T = V – S.  Since  f  admits no augmenting paths, there is no path 
from s to t in Gf .    
Hence, s ∈ S and t ∉ S, So  t∈Τ.  

Thus (S, T) is a cut. 

Consider edge (u,v) u ∈ S, v ∈ T.   Observe that f(u,v)=1, since if it was 
zero, we would add (u,v) to the path.   

Thus, f (u, v) = c(u, v) 

Summing over all u ∈ S and v ∈ T yields f (S, T) = c(S, T), and since       
| f | = f (S, T), the theorem follows.

s u v

S Tpath in Gf 


