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CS445 – Introduction to Algorithms 

• Webpages   

• Course webpage – google doc (reach via my homepage)  
• Use D2L to reach recordings of lectures (Panopto), calendar  
• Use Gradescope to submit his and view feedback  
• Use Piazza for course communication,  discussions and 

announcements.  
• Use Overleaf to view assignments.  
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Homeworks workflow.  Collaboration vs Cheating
• Alg: Once a homeworks is published  

❑Read questions  
❑ If needed, re-watch lectures (Alon and Others) online,  

❑Thinks really hard. Discover what does not work and why 
❑Meet your peers and discuss and does/does not work and why?  
❑Write Solutions yourself.  

• Diverging from this algorithm might improve your hw grade but is 
likely to impact your exams grades (not to mention ethical issues, 
honor code etc). 

• Homework's rules.  

• Collaborations ++. Brainstorming in small groups  

•  Give credit. Specify your contribution to each solution (in %).  

• Sharing text is cheating. 
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CS445 - Regulation, Bureaucracy
1. Grading Scheme (midterm vs. final) 
2. Textbooks  
3. Video recording 
4. Web Resources  
5. Prerequisites (course is mostly self contained, but harder if you 

did not pass cs345.   
6. Piazza.  

I. Post are for clarifications.  
II. Be careful not to share any hints in your posts   
 Eg. “are we allowed to use Quicksort for the solution of hw3 Q7” 

is a violation of code of conduct, considered cheating, and 
could get you blocked from piazza.   

I. If you have any doubts, send a private message.  
7. Attendance - strongly recommended.  

1. Active learning - your webcam should be on during active 
learning (talk to me if there are any technical difficulties). 

1. Textbook  

Sanjoy Dasgupta

Kleinberg & Tardos  

CLRS

Lewis Denenberg 
Course slides 
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Introduction to Algorithms 

In this course, we will discuss problems, and 
algorithms for solving these problems. 

There are so many algorithms – why focus on the 
ones in the syllabus ? 

Why study algorithms and performance?

Why study algorithms and performance?
• Performance often draws the line between what is 

feasible and what is impossible. 
• Algorithmic mathematics provides a language for 

talking about program behavior.  
•(e.g., by using big-O –notation.  
•Will see lots of   `big-O’ s of quantities you might 
have not seen before:    

• (CPU, Space, I/O, parallel steps, GPU)  
• In real life, many algorithms, though different from 

each other, fall into one of several paradigms 
(discussed shortly).   

• These paradigms can be studied, and applied for new 
problems

Why these algorithms (cont.) 
1. Main paradigms: 

a) Greedy algorithms 
b) Divide-and-Conquers 
c) Dynamic programming 
d) Brach-and-Bound (mostly in AI ) 
e) Etc etc.  

2. Other reasons:  
a) Relevance to many areas: 

• E.g., networking, internet, search engines… 
b) Coolness 
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Other goals of the course 

• Knowing when running time counts, and 
what to do when it does  

• Magic of randomness and sampling   
T(n)

n n0

• We shouldn’t ignore 
asymptotically slower 
algorithms, however. 

• Real-world design situations 
often call for a careful 
balancing of engineering 
objectives. 

• Asymptotic analysis is a 
useful tool to help to 
structure our thinking.

Ο(g(n)) 
(e.g. T(n)=O(n2 ) 

    

we say that T(n)= Ο( g(n) )   iff  
    there exists  positive constants c1, and n0 such that  
    0 ≤  T(n) ≤ c1 g(n)  for all n ≥ n0 

  
Usually T(n) is running time, and n is size of input

Ο-notation  
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Ω-notation

• Drop low-order terms; ignore leading constants. 
• Example: 3n3 + 90n2 – 5n + 6046 = Ω (n3)

We say that T(n)= Ω( g(n) )   iff  
    there exists positive constants c2, and n0  
such that  
    0 ≤ c1 g(n) ≤ T(n)  for all n ≥ n0 

Engineering:

Math:

n

T(n)

n0

Ω (g(n))    
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Θ-notation
We say that T(n)= Θ( g(n) )   iff  
there are positive constants   

c1, c2, and  n0  
such that  

    0 ≤ c1 g(n) ≤ T(n) ≤ c1 g(n)  
for every  n, provide that n ≥ n0  

in other words, we could say that  
T(n)= Θ( g(n) )  
iff it is true that  

T(n)=O(g(n))   and  that  . 

For example, for every size n of an input array,  bubble sort, insertion sort  
and swap-sort will never needs more than n2 operations (up to a constant). 

So their running time is O(n2).  

On the other hand, we can find an input (one is enough) that causes their 
running time to be no less than n2.  So their running time is also Ω(n2).  

Putting it together, their running time is Θ( n2 ) 

T(n) = Ω(g(n))
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Notation - cont
So if  T(n)= Ο( n2 )   then we are also sure that  
 T(n)= Ο( n3 )  and that  
 T(n)= Ο( n3.5 )   and 
 T(n)= Ο( 2n ) 

But it might or might not be true that  T(n)= Ο( n 1.5 ). 

However, if T(n)= Ω(n2 ) then it is not true that    
T(n)= Ο( n 1.5 ) 

Big difference between O and Ω: we can talk about Ω of a problem 
(that is, any algorithm that solves this problem 
takes Ω(something)  

Eg. Sorting takes Ω(n log n)   
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 Examples 3 1. Read(n);    
2. k=1 ;    
3. while( k ≤ n )    
4.                k=2k ;  

•We know that each iteration takes O(1) times. Need to find the number time line 3 
is executed.   

•After the first iteration k=2=21 
•After the 2nd iteration k=4=22 

•After the 3rd iteration k=8=2 3 

•…. 

•After the i’th iteration k=2i   

Lets count the number j of times that the condition of line 3 was checked and yield true.  

• If the condition is true,  then k ≤ n. But k=2j.    So  .   
•Taking log2 from both sides, we have that 

 log2 k = log2( 2j ) ≤ log2(n )   or.. 
              log2( 2j ) = j log2 2 = j ≤ log2( n )  or..  
        j=O ( log2 n ).     T(n)=O(log n) 

•Homework: Prove T(n)= Θ(log n) 

k = 2j ≤ n

Cheatsheet :  
log(ab)=log(a)+log(b) 
log( a b ) = b log a   
loga (x) = logb (x) / logba 

  implies    x ≤ y log2(x) ≤ log2(y)

What is the running time of this 
code (as a function of n) ?

Examples  4
read(n) ;  
for(i=1 ; i < n ;  i++)  
  for( j=i ; j <n ; j += i )  
 print( “*” ) ;

• Time Complexity Analysis – first approach:  
•The outer loop (on i) runs exactly n-1 times 
•The inner loop (on j) runs O(n) times.  
•Together T(n)=O(n2 ). 

Examples  4
read(n) ;  
for(i=1 ; i < n ;  i++)  
  for( j=i ; j <n ; j += i )  
 print( “*” ) ;

• Time Complexity Analysis – first approach:  
•The outer loop (on i) runs exactly n-1 times 
•The inner loop (on j) runs O(n) times.  
•Together T(n)=O(n2 ). Is it true that  

the running time is Ω(n2 ) ?



Examples  4
read(n) ;  
for(i=1 ; i < n ;  i++)  
  for( j=i ; j <n ; j += i )  
 print( “*” ) ;

• Time Complexity Analysis – first approach:  
•The outer loop (on i) runs exactly n-1 times 
•The inner loop (on j) runs O(n) times.  
•Together T(n)=O(n2 ). 

•More “sensitive” analysis: 
•For i=1 we run through    j=1,2,3,4...n,       total  n times.  
•For i=2 we run through   j=2,4,6,8,10…n,  total n/2  times.  
•For i=3 we run through   j=3,6,9,12…n,     total n/3  times . 
•For i=4 we run through   j=4,8,12,16…n,   total n/4  times. 
•For i=n we run through  j=n,                       total n/n=1 times.  

•Summing up: T(n)=n+n/2+n/3+n/4+…n/n =  
            n(1+1/2+1/3+1/4+...1/n)  ≈  n ln n  
Harmonic Sum 

  

Is it true that  
the running time is Ω(n2 ) ?

Example 5
read(n) ;     a=0.5    
while( n>1)  {  

For( j=1; j<n ; j++ )  print(“*”)   
n=a*n ;  

}

•The first time the outer loop is called, the “print” is called  n times. 
•The 2nd  time the outer loop is called, the “print” is called  an times.  
•The 3rd  time the outer loop is called, the “print” is called  a2n times… 
•The k’th time the outer loop is called, the “print” is called  ak n times 

•Let t be the number of iterations of the outer loop. Then the total time  
 = n + an + a2n+ a3n+…atn = n(1 + a + a2+ a3+…at) <  
  n(1 + a + a2+ a3+…a t +…)=n / (1-a ) = O(n). 

•Same analysis holds for any a<1  

Recall:1+a+a2+…+at= (1-a t+1 )/(1-a). 
If a<1 then 1+a+a2+…+ at +… =  1/(1-a)

Pay attention -  
very relevant to this course 

Geometric sum
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More about Ω(  ) 
Sometimes we would talk about a lower bound on the running time 
of a specific algorithms  
 E.g. The insertion sort might take Ω(n2 ) for some input 

Sometimes we would talk about a lower bound on the running time 
of a problem 

E.g.  
1. Any algorithms that reads all the input (for any problem) requires 
Ω(n) time. 

2. Any algorithm that stores all the data requires Ω(n) space.   
3. Any algorithm that sort n keys requires Ω(n log n)  

(disclaimer – could be better if we make some assumptions about 
the keys or the model. Usually  

• Sorting sort integers takes Ω(n) (how?)  
• Sorting floats takes Ω(n log n)  
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CS445 – Salute 



The Mathematics Of  1950’s Dating: 
Who wins the battle of  the sexes? 
Stable marriage (matching) algorithm.

Credits:  
Steven Rudich In 2012, Nobel Memorial Prize in Economic Sciences was awarded to Lloyd 

S. Shapley and Alvin E. Roth  "for the theory of stable allocations and the 
practice of market design."[2]

 Gale Shapley  Stable Matching Algorithm 

Gale, D.; Shapley, L. S. (1962). "College Admissions and the Stability of Marriage". American 
Mathematical Monthly. 

In 2012, Nobel Memorial Prize in Economic Sciences was awarded to Lloyd 
S. Shapley and Alvin E. Roth  "for the theory of stable allocations and the 
practice of market design."[2]

 Gale Shapley  Stable Matching Algorithm 

Gale, D.; Shapley, L. S. (1962). "College Admissions and the Stability of Marriage". American 
Mathematical Monthly. 

In 2012, Nobel Memorial Prize in Economic Sciences was awarded to Lloyd 
S. Shapley and Alvin E. Roth  "for the theory of stable allocations and the 
practice of market design."[2]

 Gale Shapley  Stable Matching Algorithm 

Gale, D.; Shapley, L. S. (1962). "College Admissions and the Stability of Marriage". American 
Mathematical Monthly. 
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• There are n males and n females 
• Each female has her own ranked preference list of all the males 

– E.g., women #1 most prefers male #3  over any other male.  
• Each male has his own ranked preference list of the females 
• How should we match them (1-to-1)

Product Details 
•Series: Foundations of 
Computing 

•Hardcover: 258 pages 
•Publisher: The MIT 
Press (August 22, 1989) 
•Language: English 
•ISBN-10: 0262071185 
•ISBN-13: 978-02620711
85 
•Product 
Dimensions: 9.4 x 7.3 x 
0.8 inches 
•Shipping Weight: 1.4 
pounds

Definition of  a Matching in this lecture

•A matching in this context is a list of couples that according to the algorithm, 
should be matched to each other. Each male is married to a single female and vice 
versa.  
 M = { (m1, f13 ), (m2, f7 ),…..(mn, fn)  }  

The algorithm aims to find a good matching (under some definition)  

•Sometimes the term pairing is used 

Definitions about the preference lists 
In her list,  

– male 5 is her top choice.  
– If he is not interested, her top choice is male 19.   
– If neither 5 nor 19 are interested, his top is 40 …   

– This is a full ranking of all males. 

The list of female i  
5 
19 
40 
2 
… 
.. 
33 



Definition: Rogue Couples

  

•They will be called a rogue couple.  
•They both would gain from dumping their mates and marry each other. 
•A source of confusion: A couple that is married to each other could not be rouge. 
The other couples are the ones we are concern about.   
•A matching is called stable if it does not contain any rouge couples.  
•The source of the ‘instability’: They would both benefit from changing the 
situation  
•How could we obtain stability: Make sure that if one gains, the other loose

Zod’s list 
--------------- 

1. Allegra 
2. Beatrix 
3. Aradia 
4. Cassandra 
5. Cordelia 
6. Evanora 
7. Gullveig

Aradia's list 
---------------- 
1. Mr Burn 
2. Zod 
3. Hannibal 
4. … 
5. Syndrom  
6. … 
7. Gus Fring 
8.

•Consider a given matching M (that is, assume that matching 
is done)  .   
A rouge couple (in this matching) is a couple (female, male) 
who are not married to each other, but prefer each other 
over their spouses.  

•In the example to the right   
Zod is married to Evanora (6), but prefers Aradia (3)  
Aradia is married to Syndrom (5) ,but prefers Zod (2) 

Steven Rudich: www.discretemath.com 
www.rudich.net

The study of  stability will be the 
subject of  the entire lecture.

We will: Analyze various mathematical 
properties of an algorithm that looks a lot 
like 1950’s dating. 

Steven Rudich: www.discretemath.com 
www.rudich.net

Given a set of  preference lists, 
how do we find a stable matching?

Wait! We don’t even 
know that such a 

matching always exists!

Is there always a stable matching ? 

• Will show: every set of preference 
lists have a stable matching.   

• Will prove it by presenting a fast 
algorithm that, given any set of 
input lists, will output a stable 
matching. 

• Furthermore, we will discover the 
unfairness of the 1950 Traditional 
Matching Algorithm (TMA).



Steven Rudich: www.discretemath.com 
www.rudich.net

Terminology and principles of  the 
1950 Traditional Matching Algorithm  

Balcony

Zod’s list 
  

1. Allegra 
2. Beatrix 
3. Aradia 
4. Cassandra 
5. Cordelia 
6. Evanora 
7. Gullveig

• A male can propose (marriage) to a female.  
• A female can reject the proposal. 

• During most of the process, a female would not 
accept a proposal, but would tell a proposing male 
“maybe”.  

• This is called “putting the male on a string”. 
• This male will come back the next day to propose 

again (cannot change his mind). 

• Once a male is rejected, he crosses off from his 
list the rejecting female – he will not propose to 
her again

Steven Rudich: www.discretemath.com 
www.rudich.net
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The Traditional Marriage Algorithm

String

Worshipping males

Female

suitor



Traditional Marriage Algorithm (TMA)

1) Repeat at each day {  
– Morning 

• Each male proposes to the best female (according to his list) that has 
not rejected him.  

– Afternoon (for each females with at least one proposal) 
• To today’s best offer (according to her list): “Maybe, come back 

tomorrow” (putting him on a string)  
• All other proposals are rejected.   

– Evening 
• Any rejected male crosses the rejecting female off his list. 

}Until all males are on strings.  

2) Each female marries the last male she just said “maybe”

Steven Rudich: www.discretemath.com 
www.rudich.net

Lemma (monotonically improving lemma):  

If  a female has a male b on a string, then she will either 
marry him, or marry someone  she prefers over him.  
 
Proof:

– She would only let go of b in order to 
“maybe” b’ which she prefers over b  

– She would only let go of b’  for someone b’’ 
she prefers over b’  etc. 

When the process terminates, she is left 
with someone she prefers over b. 

QED 

Steven Rudich: www.discretemath.com 
www.rudich.net

Corollary:  
 
Each female will marry her absolute favorite of  the males who visit 
her during the Traditional Matching Algorithm (TMA) 

Steven Rudich: www.discretemath.com 
www.rudich.net

Lemma:  if  the number of  males are females 
are equal, then no male can be rejected by all 
the females

•Proof by contradiction. 
•Suppose male b is rejected by all the females. At that 
point: 

– Each female must have a suitor other than b 
(By previous Lemma, once a female has a suitor 
she will always have at least one)  

– The n females have n suitors, b not among them. 
Thus, there are at least n+1 males.  

Contradiction 
QED



Steven Rudich: www.discretemath.com 
www.rudich.net

Theorem:  
The TMA always terminates after at most n2 days

Proof 
– The total length of the lists of all males is 
   n X n = n2. 

–Each day at least one male is rejected, so at least one 
female is deleted from one of the lists.  

–Therefore, the number of days is bounded by the 
original size of the master list  = n2.  

QED

Steven Rudich: www.discretemath.com 
www.rudich.net

Great! We know that TMA 
will terminate and produce 
a pairing. 
 
 
But is it stable?

Theorem:   TMA Produces a stable matching T.

Zod’s list 
--------------- 

1. Allegra 
2. …. 
3. Beatrix 
4. …. 
5. …. 
6. Evanora 
7. ….

Beatrix list 
---------------- 
1. Mr Burn 
2. Zod 
3. Hannibal 
4. … 
5. Syndrom  
6. … 
7. Gus Fring 
8.

• Zod and Beatrix are a rouge couple. 
• Zod is married to Evanora (6), but 

prefers Beatrix (3)  
• Beatrix  is married to Syndrom 
(5), but prefers Zod (2)

Theorem:   TMA Produces a stable matching T.
• Let m2 and f1  be any couple in T. (Beatrix,Zod) in the 

example  

• Suppose m2 prefers f1   (Beatrix) over his wife f2   
(Evanora).    

• We will argue that f1  prefers her husband over m2  

(Zod) 
• During TMA, male m2 (Zod) proposed to  f1 (Beatrix) 

before he proposed to  f2 . 
• Hence, at some point f1 rejected m2  for someone she 

preferred.  

• By the Monotonic Improvement lemma, the male 
(Zod)  that  f2  (Beatrix) married was also preferable 
to m2  

• Thus, every male will be rejected by any female he 
prefers to his wife.  

• T is stable.  QED. 

Zod’s list 
--------------- 

1. Allegra 
2. …. 
3. Beatrix 
4. …. 
5. …. 
6. Evanora 
7. ….

Beatrix list 
---------------- 
1. Mr Burn 
2. Zod 
3. Hannibal 
4. … 
5. Syndrom  
6. … 
7. Gus Fring 
8.

• Zod and Beatrix are a rouge couple. 
• Zod is married to Evanora (6), but 

prefers Beatrix (3)  
• Beatrix  is married to Syndrom 
(5), but prefers Zod (2)


