
 
Hashing  

Thanks to  
Prof. Charles E. Leiserson

Symbol-table problem

Symbol table T holding n records:

key[x]
record

x

Other fields 
containing 
satellite data

Operations on T: 
• INSERT(T, x) 
• DELETE(T, x) 
• SEARCH(T, k)

How should the data structure T be organized?



As each key is inserted, h maps it to a slot of T.

Hash tables and hash functions 
We always have a table (cubby). Each cell has an index. The index is a number 
between 0..m-1.   

A hash function h computes for every possible key an index in a hash table   
{0, 1, …, m–1}:

U

K
k1

k2 k3

k4

k5

0

m–1

h(k1)
h(k4)

h(k2)

h(k3)

When a record to be inserted maps to an already 
occupied slot in T, a collision occurs.

T

 = h(k5)

0 3
7

Resolving collisions by chaining

• Records in the same slot are linked into a list.

h(49) = h(86) = h(52) = i

T

49 86 52i



Analysis of chaining

Let n be the number of keys in the table, and 
let m be the number of slots.
Define the load factor of T to be 

α = n/m 
 = average number of keys per slot. 

We will try to keep the this value no larger than 1 (same number of keys 
and slots) 

  

Search cost

Expected time to search for a record with 
a given key = Θ(1 + α).

apply hash 
function and 
access slot

search 
the list

Expected search time = Θ(1) if α = O(1), 
or equivalently, if n = O(m).



What to do if table too dense
Once α is too large     
It does not effect corrections, but effects performances. 
Once we have a chance, re-double the table (and compute a new hash function) 
Example (credit GeeksforGeeks)  

 Start with a table of a small size  
(Fig does not show the pointers to the linked list 
When table too dense, double its size  
sizes: 2,4,8,…. 

Total time: if it takes O(1) to re-insert a key, the total time for 

inserting n keys is n(1 +
1
2

+
1
4

+
1
8

…) ≤ 2n

Choosing a hash function

Desirata: 
• A good hash function should distribute the keys 

uniformly into the slots of the table. 
• Regularity in the key distribution should not affect this 

uniformity. 
• Hope: if k1≠k2 in any bit, then there is a good chance 

h(k1)≠h(k2) 
• Functions that ignore some bits (e.g. h(k)=k mod 100, 

h(k)=k mod 1024 )  should be used only if know enough 
about the data distribution to think that this is not an 
issue. 



h(k)

Division method
Assume all keys are integers, and define 

h(k) = k mod m.

Extreme deficiency:  If m = 2r, then the hash 
doesn’t even depend on all the bits of k:
• If k = 10110001110110102 and r = 6, then 

h(k) = 0110102 .

Deficiency:  Don’t pick an m that has a small 
divisor d.  A preponderance of keys that are 
congruent modulo d can adversely affect 
uniformity. 

Division method (continued)

h(k) = k mod m.

Pick m to be a prime not too close to a power 
of 2 or 10 and not otherwise used prominently 
in the computing environment.
Annoyance: 
• Sometimes, making the table size a prime is 

inconvenient.
But, this method is popular, although the next 
method we’ll see is usually superior.



Multiplication method
Assume that all keys are integers. Pick a constant integer A,  
and set  

h(k) = (A·k) mod m 
A is an odd integer 

Other variant of the multiplication method:   
Pick A as a non-integer number 
A=2.71828182846,  or  A=   = 1.41421356237 

  

Note - the part in the red parenthesis is a float in (0,1). 
Multiply my m gives a float in (0,m). The second floor just 
makes it a legit index in the table T[0…m-1]. 

 

2

h(k) = ⌊m((A ⋅ k) − ⌊A ⋅ k⌋)⌋

Multiplication method example
Variant 3: A is a large integer, but the value of h(k) is the 
number that several digits in the ‘middle’ of the (Ak).  

1 0 1 1 0 0 1 
×                      1 1 0 1 0 1 1 

1 0 0 1 0 1 0 0 1 1 0 0 1 1

= A 
= k

h(k)
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0

35
26

17

Modular wheel

Lets understand why all the variants of 
the multiplication method works nicely

Think about a series of keys  
,  

we hope that … fall in different and 
pairwise remote locations in the table.  

k1 = 1, k2 = 2, k3 = 3…
h(k1), h(k2), h(3)

1 0 1 1 0 0 1 
×                      1 1 0 1 0 1 1 

1 0 0 1 0 1 0 0 1 1 0 0 1 1

= A 
= k

h(k)
A

.
2A

.

3A.

Multiple hash functions: 
Applications to distributed database.  We need to store a large number n of records.  

Lets think about a system with 8 disks.  
Or 8 users, each in a different locations. 

0 1 2 3

4 5 6 7

• RAID of disks is a device that contains multiple disks (sometimes sharing parts) 

• Each Individual disk is prone to failures. Want to maintain robustness and load fairness.     
• Robustness to disk failures. We should still be able to access all our data, even if two disks crashed. So each record 

needs to be stored on multiple disks.  
• Load fairness Each disk should store a small portion of the database, and these portions should be split fairly.  So each 

disk should contain approximately 3n/8 records.   
• Efficiency: Search time should be small. When searching for a key, should not have to check each individual disk 

• Need to support: Insert(k)/delete(k) /find(k) .  
• We don’t know the data in advance - changing dynamically.  
• So once a new record appears, we need to decide which 3 diskS will store it. Once a query find(k) appear, need to be able 

to find these 3 disks.  

0 1
7
3



Multiple hash functions: 
It is convenient sometimes to have multiple hash functions   

We can generate them by picking 3 constants    for example  
 

We don’t discuss here where in the disk each record is stored - orthogonal discussion.  

{h1(k), h2(k), h3(k)}
A1…A3

(3k) mod 8, (5k) mod 8, (7k) mod 8

0 1 2 3

4 5 6 7

• We don’t know the data in advance - changing dynamically.  
• Insert(k).   A new record with key k appeared. Compute . Insert k into disk whose index is  

(example ). 
Similarly insert copies of k into disks .  

• Search(k): Compute , ,  and check these disks. If don’t find, it is either because was 
never inserted or due to disk failures. 

h1(k) h1(k)
k = 15,h1(k) = (3k) mod 8, so we store this record in disk (45 mod 8) =  disk 5

h2(k), h3(k)
h1(k) h2(k) h3(k)

 Dot-product method. Hashing large files.
In many applications, the key is too long to be considered a single number.   
E.g. k=“BDCZ”.  
In general, we need a hash functions that could be used on very long keys, as text documents, books, 
images, DNA, geometric structures, malware, viruses… 

Expressing the key as a single number is not useful.  

Idea:  Remember that if the key k is a small number, we could use the multiplication method, and set 
h(k)=(Ak)mod m  

Now if the key is very large, lets break it into several small pieces, so instead of tread the key as a single 
number, lets think about it as a vector (or a list) consisting of several numbers.   
Instead of a single constant A,  we compute multiple and different constants      
We decompose the key into characters, multiply each by a different constant and sum (modulo m). 
Example:  

 

(m is the size of the hash table. The ascii value of ‘B’ is 66 and of ‘Z’ is 90). 

• Computing all constants ai is very simple. Pick random integers between 1 and m-1. 
• Excellent in practice, and in theory   
• Involve one pass of the file, in the case of very long keys. 

a1, a2, a3, a4…

h(BDCZ) = (a1 ⋅ 66 + a2 ⋅ 68 + a3 ⋅ 67 + a4 ⋅ 90) mod m



Dot product method-cont.   
 Before any data item arrives, decide about the size m of the hash table.  
m should be prime, and >2n.  
Let m  
Pick at random constants .  
Each ai is picked individually at random uniformly   
Now the first key k arrive. Lets break it into pairs of characters 
k=“According to section 1223(b) a nonprofit organization…’’   
Break into pairs of characters, and for each pair, compute its numeric 
value using base 256 (ASCII).   

k=Ac|co|rd|in|g |to| s|ct 
. 

Finally  

≈ 220 = 1M
⃗a = (a0, a2, …ar)

1 < ai < m − 1

k0⏞
Ac

k1⏞co
k2⏞
rd

k3⏞
in

k4⏞g_
k5⏞
to

k6⏞_s
k7⏞ec

k8⏞
ti    where  k0 = 'A' ⋅ 256 +′ c′ = 65 * 256 + 99

h ⃗a (k) = (
r

∑
i=0

ai ⋅ ki) mod m

A deeper look at the dot product method
• Obviously, our aim is to minimizes collisions 
• From now on, assume m (the table size) is a prime number.  
• Assume all our keys  are numbers, between 0..m-1.                                

No key appears twice.  
• Pick any constant integer . Lets consider the hash function

.    

Lemma 1 : for every , there is a unique  such that 
.  

• Good news: The lemma guarantees that the hash function   will 
map the keys of K to different cells of the hash table. No collisions at all.  

• Bad news: This guarantee is waved if we don’t require that all keys of K are . For 
example, lets play with  . Then . So by itself, this is not 
very helpful. We will see next how to use it more efficiently.   

• Before continuing, lets rewrite Lemma 1:  
Lemma 2  
• For every fixed , and every fixed  ,  

…There is exactly one value   such that . 

K = {k1…kn}

α ∈ [1..m − 1]
h(x) = (αx) mod m

Y ∈ [0..m − 1] t ∈ [0..m − 1]
(αt) = Y mod m

h(x) = (αx) mod m

< m
h(x) = (3x) mod 5 h(3) = h(8)

Y ∈ [0..m − 1] x0 ∈ [1..m − 1]
α ∈ [0..m − 1] (x0α) mod m = Y

0 1 3
4 5 6

2



• Now think about a set of keys   where each key is a point  (for 
every i). These are points that we need to store in a hash table. 

• Lets pick the table size   so   and a m prime. Example: , so we pick . 

• We want to choose a hash function that would map these points to the hash table.   

• If we know which keys are in K, then we could create a perfect hash function that would 
create no collisions. But usually we don’t know K, and even if we do, it does not worth the 
trouble.  

• Idea: Pick at random two constants , both in the range [1..m-1]. When we need to 
decide at which cell to store the point , we use hash function is 

K = {p1, …pn} pi = (xi, yi)

m m ≥ 2n n = 10 m = 23

α, β
pi = (xi, yi)

h(pi) = ((αxi + βyi) mod m)

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

(6, 4)

More on dot-product method
(6,4)

• Idea: Pick at random two constants , both in the range [1..m-1]. When we need to decide at 
which cell to store the point , we use hash function is 

 

• Lemma 3.  The probability that   is   1/m.    That is, for any two points, the 
probability of a collision is really small. 

• Proof:  Assume .   Since they are not the same point, assume  (the 
case  is symmetric)  

• If   then  which implies  

    

• Think about it this way: The values of  are given, and we have no control about them.  
We first picked , so the value of   is fixed. The value  is also fixed. Now we 
(as a mental experiment) check the cases . Only for a single value 
of  the right box is equal to the left box.   

• In practice, instead of checking these values directly, we just pick  at random. QED

α, β
pi = (xi, yi)

h(pi) = ((αxi + βyi) mod m)
h(pi) = h(pj) ≤

pi = (xi, yi) and pj = (xj, yj) xi ≠ xj
yi ≠ yj

h(pi) = h(pj) ((αxi + βyi) mod m) = ((αxj + βyj) mod m)
α (xi − xj)

=x0

= β(yj − yi)

=Y

mod m

xi, xj, yi, yj
β β(yj − yi) (xi − xj)

α = 1, α = 2,… α = m − 1
α

α, β

More on dot-product method
(6,4)



  
So we pick  at random from the range . Lets pick two keys 

 
Conclusion from Lemma 3:  The probability that  

.    

Now consider a set  of n keys.  lets ask what is the expected number of 
collisions between  and the other keys of K. Using the same idea that we used for the hight 
of SkipList Analysis, this number is smaller that the some of each individual probability. That 
is,   

 

• Next, assume that  K is a set of n keys , each is a number in .   
Which hash function should we use ?  

• As usual, we pick m as a prime .   
• Attempt 1: Pick  at random. Let .  Possibly it 

works well, but no guaranties. A vicious adversary could pick the keys of  K which are 
bad for almost every choice of  

•

α, β [1..m]
p1 = (x1, y1) and  p2 = (x2, y2)

h(p1) = h(p2)  (that is, a collision occurs) is ≤
1
m

≤
1
2n

K = {p1, p2…pn}
p1

≤
1
m⏟

collisions p1,p2

+
1
m⏟

collisions between p1,p3

+ … +
1
m⏟

collisions p1,pn

=
n
m

≤
1
2

K = {k1…kn} [0...n2]

≥ 2n
α ∈ [0..m − 1] h(x) = (αx) mod m

α

Dot-product method - cont

  
• Attempt 1: Pick  at random. Let .  Possibly it works well, 

but no guaranties. A vicious adversary could pick the keys of  K which are bad for almost every 
choice of  

• Better approach. For every key  , express   it in base m.   .   Now we are back to 
the case of 2D points.  

• Example for . Then  and .  
• Another example: . Then  and .   (since ) 
• Instead of expressing  in base m, we could use any other way to express  as two numbers 

, both . For example, if , and   then  has 4 bytes. We will 
use the first 2 bytes for  and the last two for .  

• Similarly, if each  is a number between 0 and   we will pick at random 3 values 
. We express each  using 3 `digits’  ,   all in  .    So   
.  

•  

• If the length of the key is unlimited (e.g. documents), we use round robin 
 

•

α ∈ [0..m − 1] h(x) = (αx) mod m

α

ki ki ki = xim + yi

m = 10, ki = 35 xi = 3 yi = 5
m = 11, ki = 35 xi = 3 yi = 2 3 ⋅ 11 + 2 = 35

ki ki
(xi, yi) ≤ m − 1 m ≤ 216 ki < 232 ki

xi yi

ki m3

α, β, γ ∈ [1..m − 1] ki xi, yi, zi [0..m − 1]
ki = zim2 + yim + xi
h(ki) = ((αxi + βyi + γzi) mod m)

α1, α2, α3, α4, α1, α2, α3, α4, α1, α2, α3, α4, α1, α2, α3, α4

Dot-product method - cont



Universal family of hash functions
• We have a set of hash functions   
• We say that it is universal family for every two keys 

 , if we pick at random , then the 
probability of a collision  is  .  

• That is, it is not worth than the probability of picking random 
cells for .  

• Only  of the functions of H cause collisions of . 

• If we think about all the possible hash functions 
.  

• When we change  (both in [0..m-1]),  we create all 
different members of the family.  

• We just saw that this family is universal.  
• It guaranties that the probability of collusion between   is 

 , and that the average number of collisions between 
 and any other member of K is .   That is,  most cases, 
 has no collisions. 

H = {h1(k)…hL(k)}

ki, kj ∈ U hi(k) ∈ H
h(ki) = h(kj) ≤ 1/m

ki, kj

≤
L
m

ki, kj

h((xi, yi)) = (αxi + βyi) mod m
α, β,

ki, kj

≤
1
m

≤
1

2n
ki ≤ 1/2
ki

H

Introduction to Algorithms

Universality is good

Theorem.  Let h be a hash function chosen 
(uniformly) at random from a universal set H 
of hash functions.  Suppose h is used to hash 
n arbitrary keys into the m slots of a table T.  
Then, for a given key x, we have

E[#collisions with x] < n/m.



Introduction to Algorithms

Proof of theorem (without random vars) 
Proof.  Let  be two keys, let  be a 
hash function. We define   

x, y hi ∈ H

cxy ( )=  hi

1  if        
otherwise.

hi(x) = hi(y)

.

1
|H | ∑

hi∈H
∑
y∈K

cxy(hi) =
1

|H | ∑
y∈K

∑
hi∈H

cxy(hi) ≤
1

|H | ∑
y∈K

|H |
m

≤
1

|H |
n

|H |
m

=
n
m

Remember: K is fixed - a set of n keys. x is one of them.   We are 
worried about collisions between x and other members of K. Each 
different hash function causes other collision. So we ask what does 
the ‘average has function causes.  .  

BTW - if  then this number n ≤ m /2, ≤ 1/2

Introduction to Algorithms

Proof of theorem (using random vars) 

Proof.  Let Cx be the random variable denoting 
the total number of collisions of keys in T with 
x, and let 

cxy =
1  if h(x) = h(y), 
0  otherwise.

Note:  E[cxy] = 1/m and ∑
−∈

=
}{xTy
xyx cC .

E(Cx) = E[∑
y∈K

cxy] = ∑
y∈K

E[ccy] = n/m
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REMEMBER 
THIS!

Constructing a set of universal 
hash functions

Let m be prime.  Decompose key k into r + 1 
digits, each with value in the set {0, 1, …, m–1}. 
That is, let k = 〈k0, k1, …, kr〉, where 0 ≤ ki < m. 
Randomized strategy: 
Pick a = 〈a0, a1, …, ar〉 where each ai is chosen 
randomly from {0, 1, …, m–1}.

mkakh
r

i
iia mod)(

0
∑
=

=Define .

How big is H = {ha}?  |H| = mr + 1.

Dot product, 
modulo m
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Perfect hashing
A hash function is perfect (for a set K of n keys) if  for every .  

How could we find such a function? 

Deterministic algorithm - hard.  

Randomize algorithm. Let’s assume (unrealistically) that we could pick a really 
large table  Pick   from  from a universal family. The probability 
of no collision is  

  

 Markov’s inequality says that for any nonnegative random variable X, we have 
Pr{X ≥ t} ≤ E[X]/t. 

So in this case, (large m), if we pick h at random, we have %50 chance to hit a 
perfect function.  

Algorithm: Pick h at random. If perfect - great. If not - repeat 

Expected number of trails =  . 

h(x) ≠ h(y) x, y ∈ K

m = n2 . h ∈ H

E[ ∑
x,y∈X

cxy(h)] = (n
2) 1

m
=

n(n − 1)
2

1
m

=
1
2

n(n − 1)
n2

≤
1
2

1
1
2

+ 2
1
4

+ 3
1
8

+ …i
1
2i

+ … = 2
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Toward a Perfect hashing with 
linear storage. 

Use one hash function h to partitions K into sets . 
The set  set contains all the keys that are mapped to cell  in 
the table.     

S1, S2…Sm
Si i

Si = {x ∈ K | h(x) = i}

Note: h does not guarantie 
no collisions. But the 
number of collisions is 
small 

For each  build another 
hash table (only for this set) 
with table size , 
and no collisions at all. (see 
previous slide)

Si

mi = |Si |
2

40 37 22

0
1
2
3
4
5
6

26

m a 0 1 2 3 4 5 6 7 8

14 27

S4

S6

S1

4 31

1 00

9 86

T

h31(14) = h31(27) = 1

© 2001 by Charles E. Leiserson Introduction to Algorithms 30

Analysis of storage
For the level-1 hash table T, choose m = n, and 
let ni be random variable for the number of keys 
that hash to slot i in T.  By using ni

2 slots for the 
level-2 hash table Si, the expected total storage 
required for the two-level scheme is therefore

( ) )(
1

0

2 nnE
m

i
i Θ=⎥
⎦

⎤
⎢
⎣

⎡
Θ∑

−

=

,

since the analysis is identical to the analysis from 
recitation of the expected running time of bucket 
sort.  (For a probability bound, apply Markov.)



Resolving collisions
Several approaches  
1. Chain hashing - all keys mapped to the same cell are stored in a 

linked list.  (Less popular in practice - dynamic memory allocation 
is slow, multiple vulnerabilities, less friendly to compiler-
optimization, GPU unfriendly… 

2. Cuckoo hashing - will discuss later  

3. Resolving collisions by open addressing - most popular.  
  

Resolving collisions by open addressing 
No storage is used outside of the hash table itself. 

Each cell could contain at most one key.  

The same key k  might be mapped by h(k) to different locations in the table, 
depending on availability.   

When either searching k or searching for a place for k, we will check 

  The first index that we search k. If fail  
  The second index that we search k. If fail  
  The third index that we search k. If fail etc  
When should we give up? (will see in next slides) 
How should we find these indexes ? 

h(k, i )- a hash function that takes two parameters:  
Key k    
Trial number i (first trail has index 0) 



Resolving collisions by open addressing
No storage is used outside of the hash table itself.. 
• The hash function depends on both the key and probe number: 

h(k,i)  
 input is a pair: a key and a trial number. 0,1,2,…m-1 

Output: Always a legit index in the table T[ ].  a number in the range    
0,1...m-1 

E.g.  
•  h(k,i) = (k+i) mod m    ;  
•  h(k,i) = (k+i h2(k)) mod m ;  
   here h2(k) is some other hash function   
•  f(k,i) = (k+i2 ) mod m    
Inserting a key k:  
 we check Τ[h(k,0)].   If empty we insert k, there. Otherwise,   
 we check Τ[h(k,1)].   If empty we insert k, there. Otherwise,… 
 otherwise etc for  h(k,2), h(k,3), …, h(k,m–1).  
Finding a key k:  
 we check whether Τ[h(k,0)] ==k.   If not, if empty, stop. otherwise 
 we check whether  Τ[h(k,1)] ==k.   If not, if empty, stop. otherwise 
otherwise etc for  h(k,2), h(k,3), …, h(k,m–1). 

Example of Insertion
Hash function: h(k,i)=(k+i) mod 8 
k-key. i is the attempt number (start at 0) 

• insert(12). h(12,0)=4 
Read: The first attempt (i=0) checks T[h(12,0)]. It is free

20

T
0

12

1
2
3
4
5
6
7

• insert(15). h(15,0)=7

15

• insert(20). h(20,0)=4 (collision) 
h(20,1)=(20+1)mod 8=5 
T[5] is empty. Place 20 at T[5]

• insert(23). h(23,0)=7 (collision) 
h(23,1)=0

23

• insert(28). h(28,0)=4 (collision) ;  
h(28,1)=5(collision);  
h(28,2)=6 

28

Inserting a key k:  
 we check Τ[h(k,0)].   If empty we insert k, there. Otherwise,   
 we check Τ[h(k,1)].   If empty we insert k, there. Otherwise,… 
etc for  h(k,2), h(k,3), …, h(k,m–1). 



Searching a key. Example on the same table
Hash function: h(k,i)=(k+i) mod 8 

k-key. i is the attempt number (start at 0) 

20

T
0

12

1
2
3
4
5
6
715

23

28

`Search’ uses the same probing sequence. The Search stops once it hits an empty cell, or i=n-1.   

Example. Search 28.  First check h(28,0)=4, but T[4] 28. Next check h(28,1)=5 but T[5] 28. Next 
T[6]=28 - success. 

Search(16).   h(16,0)=0. T[0] 16. Next check  h(16,1)=5, but T[5]-empty. Search terminates - 16 not in 
table.

≠ ≠

≠

Finding a key k:  
 we check if  Τ[h(k,0)] =k.   If not, if empty, stop. otherwise 
 we check if  Τ[h(k,1)] =k.   If not, if empty, stop.  other etc 

Searching a key. Example on the same table
Hash function: h(k,i)=(k+i) mod 8 
k-key. i is the attempt number (start at 0) 

20

T
0

12

1
2
3
4
5
6
715

23

28

• Next, delete 20, and then lets again search 28.  
• The search wrongly stops at the empty cell that used to contain 28. 

Error  
• Solution: Place a dummy to indicate that this cell used to contain 

a key, but this key was deleted.  The ‘search’ treats this cell as 
‘nonempty’ and continues the probing sequence. The search stops 
only when reaching a cell that is “really” empty.   

• When inserting a new key, we can replace the dummy with a real 
key. Example - inserting 13 will override the dummy 

dummy

`Search’ uses the same probing sequence. The Search stops once it hits an empty cell, or i=n-1.   

Example. Search 28.  First check h(28,0)=4, but T[4] 28. Next check h(28,1)=5 but T[5] 28. 
Next T[6]=28 - success. 

Search(16).   h(16,0)=0. T[0] 16. Next check  h(16,1)=5, but T[5]-empty. Search terminates - 16 
not in table.

≠ ≠

≠



Maintenance

Scan the table from time to time, and get rid of all of all dummies.  
Re-insert each key, 
If the table needs to be expanded - good opportunity to use the 

dynamic table technique and re-hash.

Probing strategies
Linear probing:  
Given an ordinary hash function hʹ(k), linear probing uses the hash 
function 

h(k,i) = (hʹ(k) + i) mod m. 
This method, though simple, suffers from primary clustering, where 
long runs of occupied slots build up, increasing the average search 
time.  Moreover, the long runs of occupied slots tend to get longer.  

Theoretically, inferior method.  

In practice, is the fastest method. Why ? In the memory hierarchy, 
locality is a winner. If we accessed T[i], then it is likely that T[i+1] 
is awaiting in cache. 



Probing strategies

Double hashing  
Given two ordinary hash functions h1(k) and h2(k), 
double hashing uses the hash function 

h(k,i) = (h1(k) + i⋅h2(k)) mod m. 
This method generally produces excellent results, 
but h2(k) must be relatively prime to m.  One way 
is to make m a power of 2 and design h2(k) to 
produce only odd numbers.

The expected number of probs,  until an empty slot is found

Assumption: At every i, the probability of hitting cell j is 1/m (uniformly) 
Lets call a prob a ``success’’ if we hit an empty cell, and ``fail’’ if hit an 
occupied cell.  
The sequence probs ends with a successful prob.  

The probability that exactly 0 fail probs are needed is  
(success on first try) 

The probability that exactly 1 fail probs is needed is   
(fail, then success) 

The probability that exactly 2 fail probs are needed is   
(fail, fail then success) 

The probability that exactly 3 fail probs are needed is   
(fail, fail, fail then success) 

The probability that exactly j fail probs are needed is   
(j fails, then success) 

 So the expected number of probs is  

 

1 − α

α(1 − α)

α2(1 − α)

α3(1 − α)

α j(1 − α)

1sucessful prob + (1 − α)
∞

∑
j=1

α j ⋅ jfails

Recall  - load factor α = n /m



Expected number 
of probs (cont)

Conclusions:  
If , the expected number of probs is 2 
If , the expected number of probs is 300 
If , the expected number of probs is  

Conclusion: Keep . 
  
Rehash twice a day:  first thing every morning, 
and before bed time.  

α = 0.5
α = 0.95
α = 0.98 104

m ≥ 2n

α 0.5

α = 0.98

Expected number 
of probs (cont)

Conclusions:  
If , the expected number of probs is 2 
If , the expected number of probs is 300 
If , the expected number of probs is  

Conclusion: Keep . 
  
Rehash twice a day:  first thing every morning, 
and before bed time.  

α = 0.5
α = 0.95
α = 0.98 104

m ≥ 2n

α 0.5

α = 0.98



The third method to resolve collisions 
Cuckoo Hashing 

Hash table that supports (as usual):  
• insert(k)  expected  
• search(k)  expected worst-case  
• delete(k) expected worst-case  
Use two tables T, T’, each with   cells, and two hash functions 
 .  

We use  to search in T, and we use  to search in  

Search(k){ 
If  return FOUND  
else return NOT FOUND 
} 

O(1) time 
O(1) time 

O(1) time 
≈ n

h(k), h′ (k)

h(k) h′ (k) T′ .

T[h(k)] = k  OR  T′ [h′ (k)] = k

Cuckoo Hashing - Deletion 

Noting new for deletion:  

Delete(k) -search for it. If found, replace by  a 
gravestone/flag. 

Next insert could write over the flag (similar t open 
addressing) 

Rehashing removes this flag. 


