

Hashing

Thanks to
Prof. Charles E. Leiserson

Symbol-table problem

Symbol table T holding n records:

key[x]
record

x

Other fields
containing
satellite data

Operations on T:
• INSERT(T, x)
• DELETE(T, x)
• SEARCH(T, k)

How should the data structure T be organized?

As each key is inserted, h maps it to a slot of T.

Hash tables and hash functions
We always have a table (cubby). Each cell has an index. The index is a number
between 0..m-1.

A hash function h computes for every possible key an index in a hash table
{0, 1, …, m–1}:

U

K
k1

k2 k3

k4

k5

0

m–1

h(k1)
h(k4)

h(k2)

h(k3)

When a record to be inserted maps to an already
occupied slot in T, a collision occurs.

T

 = h(k5)

0 3
7

Resolving collisions by chaining

• Records in the same slot are linked into a list.

h(49) = h(86) = h(52) = i

T

49 86 52i

Analysis of chaining

Let n be the number of keys in the table, and
let m be the number of slots.
Define the load factor of T to be

α = n/m
 = average number of keys per slot.

We will try to keep the this value no larger than 1 (same number of keys
and slots)

Search cost

Expected time to search for a record with
a given key = Θ(1 + α).

apply hash
function and
access slot

search
the list

Expected search time = Θ(1) if α = O(1),
or equivalently, if n = O(m).

What to do if table too dense
Once α is too large
It does not effect corrections, but effects performances.
Once we have a chance, re-double the table (and compute a new hash function)
Example (credit GeeksforGeeks)

 Start with a table of a small size
(Fig does not show the pointers to the linked list
When table too dense, double its size
sizes: 2,4,8,….

Total time: if it takes O(1) to re-insert a key, the total time for

inserting n keys is n(1 +
1
2

+
1
4

+
1
8

…) ≤ 2n

Choosing a hash function

Desirata:
• A good hash function should distribute the keys

uniformly into the slots of the table.
• Regularity in the key distribution should not affect this

uniformity.
• Hope: if k1≠k2 in any bit, then there is a good chance

h(k1)≠h(k2)
• Functions that ignore some bits (e.g. h(k)=k mod 100,

h(k)=k mod 1024) should be used only if know enough
about the data distribution to think that this is not an
issue.

h(k)

Division method
Assume all keys are integers, and define

h(k) = k mod m.

Extreme deficiency: If m = 2r, then the hash
doesn’t even depend on all the bits of k:
• If k = 10110001110110102 and r = 6, then

h(k) = 0110102 .

Deficiency: Don’t pick an m that has a small
divisor d. A preponderance of keys that are
congruent modulo d can adversely affect
uniformity.

Division method (continued)

h(k) = k mod m.

Pick m to be a prime not too close to a power
of 2 or 10 and not otherwise used prominently
in the computing environment.
Annoyance:
• Sometimes, making the table size a prime is

inconvenient.
But, this method is popular, although the next
method we’ll see is usually superior.

Multiplication method
Assume that all keys are integers. Pick a constant integer A,
and set

h(k) = (A·k) mod m
A is an odd integer

Other variant of the multiplication method:
Pick A as a non-integer number
A=2.71828182846, or A= = 1.41421356237

Note - the part in the red parenthesis is a float in (0,1).
Multiply my m gives a float in (0,m). The second floor just
makes it a legit index in the table T[0…m-1].

2

h(k) = ⌊m((A ⋅ k) − ⌊A ⋅ k⌋)⌋

Multiplication method example
Variant 3: A is a large integer, but the value of h(k) is the
number that several digits in the ‘middle’ of the (Ak).

1 0 1 1 0 0 1
× 1 1 0 1 0 1 1

1 0 0 1 0 1 0 0 1 1 0 0 1 1

= A
= k

h(k)

4

0

35
26

17

Modular wheel

Lets understand why all the variants of
the multiplication method works nicely

Think about a series of keys
,

we hope that … fall in different and
pairwise remote locations in the table.

k1 = 1, k2 = 2, k3 = 3…
h(k1), h(k2), h(3)

1 0 1 1 0 0 1
× 1 1 0 1 0 1 1

1 0 0 1 0 1 0 0 1 1 0 0 1 1

= A
= k

h(k)
A

.
2A

.

3A.

Multiple hash functions:
Applications to distributed database. We need to store a large number n of records.

Lets think about a system with 8 disks.
Or 8 users, each in a different locations.

0 1 2 3

4 5 6 7

• RAID of disks is a device that contains multiple disks (sometimes sharing parts)

• Each Individual disk is prone to failures. Want to maintain robustness and load fairness.
• Robustness to disk failures. We should still be able to access all our data, even if two disks crashed. So each record

needs to be stored on multiple disks.
• Load fairness Each disk should store a small portion of the database, and these portions should be split fairly. So each

disk should contain approximately 3n/8 records.
• Efficiency: Search time should be small. When searching for a key, should not have to check each individual disk

• Need to support: Insert(k)/delete(k) /find(k) .
• We don’t know the data in advance - changing dynamically.
• So once a new record appears, we need to decide which 3 diskS will store it. Once a query find(k) appear, need to be able

to find these 3 disks.

0 1
7
3

Multiple hash functions:
It is convenient sometimes to have multiple hash functions

We can generate them by picking 3 constants for example

We don’t discuss here where in the disk each record is stored - orthogonal discussion.

{h1(k), h2(k), h3(k)}
A1…A3

(3k) mod 8, (5k) mod 8, (7k) mod 8

0 1 2 3

4 5 6 7

• We don’t know the data in advance - changing dynamically.
• Insert(k). A new record with key k appeared. Compute . Insert k into disk whose index is

(example).
Similarly insert copies of k into disks .

• Search(k): Compute , , and check these disks. If don’t find, it is either because was
never inserted or due to disk failures.

h1(k) h1(k)
k = 15,h1(k) = (3k) mod 8, so we store this record in disk (45 mod 8) = disk 5

h2(k), h3(k)
h1(k) h2(k) h3(k)

 Dot-product method. Hashing large files.
In many applications, the key is too long to be considered a single number.
E.g. k=“BDCZ”.
In general, we need a hash functions that could be used on very long keys, as text documents, books,
images, DNA, geometric structures, malware, viruses…

Expressing the key as a single number is not useful.

Idea: Remember that if the key k is a small number, we could use the multiplication method, and set
h(k)=(Ak)mod m

Now if the key is very large, lets break it into several small pieces, so instead of tread the key as a single
number, lets think about it as a vector (or a list) consisting of several numbers.
Instead of a single constant A, we compute multiple and different constants
We decompose the key into characters, multiply each by a different constant and sum (modulo m).
Example:

(m is the size of the hash table. The ascii value of ‘B’ is 66 and of ‘Z’ is 90).

• Computing all constants ai is very simple. Pick random integers between 1 and m-1.
• Excellent in practice, and in theory
• Involve one pass of the file, in the case of very long keys.

a1, a2, a3, a4…

h(BDCZ) = (a1 ⋅ 66 + a2 ⋅ 68 + a3 ⋅ 67 + a4 ⋅ 90) mod m

Dot product method-cont.
 Before any data item arrives, decide about the size m of the hash table.
m should be prime, and >2n.
Let m
Pick at random constants .
Each ai is picked individually at random uniformly
Now the first key k arrive. Lets break it into pairs of characters
k=“According to section 1223(b) a nonprofit organization…’’
Break into pairs of characters, and for each pair, compute its numeric
value using base 256 (ASCII).

k=Ac|co|rd|in|g |to| s|ct
.

Finally

≈ 220 = 1M
⃗a = (a0, a2, …ar)

1 < ai < m − 1

k0⏞
Ac

k1⏞co
k2⏞
rd

k3⏞
in

k4⏞g_
k5⏞
to

k6⏞_s
k7⏞ec

k8⏞
ti where k0 = 'A' ⋅ 256 +′ c′ = 65 * 256 + 99

h ⃗a (k) = (
r

∑
i=0

ai ⋅ ki) mod m

A deeper look at the dot product method
• Obviously, our aim is to minimizes collisions
• From now on, assume m (the table size) is a prime number.
• Assume all our keys are numbers, between 0..m-1.

No key appears twice.
• Pick any constant integer . Lets consider the hash function

.

Lemma 1 : for every , there is a unique such that
.

• Good news: The lemma guarantees that the hash function will
map the keys of K to different cells of the hash table. No collisions at all.

• Bad news: This guarantee is waved if we don’t require that all keys of K are . For
example, lets play with . Then . So by itself, this is not
very helpful. We will see next how to use it more efficiently.

• Before continuing, lets rewrite Lemma 1:
Lemma 2
• For every fixed , and every fixed ,

…There is exactly one value such that .

K = {k1…kn}

α ∈ [1..m − 1]
h(x) = (αx) mod m

Y ∈ [0..m − 1] t ∈ [0..m − 1]
(αt) = Y mod m

h(x) = (αx) mod m

< m
h(x) = (3x) mod 5 h(3) = h(8)

Y ∈ [0..m − 1] x0 ∈ [1..m − 1]
α ∈ [0..m − 1] (x0α) mod m = Y

0 1 3
4 5 6

2

• Now think about a set of keys where each key is a point (for
every i). These are points that we need to store in a hash table.

• Lets pick the table size so and a m prime. Example: , so we pick .

• We want to choose a hash function that would map these points to the hash table.

• If we know which keys are in K, then we could create a perfect hash function that would
create no collisions. But usually we don’t know K, and even if we do, it does not worth the
trouble.

• Idea: Pick at random two constants , both in the range [1..m-1]. When we need to
decide at which cell to store the point , we use hash function is

K = {p1, …pn} pi = (xi, yi)

m m ≥ 2n n = 10 m = 23

α, β
pi = (xi, yi)

h(pi) = ((αxi + βyi) mod m)

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

(6, 4)

More on dot-product method
(6,4)

• Idea: Pick at random two constants , both in the range [1..m-1]. When we need to decide at
which cell to store the point , we use hash function is

• Lemma 3. The probability that is 1/m. That is, for any two points, the
probability of a collision is really small.

• Proof: Assume . Since they are not the same point, assume (the
case is symmetric)

• If then which implies

• Think about it this way: The values of are given, and we have no control about them.
We first picked , so the value of is fixed. The value is also fixed. Now we
(as a mental experiment) check the cases . Only for a single value
of the right box is equal to the left box.

• In practice, instead of checking these values directly, we just pick at random. QED

α, β
pi = (xi, yi)

h(pi) = ((αxi + βyi) mod m)
h(pi) = h(pj) ≤

pi = (xi, yi) and pj = (xj, yj) xi ≠ xj
yi ≠ yj

h(pi) = h(pj) ((αxi + βyi) mod m) = ((αxj + βyj) mod m)
α (xi − xj)

=x0

= β(yj − yi)

=Y

mod m

xi, xj, yi, yj
β β(yj − yi) (xi − xj)

α = 1, α = 2,… α = m − 1
α

α, β

More on dot-product method
(6,4)

So we pick at random from the range . Lets pick two keys

Conclusion from Lemma 3: The probability that

.

Now consider a set of n keys. lets ask what is the expected number of
collisions between and the other keys of K. Using the same idea that we used for the hight
of SkipList Analysis, this number is smaller that the some of each individual probability. That
is,

• Next, assume that K is a set of n keys , each is a number in .
Which hash function should we use ?

• As usual, we pick m as a prime .
• Attempt 1: Pick at random. Let . Possibly it

works well, but no guaranties. A vicious adversary could pick the keys of K which are
bad for almost every choice of

•

α, β [1..m]
p1 = (x1, y1) and p2 = (x2, y2)

h(p1) = h(p2) (that is, a collision occurs) is ≤
1
m

≤
1
2n

K = {p1, p2…pn}
p1

≤
1
m⏟

collisions p1,p2

+
1
m⏟

collisions between p1,p3

+ … +
1
m⏟

collisions p1,pn

=
n
m

≤
1
2

K = {k1…kn} [0...n2]

≥ 2n
α ∈ [0..m − 1] h(x) = (αx) mod m

α

Dot-product method - cont

• Attempt 1: Pick at random. Let . Possibly it works well,

but no guaranties. A vicious adversary could pick the keys of K which are bad for almost every
choice of

• Better approach. For every key , express it in base m. . Now we are back to
the case of 2D points.

• Example for . Then and .
• Another example: . Then and . (since)
• Instead of expressing in base m, we could use any other way to express as two numbers

, both . For example, if , and then has 4 bytes. We will
use the first 2 bytes for and the last two for .

• Similarly, if each is a number between 0 and we will pick at random 3 values
. We express each using 3 `digits’ , all in . So
.

•

• If the length of the key is unlimited (e.g. documents), we use round robin

•

α ∈ [0..m − 1] h(x) = (αx) mod m

α

ki ki ki = xim + yi

m = 10, ki = 35 xi = 3 yi = 5
m = 11, ki = 35 xi = 3 yi = 2 3 ⋅ 11 + 2 = 35

ki ki
(xi, yi) ≤ m − 1 m ≤ 216 ki < 232 ki

xi yi

ki m3

α, β, γ ∈ [1..m − 1] ki xi, yi, zi [0..m − 1]
ki = zim2 + yim + xi
h(ki) = ((αxi + βyi + γzi) mod m)

α1, α2, α3, α4, α1, α2, α3, α4, α1, α2, α3, α4, α1, α2, α3, α4

Dot-product method - cont

Universal family of hash functions
• We have a set of hash functions
• We say that it is universal family for every two keys

 , if we pick at random , then the
probability of a collision is .

• That is, it is not worth than the probability of picking random
cells for .

• Only of the functions of H cause collisions of .

• If we think about all the possible hash functions
.

• When we change (both in [0..m-1]), we create all
different members of the family.

• We just saw that this family is universal.
• It guaranties that the probability of collusion between is

 , and that the average number of collisions between
 and any other member of K is . That is, most cases,
 has no collisions.

H = {h1(k)…hL(k)}

ki, kj ∈ U hi(k) ∈ H
h(ki) = h(kj) ≤ 1/m

ki, kj

≤
L
m

ki, kj

h((xi, yi)) = (αxi + βyi) mod m
α, β,

ki, kj

≤
1
m

≤
1

2n
ki ≤ 1/2
ki

H

Introduction to Algorithms

Universality is good

Theorem. Let h be a hash function chosen
(uniformly) at random from a universal set H
of hash functions. Suppose h is used to hash
n arbitrary keys into the m slots of a table T.
Then, for a given key x, we have

E[#collisions with x] < n/m.

Introduction to Algorithms

Proof of theorem (without random vars)
Proof. Let be two keys, let be a
hash function. We define

x, y hi ∈ H

cxy ()= hi

1 if
otherwise.

hi(x) = hi(y)

.

1
|H | ∑

hi∈H
∑
y∈K

cxy(hi) =
1

|H | ∑
y∈K

∑
hi∈H

cxy(hi) ≤
1

|H | ∑
y∈K

|H |
m

≤
1

|H |
n

|H |
m

=
n
m

Remember: K is fixed - a set of n keys. x is one of them. We are
worried about collisions between x and other members of K. Each
different hash function causes other collision. So we ask what does
the ‘average has function causes. .

BTW - if then this number n ≤ m /2, ≤ 1/2

Introduction to Algorithms

Proof of theorem (using random vars)

Proof. Let Cx be the random variable denoting
the total number of collisions of keys in T with
x, and let

cxy =
1 if h(x) = h(y),
0 otherwise.

Note: E[cxy] = 1/m and ∑
−∈

=
}{xTy
xyx cC .

E(Cx) = E[∑
y∈K

cxy] = ∑
y∈K

E[ccy] = n/m

© 2001 by Charles E. Leiserson Introduction to Algorithms 27

REMEMBER
THIS!

Constructing a set of universal
hash functions

Let m be prime. Decompose key k into r + 1
digits, each with value in the set {0, 1, …, m–1}.
That is, let k = 〈k0, k1, …, kr〉, where 0 ≤ ki < m.
Randomized strategy:
Pick a = 〈a0, a1, …, ar〉 where each ai is chosen
randomly from {0, 1, …, m–1}.

mkakh
r

i
iia mod)(

0
∑
=

=Define .

How big is H = {ha}? |H| = mr + 1.

Dot product,
modulo m

© 2001 by Charles E. Leiserson Introduction to Algorithms 28

Perfect hashing
A hash function is perfect (for a set K of n keys) if for every .

How could we find such a function?

Deterministic algorithm - hard.

Randomize algorithm. Let’s assume (unrealistically) that we could pick a really
large table Pick from from a universal family. The probability
of no collision is

 Markov’s inequality says that for any nonnegative random variable X, we have
Pr{X ≥ t} ≤ E[X]/t.

So in this case, (large m), if we pick h at random, we have %50 chance to hit a
perfect function.

Algorithm: Pick h at random. If perfect - great. If not - repeat

Expected number of trails = .

h(x) ≠ h(y) x, y ∈ K

m = n2 . h ∈ H

E[∑
x,y∈X

cxy(h)] = (n
2) 1

m
=

n(n − 1)
2

1
m

=
1
2

n(n − 1)
n2

≤
1
2

1
1
2

+ 2
1
4

+ 3
1
8

+ …i
1
2i

+ … = 2

© 2001 by Charles E. Leiserson Introduction to Algorithms 29

Toward a Perfect hashing with
linear storage.

Use one hash function h to partitions K into sets .
The set set contains all the keys that are mapped to cell in
the table.

S1, S2…Sm
Si i

Si = {x ∈ K | h(x) = i}

Note: h does not guarantie
no collisions. But the
number of collisions is
small

For each build another
hash table (only for this set)
with table size ,
and no collisions at all. (see
previous slide)

Si

mi = |Si |
2

40 37 22

0
1
2
3
4
5
6

26

m a 0 1 2 3 4 5 6 7 8

14 27

S4

S6

S1

4 31

1 00

9 86

T

h31(14) = h31(27) = 1

© 2001 by Charles E. Leiserson Introduction to Algorithms 30

Analysis of storage
For the level-1 hash table T, choose m = n, and
let ni be random variable for the number of keys
that hash to slot i in T. By using ni

2 slots for the
level-2 hash table Si, the expected total storage
required for the two-level scheme is therefore

())(
1

0

2 nnE
m

i
i Θ=⎥
⎦

⎤
⎢
⎣

⎡
Θ∑

−

=

,

since the analysis is identical to the analysis from
recitation of the expected running time of bucket
sort. (For a probability bound, apply Markov.)

Resolving collisions
Several approaches
1. Chain hashing - all keys mapped to the same cell are stored in a

linked list. (Less popular in practice - dynamic memory allocation
is slow, multiple vulnerabilities, less friendly to compiler-
optimization, GPU unfriendly…

2. Cuckoo hashing - will discuss later

3. Resolving collisions by open addressing - most popular.

Resolving collisions by open addressing
No storage is used outside of the hash table itself.

Each cell could contain at most one key.

The same key k might be mapped by h(k) to different locations in the table,
depending on availability.

When either searching k or searching for a place for k, we will check

 The first index that we search k. If fail
 The second index that we search k. If fail
 The third index that we search k. If fail etc
When should we give up? (will see in next slides)
How should we find these indexes ?

h(k, i)- a hash function that takes two parameters:
Key k
Trial number i (first trail has index 0)

Resolving collisions by open addressing
No storage is used outside of the hash table itself..
• The hash function depends on both the key and probe number:

h(k,i)
 input is a pair: a key and a trial number. 0,1,2,…m-1

Output: Always a legit index in the table T[]. a number in the range
0,1...m-1

E.g.
• h(k,i) = (k+i) mod m ;
• h(k,i) = (k+i h2(k)) mod m ;
 here h2(k) is some other hash function
• f(k,i) = (k+i2) mod m
Inserting a key k:
 we check Τ[h(k,0)]. If empty we insert k, there. Otherwise,
 we check Τ[h(k,1)]. If empty we insert k, there. Otherwise,…
 otherwise etc for h(k,2), h(k,3), …, h(k,m–1).
Finding a key k:
 we check whether Τ[h(k,0)] ==k. If not, if empty, stop. otherwise
 we check whether Τ[h(k,1)] ==k. If not, if empty, stop. otherwise
otherwise etc for h(k,2), h(k,3), …, h(k,m–1).

Example of Insertion
Hash function: h(k,i)=(k+i) mod 8
k-key. i is the attempt number (start at 0)

• insert(12). h(12,0)=4
Read: The first attempt (i=0) checks T[h(12,0)]. It is free

20

T
0

12

1
2
3
4
5
6
7

• insert(15). h(15,0)=7

15

• insert(20). h(20,0)=4 (collision)
h(20,1)=(20+1)mod 8=5
T[5] is empty. Place 20 at T[5]

• insert(23). h(23,0)=7 (collision)
h(23,1)=0

23

• insert(28). h(28,0)=4 (collision) ;
h(28,1)=5(collision);
h(28,2)=6

28

Inserting a key k:
 we check Τ[h(k,0)]. If empty we insert k, there. Otherwise,
 we check Τ[h(k,1)]. If empty we insert k, there. Otherwise,…
etc for h(k,2), h(k,3), …, h(k,m–1).

Searching a key. Example on the same table
Hash function: h(k,i)=(k+i) mod 8

k-key. i is the attempt number (start at 0)

20

T
0

12

1
2
3
4
5
6
715

23

28

`Search’ uses the same probing sequence. The Search stops once it hits an empty cell, or i=n-1.

Example. Search 28. First check h(28,0)=4, but T[4] 28. Next check h(28,1)=5 but T[5] 28. Next
T[6]=28 - success.

Search(16). h(16,0)=0. T[0] 16. Next check h(16,1)=5, but T[5]-empty. Search terminates - 16 not in
table.

≠ ≠

≠

Finding a key k:
 we check if Τ[h(k,0)] =k. If not, if empty, stop. otherwise
 we check if Τ[h(k,1)] =k. If not, if empty, stop. other etc

Searching a key. Example on the same table
Hash function: h(k,i)=(k+i) mod 8
k-key. i is the attempt number (start at 0)

20

T
0

12

1
2
3
4
5
6
715

23

28

• Next, delete 20, and then lets again search 28.
• The search wrongly stops at the empty cell that used to contain 28.

Error
• Solution: Place a dummy to indicate that this cell used to contain

a key, but this key was deleted. The ‘search’ treats this cell as
‘nonempty’ and continues the probing sequence. The search stops
only when reaching a cell that is “really” empty.

• When inserting a new key, we can replace the dummy with a real
key. Example - inserting 13 will override the dummy

dummy

`Search’ uses the same probing sequence. The Search stops once it hits an empty cell, or i=n-1.

Example. Search 28. First check h(28,0)=4, but T[4] 28. Next check h(28,1)=5 but T[5] 28.
Next T[6]=28 - success.

Search(16). h(16,0)=0. T[0] 16. Next check h(16,1)=5, but T[5]-empty. Search terminates - 16
not in table.

≠ ≠

≠

Maintenance

Scan the table from time to time, and get rid of all of all dummies.
Re-insert each key,
If the table needs to be expanded - good opportunity to use the

dynamic table technique and re-hash.

Probing strategies
Linear probing:
Given an ordinary hash function hʹ(k), linear probing uses the hash
function

h(k,i) = (hʹ(k) + i) mod m.
This method, though simple, suffers from primary clustering, where
long runs of occupied slots build up, increasing the average search
time. Moreover, the long runs of occupied slots tend to get longer.

Theoretically, inferior method.

In practice, is the fastest method. Why ? In the memory hierarchy,
locality is a winner. If we accessed T[i], then it is likely that T[i+1]
is awaiting in cache.

Probing strategies

Double hashing
Given two ordinary hash functions h1(k) and h2(k),
double hashing uses the hash function

h(k,i) = (h1(k) + i⋅h2(k)) mod m.
This method generally produces excellent results,
but h2(k) must be relatively prime to m. One way
is to make m a power of 2 and design h2(k) to
produce only odd numbers.

The expected number of probs, until an empty slot is found

Assumption: At every i, the probability of hitting cell j is 1/m (uniformly)
Lets call a prob a ``success’’ if we hit an empty cell, and ``fail’’ if hit an
occupied cell.
The sequence probs ends with a successful prob.

The probability that exactly 0 fail probs are needed is
(success on first try)

The probability that exactly 1 fail probs is needed is
(fail, then success)

The probability that exactly 2 fail probs are needed is
(fail, fail then success)

The probability that exactly 3 fail probs are needed is
(fail, fail, fail then success)

The probability that exactly j fail probs are needed is
(j fails, then success)

 So the expected number of probs is

1 − α

α(1 − α)

α2(1 − α)

α3(1 − α)

α j(1 − α)

1sucessful prob + (1 − α)
∞

∑
j=1

α j ⋅ jfails

Recall - load factor α = n /m

Expected number
of probs (cont)

Conclusions:
If , the expected number of probs is 2
If , the expected number of probs is 300
If , the expected number of probs is

Conclusion: Keep .

Rehash twice a day: first thing every morning,
and before bed time.

α = 0.5
α = 0.95
α = 0.98 104

m ≥ 2n

α 0.5

α = 0.98

Expected number
of probs (cont)

Conclusions:
If , the expected number of probs is 2
If , the expected number of probs is 300
If , the expected number of probs is

Conclusion: Keep .

Rehash twice a day: first thing every morning,
and before bed time.

α = 0.5
α = 0.95
α = 0.98 104

m ≥ 2n

α 0.5

α = 0.98

The third method to resolve collisions
Cuckoo Hashing

Hash table that supports (as usual):
• insert(k) expected
• search(k) expected worst-case
• delete(k) expected worst-case
Use two tables T, T’, each with cells, and two hash functions
 .

We use to search in T, and we use to search in

Search(k){
If return FOUND
else return NOT FOUND
}

O(1) time
O(1) time

O(1) time
≈ n

h(k), h′ (k)

h(k) h′ (k) T′ .

T[h(k)] = k OR T′ [h′ (k)] = k

Cuckoo Hashing - Deletion

Noting new for deletion:

Delete(k) -search for it. If found, replace by a
gravestone/flag.

Next insert could write over the flag (similar t open
addressing)

Rehashing removes this flag.

