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CS545 – Design and Analysis of  Algorithms 

• Webpages   

• Course webpage – google doc (reach via my homepage)  
• Use D2L to reach recordings of lectures (Panopto), calendar  
• Use Gradescope to submit his and view feedback  
• Use Piazza for course communication,  discussions and 

announcements.  
• Use Overleaf to view assignments.  
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CSc545 - Regulation, Bureaucracy
1. Video recording 
2. Web Resources  
3. Prerequisites (course is mostly self contained, but harder if you 

did not pass cs345.   
4. Piazza.  

I. Post are for clarifications.  
II. Be careful not to share any hints in your posts   
 Eg. “are we allowed to use Quicksort for the solution of hw3 Q7” 

is a violation of code of conduct, considered cheating, and 
could get you blocked from piazza.   

I. If you have any doubts, send a private message.  
5. Attendance - strongly recommended.  

1. Active learning - your webcam should be on during active 
learning (talk to me if there are any technical difficulties). 



1. Textbook  

Sanjoy Dasgupta

Kleinberg & Tardos  

CLRS

Lewis Denenberg 
Course slides 
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Assignments in Exams 

• About 6 or 7 homeworks. 
• All theoretical (no programming) 
• Grade of lowest one is dropped 
• Possibly some of them could be submitted in pairs  

• One midterm. One Final exam 
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Homeworks workflow.  Collaboration vs Cheating
• Alg: Once a homeworks is published  

❑Read questions  
❑ If needed, re-watch lectures (Alon and Others) online,  

❑Thinks really hard. Discover what does not work and why 
❑Meet your peers and discuss and does/does not work and why?  
❑Write Solutions yourself.  

• Diverging from this algorithm might improve your hw grade but is 

likely to impact your exams grades (not to mention ethical issues, 

honor code etc). 

• Homework's rules.  

• Collaborations ++. Brainstorming in small groups  

•  Give credit. Specify your contribution to each solution (in %).  
• Sharing text is cheating. 
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Introduction to Algorithms 

In this course, we will discuss problems, and 
algorithms for solving these problems. 

There are so many algorithms – why focus on the 
ones in the syllabus ? 



Why study algorithms and performance?
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Why study algorithms and performance?
• Performance often draws the line between what is 

feasible and what is impossible. 
• Algorithmic mathematics provides a language for 

talking about program behavior.  
•(e.g., by using big-O –notation.  
•Will see lots of   `big-O’ s of quantities you might 
have not seen before:    

• (CPU, Space, I/O, parallel steps, GPU)  
• In real life, many algorithms, though different from 

each other, fall into one of several paradigms 
(discussed shortly).   

• These paradigms can be studied, and applied for new 
problems
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Why these algorithms (cont.) 
1. Main paradigms: 

a) Greedy algorithms 
b) Divide-and-Conquers 
c) Dynamic programming 
d) Brach-and-Bound (mostly in AI ) 
e) Etc etc.  

2. Other reasons:  
a) Relevance to many areas: 

• E.g., networking, internet, search engines… 
b) Coolness 
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Other goals of the course 

• Knowing when running time counts, and 
what to do when it does  

• Magic of randomness and sampling   



T(n)

n n0

• We shouldn’t ignore 
asymptotically slower 
algorithms, however. 

• Real-world design situations 
often call for a careful 
balancing of engineering 
objectives. 

• Asymptotic analysis is a 
useful tool to help to 
structure our thinking.

Ο(g(n)) 
(e.g. T(n)=O(n2 ) 

    

we say that T(n)= Ο( g(n) )   iff  
    there exists  positive constants c1, and n0 such that  
    0 ≤  T(n) ≤ c1 g(n)  for all n ≥ n0  

Common examples. We would say that the running time T(n), on an input of size n,  

Is   

 
T(n) = O(1) or T(n) = O(n2) or T(n) = O( n) or T(n) = 222… n times 

Ο-notation  
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Ω-notation

• Drop low-order terms; ignore leading constants. 
• Example: 3n3 + 90n2 – 5n + 6046 = Ω (n3)

We say that T(n)= Ω( g(n) )   iff  
    there exists positive constants c2, and n0  
such that  
    0 ≤ c1 g(n) ≤ T(n)  for all n ≥ n0 

Engineering:

Math:

n

T(n)

n0

Ω (g(n))    
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Θ-notation
We say that T(n)= Θ( g(n) )   iff  
there are positive constants   

c1, c2, and  n0  
such that  

    0 ≤ c1 g(n) ≤ T(n) ≤ c1 g(n)  
for every  n, provide that n ≥ n0  

in other words, we could say that  
T(n)= Θ( g(n) )  
iff it is true that  

T(n)=O(g(n))   and  that  . 

For example, for every size n of an input array,  bubble sort, insertion sort  
and swap-sort will never needs more than n2 operations (up to a constant). 

So their running time is O(n2).  

On the other hand, we can find an input (one is enough) that causes their 
running time to be no less than n2.  So their running time is also Ω(n2).  

Putting it together, their running time is Θ( n2 ) 

T(n) = Ω(g(n))
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Notation - cont
So if  T(n)= Ο( n2 )   then we are also sure that  
 T(n)= Ο( n3 )  and that  
 T(n)= Ο( n3.5 )   and 
 T(n)= Ο( 2n ) 

But it might or might not be true that  T(n)= Ο( n 1.5 ). 

However, if T(n)= Ω(n2 ) then it is not true that    
T(n)= Ο( n 1.5 ) 

Big difference between O and Ω: we can talk about Ω of a problem 
(that is, any algorithm that solves this problem 
takes Ω(something)  

Eg. Sorting takes Ω(n log n)   
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Sometimes, the lower bound refers to  
for any algorithm

Famous examples:  

Sorting: Any algorithm that sort n real numbers takes  
time in the worst (slowest) case.  

Element uniqueness: Given an array of n keys, determine if there 
is any key that appears more than once. (just a 
yes/no answer) 

How could we solve this problem?  

Ω(n log n)
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Sometimes, the lower bound refers to  
for any algorithm

Famous examples:  

Sorting: Any algorithm that sort n real numbers takes  
time in the worst (slowest) case.  

Element uniqueness: Given an array of n keys, determine if there 
is any key that appears more than once. (just a 
yes/no answer) 

How could we solve this problem?  

Ω(n log n)

Sorting - takes O(n log n) ? Can we do better ? 

Turn out that in the general case, no.  
Element uniqueness takes  time in the worst case. Ω(n log n)
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Exampels 

NoNeed(n){ 
• If (n<1) return ;  
• Print(‘*’) 
• NoNeed(n-1) 

} 

Recursion formula: T(n)=c+T(n-1), where T(1)=c. We can solve 
it using the iteration method: 
T(n)= c+T(n-1)= 
 c+{c+T(n-2)} =     2c+T(n-2) = 
 2c+{ c+T(n-3) } = 3c+T(n-3) =… = (pick k<n)  
 kc+T(n-k) =   (setting k = n-1) … 
 (n-1)c+T(1)=nc 
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Example 2 
NoNeed(n){ 

if (n<1) return ;  
for( i=1 ; i<n ; i++)   print(*) 
NoNeed(n-1) 

} 
Recursion formula: T(n)=cn+T(n-1), where T(1)=c. We can solve it using the iteration 
method: 
T(n)= cn+T(n-1)=  
 cn+{c(n-1)+T(n-2)} = 
 c[n+(n-1)]+{c(n-2)+T(n-3)}  
  =c[(n)+(n-1)+(n-2)+(n-3)]+T(n-4)  =… = (pick k<n)  
  =c[(n)+(n-1)+(n-2)+ (n-3)+…+(n-k)]+T(n-k-1) =    
   (setting k = n-1) … 
c[ n+ n-1 + n-2 +  n-3 +…+1]+T(1)= 
c[ 1+2+3+… +n]+T(1)= cn(n+1)/2 +c= Θ(n2) . 
We are using the formula for arithmetic sum 1+2+3+..n=n(n+1)/2  
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 Examples 3 1. Read(n);    
2. k=1 ;    
3. While( k ≤ n )    
4.   {    k=2k ;  }  

•We know that each iteration takes O(1) times. Need to find the number time line 3 is 
executed.   

•After the first iteration k=2=21 
•After the 2nd iteration k=4=22 

•After the 3rd iteration k=8=2 3 

•…. 

•After the i’th iteration k=2i   

Lets count the number j of times that the condition of line 3 was checked and yield true.  
• If the condition is true,  then k ≤ n. But      So   .   
•Taking log2 from both sides, we have that 

 log2 k = log2( 2j ) ≤ log2(n )   or.. 

                ….. Or  

        j=O ( log2 n ).     T(n)=O(log n) 

•  
 

k = 2j 2j ≤ n

log2(k) = log2(2j) = j log2(2) = j ⋅ 1 ≤ log2(n)

Cheatsheet :  
log(ab)=log(a)+log(b) 
log( a b ) = b log a   
loga (x) = logb (x) / logba 

  implies    x ≤ y log2(x) ≤ log2(y)

What is the running time of this 
code (as a function of n) ?



Examples  4
read(n) ;  
for(i=1 ; i < n ;  i++)  
  for( j=i ; j <n ; j += i )  
 print( “*” ) ;

• Time Complexity Analysis – first approach:  
•The outer loop (on i) runs exactly n-1 times 
•The inner loop (on j) runs O(n) times.  
•Together T(n)=O(n2 ). 
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Examples  4
read(n) ;  
for(i=1 ; i < n ;  i++)  
  for( j=i ; j <n ; j += i )  
 print( “*” ) ;

• Time Complexity Analysis – first approach:  
•The outer loop (on i) runs exactly n-1 times 
•The inner loop (on j) runs O(n) times.  
•Together T(n)=O(n2 ). Is it true that  

the running time is Ω(n2 ) ?
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Examples  4
read(n) ;  
for(i=1 ; i < n ;  i++)  
  for( j=i ; j <n ; j += i )  
 print( “*” ) ;

• Time Complexity Analysis – first approach:  
•The outer loop (on i) runs exactly n-1 times 
•The inner loop (on j) runs O(n) times.  
•Together T(n)=O(n2 ). 

•More “sensitive” analysis: 
•For i=1 we run through    j=1,2,3,4...n,       total  n times.  
•For i=2 we run through   j=2,4,6,8,10…n,  total n/2  times.  
•For i=3 we run through   j=3,6,9,12…n,     total n/3  times . 
•For i=4 we run through   j=4,8,12,16…n,   total n/4  times. 
•For i=n we run through  j=n,                       total n/n=1 times.  

•Summing up: T(n)=n+n/2+n/3+n/4+…n/n =  
            n(1+1/2+1/3+1/4+...1/n)  ≈  n ln n  
Harmonic Sum (the image shows A wave and its harmonics, with 
wavelengths (credit: wikipedia)  

  

Is it true that  
the running time is Ω(n2 ) ?
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Example 5
Read(n) ;     a=0.5    
While( n>1)  {  

For( j=1;  ; j++ )  print(“*”)  ; 
n=a*n ;  

}

j ≤ n

•The first time the outer loop is called, the “print” is called  n times. 
•The 2nd  time the outer loop is called, the “print” is called  an times.  
•The 3rd  time the outer loop is called, the “print” is called  a2n times… 
•The k’th time the outer loop is called, the “print” is called  ak n times 

•Let t be the number of iterations of the outer loop. Then the total time  
 = n + an + a2n+ a3n+…atn = n(1 + a + a2+ a3+…at) <  
  n(1 + a + a2+ a3+…a t +…)=n / (1-a ) = O(n). 

•Same analysis holds for any a<1  

Recall:1+a+a2+…+at= (1-a t+1 )/(1-a). 
If a<1 then 1+a+a2+…+ at +… =  1/(1-a)

Pay attention -  
very relevant to this course 

Geometric sum
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Properties of big-O
• Claim: if   T1(n)=O(g 1(n))  and  T2(n)=O(g2( n ))    then  

  T1(n)+T2(n)=O(g1(n) + g2(n) )  

• Example: T1(n)=O(n2),  T2(n)=O(n log n) then 
 T1(n)+T2(n)=O(n2 + n log n ) =O( n2 ) 

• Proof:  We know that there are constants n1, n2, c1, c2  s.t. 
• for every n>n1   T1(n) < c1 g1(n).    (definition of big-O ) 
• for every n>n2   T2(n) < c2 g2(n).    (definition of big-O ) 

• Now set n’ =max{ n1, n2 }, and c’=c1+c2, then  
• for every n>n’  we have that  
•  T1(n)+T2(n) < c1 g1(n) + c2 g2(n) ≤  
  c’ g1(n) + c‘g2(n) =  
  c’ ( g1(n) + g2(n) ) 
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More properties of big-O
•Claim: if   T1(n)=O(g 1(n))  and  T2(n)=O(g2( n ))    then  

  T1(n) T2(n)=O( g1(n)  g2(n) )  

•Example: T1(n)=O(n2), T2(n)=O(n log n) then 

 T1(n) T2(n)=O(n3 log n ) 

•Similar properties hold for Θ, Ω

21
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Quicksort, as an example to 
randomize algorithms 

 Goals:  
1.Introduction (and hopefully refreshing) 

of the QS algorithm 
2.Introduction to random variables and 

expectation  
3.Worst case vs. Expected running time 
4.Randomized algorithm for Median 

Selection 
23



Divide and conquer
Quicksort an n-element array: 
1. Divide: Partition the array into two subarrays around a pivot x such that elements 

in lower subarray ≤ x ≤ elements in upper subarray. 

2. Conquer: Recursively sort the two subarrays. 
• Combine: Trivial.

≤ x x ≥ x

Key: Linear-time partitioning subroutine.
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Partitioning subroutine (first attempt, to be improved)

PARTITION(A, p, q) ⊳ A[ p . . q]  
—— some improvement will come here (later) —- 
x ← A[ p] ⊳ pivot = A[ p] 
i ← p 
for j ← p + 1 to q ⊳ j is hunting for small keys 

do if A[ j] ≤ x   ⊳ Should send A[ j] to the left. 
then{ 
 i ← i + 1   ⊳ Now A[i]>x 
 exchange A[i] ↔ A[ j] ⊳ Fix A[i]>x 
} 

exchange A[ p] ↔ A[i] 
return i

≤ x > x ?
p i qjInvariant:

x ≤ x > x ?

It is possible that all keys are >x or all 
<x


At place i+1 the key is 
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Running time = O(n) 
for n elements.

Partitioning subroutine (first attempt, to be improved)

PARTITION(A, p, q) ⊳ A[ p . . q]  
—— some improvement will come here (later) —- 
x ← A[ p] ⊳ pivot = A[ p] 
i ← p 
for j ← p + 1 to q ⊳ j is hunting for small keys 

do if A[ j] ≤ x   ⊳ Should send A[ j] to the left. 
then{ 
 i ← i + 1   ⊳ Now A[i]>x 
 exchange A[i] ↔ A[ j] ⊳ Fix A[i]>x 
} 

exchange A[ p] ↔ A[i] 
return i

≤ x > x ?
p i qjInvariant:

x ≤ x > x ?

It is possible that all keys are >x or all 
<x


At place i+1 the key is 
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Example of partitioning

i j
6 10 13 5 8 3 2 11
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Example of partitioning

i j
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Example of partitioning

6 10 13 5 8 3 2 11
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Example of partitioning
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Example of partitioning
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Example of partitioning
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Example of partitioning

6 10 13 5 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11
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Example of partitioning

6 10 13 5 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

6 5 3 2 8 13 10 11

i
2 5 3 6 8 13 10 11
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Pseudocode for quicksort
QUICKSORT(A, p, r) 

if p < r //do something only if contains at least 2 keys 
then q ← PARTITION(A, p, r)  //both perform partition, and 

return index of pivot  
QUICKSORT(A, p, q–1)  //QS left part  
QUICKSORT(A, q+1, r) //QS right part

Initial call: AUICKSORT(A, 1, n)
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Analysis of quicksort

• Assume all input elements are distinct. 
• In practice, there are better partitioning algorithms for when 

duplicate input elements may exist. 
• Let T(n) = worst-case running time on an array of n elements.
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Worst-case of quicksort
• Input sorted or reverse sorted. 
• Partition around min or max element. 
• One side of partition always has no elements.

)(
)()1(

)()1()1(
)()1()0()(

2n
nnT

nnT
nnTTnT

Θ=

Θ+−=

Θ+−+Θ=

Θ+−+=

(arithmetic series)
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Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(n) = n+(n-1)+(n-2)+(n-3)+,,,+1  =  n(n+1)/2=Θ(n2)
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Improving the Partitioning subroutine. Randomized partition. 

PARTITION(A, p, q) ⊳ A[ p . . q]  
k=rand(p,q) ⊳  pick a random integer between p and q.  
⊳  Careful-Dont pick a random value. Pick a random index 
exchange A[i]↔A[ k ]  

x ← A[ p] ⊳ pivot = A[ p] 
i ← p 
for j ← p + 1 to q                  ⊳ j is hunting for small keys 

do if A[ j] ≤ x   ⊳ Should send A[ j] to the left. 
then{ 
 i ← i + 1   ⊳ Now A[i]>x 
 exchange A[i] ↔ A[ j] ⊳ Fix A[i]>x 
} 

exchange A[ p] ↔ A[i] 
return i

≤ x > x ?
p i qjInvariant:

x ≤ x > x ?
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Best-case -the pivot is always the median 
(quite unlikely, but lets say)

If we are lucky, PARTITION splits the array evenly:
T(n) = 2T(n/2) + Θ(n) 
 = Θ(n lg n)

Lets understand where this bounds came from (amortized analysis)  

We are paying a constant time to check a single key. Possibly another constant 
to move this key 

 Consider one of the keys. 
The first       time it is checked, it is in an array of size n  
The second time it is checked, it is in an array of size  n/2 
The third time it is checked, it is in an array of size      
.. 
The k’th time it is checked, it is in an array of size      … note  

So it is checked (and possibly moved)  times.  

The total work for n keys is  

n /4 = n /22

n
2k

k ≤ log2 n

log2 n

O(n log n)



Randomized quicksort
How can find a pivot that guarantees partitions with good ratios for 

A[1..n], ?  
We say that q is a good pivot  for if  
• at least 10% of the elements of A[1..n] are smaller than q, and  
• at least 10% of the elements of A[1..n] are larger   than q. 

What is the probability that when we pick a pivot, it is a good 
pivot? (Da ?)  

So randomized QS finds good pivots on 80% of the time. The rest, it 
finds pivots that is less effective - we wasted only 20%.  

    10% 10% 
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Working with good pivots 
What if the split is always  no worse then .  

That is, the smaller of the two arrays contains at least n/10 keys.  

1
10

:
9

10

( ) ( ) )()( 10
9

10
1 nnTnTnT Θ++=

Consider one of the keys. 
The first       time it is checked, it is in an array of size n  
The second time it is checked, it is in an array of size    = 
The third time it is checked, it is in an array of size        
.. 
The k’th time it is checked, it is in an array of size         

How large could k be ? Solve 
 

So it is checked (and possibly moved) O( ) times.  

The total work for n keys is still  

≤ 0.9n
≤ 0.92 n

≤ 0.9kn

n0.9k ≥ 1 or k = log1.111 n = log2 n / log2 1.11 ≤ 8 log2 n

log2 n

O(n log n)



Random Variable (light version) 

■ Assume we perform an experiment (Flipping a coin). Let R be the 
result – Face or Tail (F/T).  

■ We could define a random variable which (in this course) is a value that 
depends on the result of the experiment.  

■ Preferably,  set to ‘1’ if some condition is satisfied, and is `0’ otherwise.  
■ Define X to be a random variable,    

set to 1 iff R is Face; X=0 if R is Tail.  
■ Define Y  to be another random variable,   

■set to Y =5 iff R is Face; Y=-3 if R is Tail.  

■ We could ask what is the probability that X=1. Denote Pr(X=1) 
■ If coin is fair, Pr(X=1) is 0.5,  Pr(X=2)=Pr(X=3)=Pr(X=17)=0 
■ Pr(Y=1)=Pr(Y=2)=0 ;  Pr(Y=5)=0.5 ; Pr(Y=-3)=0.5  
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Random Variable (light version) 

■ Assume we perform an experiment (tossing a dice). Let R be the 
result – one of the number 1,2,3,4,5,6.  

■ We could define a random variable which (in this course) is a 
value that depends on the result of the experiment.  

■ Preferably,  set to ‘1’ if some condition is satisfied, and is `0’ 
otherwise.  

■ Define F  to be a random variable, set to 1 iff R is even; (F=0 if 
cube falls on 1,3 or 5) 

■ Define Q  to be another random variable, which is 1 iff R≥2.  
■ We could ask what is the probability that F=1. Denote Pr(F=1) 
■ If dice is fair, Pr(F=1) is 0.5, and Pr(Q=1)=5/6

47



Random Variable and expectation (light version) 

■ In many cases, we would like to know what is the expected value of a random var.  

■ Example: If Y=1 we earn a dollar. What is the expected amount we earn in one game. We 
denote it by E(Y) 

■  

■ Example: Y is the value of the dice. We earn the value picked on the dice. So our 
expected earning is   

 

■ Good news. If Y is a Boolean var then E(Y), the expected value of Y, is just Pr(Y=1).  

■ What if we earn $17 if Y=1. 
■ Lemma: for any constant α it is always true that  E(αY) = αE(Y)=αPr(Y=1) 
■ Lemma  E(X+Y+Z)=E(X)+E(Y)+E(Z)

E(Y ) =
∞

∑
j=0

j ⋅ Pr(Y = j)

$1 ⋅
1
6

+ $2 ⋅
1
6

+ $3 ⋅
1
6

+ $4 ⋅
1
6

+ $5 ⋅
1
6

+$6 ⋅
1
6

+ $7 ⋅ Pr(Y = 7)+ . . . =
$21
6

= $3.5
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A warmup toy problem

   
for i=1…n { 

Pick a random value  between  
 (informally and independently) 

If   then { 

 

Else  ;  
}

M ← − ∞ cnt ← 0

ri (0,1)

M < ri
M ← ri
cnt + +
xi ← 1

}
xi ← 0

ri

Questions:  
What is the minimum value of cnt?  
What is the max value of cnt ?  
But what we really want to know is what is the expected  
value of cnt   

   
Let A[1..n] be an array of keys, all different  
Let B[1..n] be a random permutation of these keys. All 
permutations are equally likely.  
for i=1…n {  

If  

 

Else  ;  
}

M ← 0 cnt ← 0

M < B[i] then {
M ← B[i]
cnt + +
xi ← 1

}
xi ← 0
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What is the expected value of cnt?

Note that always  

 

cnt =
n

∑
i=1

xi

E(xi) = Pr(xi = 1) = 1/i

E(cnt) = E(∑ xi) = ∑ E(xi) =
n

∑
i=1

1/i = ln n



An even better analysis for QS 

The overall work of the algorithm is proportional to  

What we really want to know is what is the expected time, when we pick the 

pivot at random.  .  

Luckily expectation of sum is sum of expectations:  

  =  

Lemma:   (wake up - this is the only point of the analysis where a new cool idea)   

Proof - see next slide.   
Using this lemma, we obtained  

.  

Here we used the formula of the harmonic sum 

n

∑
i=1

i−1

∑
j=1

yi, j

E(
n

∑
i=1

i−1

∑
j=1

yi, j)

E(
n

∑
i=1

i−1

∑
j=1

yi, j)
n

∑
i=1

i−1

∑
j=1

E(yi, j) =
n

∑
i=1

i−1

∑
j=1

Pr(yij = 1)

Pr(yij = 1) =
2

i − j + 1

E(
n

∑
i=1

i−1

∑
j=1

yi, j) =
n

∑
i=1

i−1

∑
j=1

2
i − j + 1

≤ 2n{1 +
1
2

+
1
3

+ . . .
1
n } = 2n ln n
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Proving the Lemma 
Let . These are the keys between j and i.  
Note that .  
Consider the first pivot x that we pick from  .  (other pivots are not 
relevant to  ). There are three cases:  
• Case 1:  this pivot x is i. Then x will be compared to all keys of  , 

including  j.  in this case.  
• Case 2:  x is j. Then it will be compared to all keys of  , including i. 

 in this case. 
• Case 3:  x is one of the other keys in  .  (that is, ). In this 

case, the partition separates i from j. In the future calls to ‘partition’ i 
and j are in different subarrays. They will not be compared, and  

Since each keys has the same probability to be picked as a pivot, 

.         QED 

Si, j = {j, j + 1,j + 2…, i}
|Si, j | = i − j + 1

Si, j
Pr(yij = 1)

Si, j
yij = 1

Si, j
yij = 1

Si, j j < x < i

yij = 0.

Pr(yi, j = 1) =
2

|Sij |
=

2
i − j + 1



Finding a good pivot for A[1..n]
5-random-elements method. :   
• Pick the indices of  elements at random from A[1..n],  
• For k=1 to 5  

   
•

•

•

• Set q to be the median of X[1..5] 

  

≤ 5

X[k] = A[⌊n ⋅ rand()⌋]

A[1..n]
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Quicksort in practice

• Quicksort is a great general-purpose sorting algorithm. 
• Quicksort is typically over twice as fast as merge sort. 
• Quicksort behaves well even with caching and virtual memory.
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Median Selection
• (CLRS Section 9.2, page 185). 
• For A[1..n]  (all different elements) we say that the 

rank of x is i  if  exactly i-1 elements in A are smaller 
than x.  

• In particular, the median is the ⎣n/2⎦-smallest. 
• To find the median, we could sort and pick A[⎣ n/2⎦]  

(taken O(n log n) ). 
• We can do better.



Median Selection-cont
RS( A, p, r, i){ 

//Randomize Selection: Returns i’st smallest element in  A[p..r].  
//Assumption: Input is valid and elements are different. 

•If p==r return A[p] 
•q=PARTITION(A,p,r) ;  

•//Partition using the 5-random element method 
•k=q-p 
•If i==k+1 return A[q]  
•If i<k return RS(A, p,     q-1, i  ) // Note the difference from QS 
•Else   return RS(A, q+1, r,    i-k-1)  
}  p q r

≤ x x ≥ x

k
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Time analysis
• Recall: With high probability, we pick a good pivot:  

•Not in the 10% smallest or largest: 
• Hence, we get rid of at least 10% of the elements of A 
• So, T(n)=cn+T(0.9 n). 

•T(n)=c(n+0.9n+ 0.92n+0.93n+…) = 
cn(1+0.9+ 0.92+0.93+…) =  
cn(1/(1-0.9)) = O(n). 

• So the expected time is linear. (yuppie) 

As in the case of QS, partitions which are not good are not harmful, 
just not helpful. 
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