CS 445

More LP and ILP. Applications to network flow, graph problems and sensor placements
 Alon Efrat

Integer Linear Programming (ILP in dimension \mathbf{d} with n constrains)

Linear programming problems are minimization problems where we need to calculate the values of d unknown $\left(x_{1}, x_{2}, x_{3} \ldots x_{d}\right)$. In addition
The cost function is a linear combination of these variables. We are given constant $c_{1} \ldots c_{d}$ and the goal is to minimize
$\min c_{1} x_{1}+c_{2} x_{2}+\ldots c_{d} x_{d}$. It is very easy to use dot product notation - express $\vec{c}=\left(c_{1}, c_{2} \ldots c_{d}\right)$ is a vector (given to us). We
need to minimize $\hat{x}=c_{1} x_{1}+c_{2} x_{2}+\ldots c_{d} x_{d}$, where $\hat{x}=\left(x_{1}, x_{2} \ldots x_{d}\right)$ is the vector of unknowns.
We are also given a set of n vectors $\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}$, and constants $b_{1} \ldots b_{n}$. Each constrains limits the possible locations of \vec{x}. - The constrains are or, if you are familiar with
$\vec{a}_{1} \cdot \vec{x} \leq b_{1}$ matrix notation, write it as
$\vec{a}_{2} \cdot \vec{x} \leq b_{2} A \cdot x \leq \vec{b}$. A is a matrix
whose rows are $\vec{a}_{1} \ldots \vec{a}_{n}$
$\vec{a}_{n} \cdot \vec{x} \leq b_{n}$

- We can add the constrains that the numbers $x_{1} \ldots x_{d}$ must be integers. Then the problem becomes an Integer Linear Programming (ILP) problems.
- which values of the computed variables must be integers are called Integer Linear Programming (ILP) problems.
- There is a huge number of problems that could be phrased as ILP.
(include many NP-hard problems, where no polynomial-time
algorithms exist)
- A few libraries could handle them, including CPLEX.
- Running time could varies a lot, and could be extremely slow for some instances.

Linear Programming (LP in dimension d with \mathbf{n} constrains)

- Linear programming problems are minimization problems where we need to calculate the values of d unknown $\left(x_{1}, x_{2}, x_{3} \ldots x_{d}\right)$. In addition
- The cost function is a linear combination of these variables. We are given constant $c_{1} \ldots c_{d}$ and the goal is to minimize $\min c_{1} x_{1}+c_{2} x_{2}+\ldots c_{d} x_{d}$. It is very easy to use dot product notation - express $\vec{c}=\left(c_{1}, c_{2} \ldots c_{d}\right)$ is a vector (given to us). We need to minimize $\vec{c} \cdot \vec{x}=c_{1} x_{1}+c_{2} x_{2}+\ldots c_{d} x_{d}$, where $\vec{x}=\left(x_{1}, x_{2} \ldots x_{d}\right)$ is the vector of unknowns.
- We are also given a set of n vectors $\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}$, and constants $b_{1} \ldots b_{n}$. Each constrains limits the possible locations of \vec{x}.
- The constrains are or, if you are familiar with

$$
\begin{array}{ll}
\vec{a}_{1} \cdot \vec{x} \leq b_{1} & \text { matrix notation, write it as } \\
\vec{a}_{2} \cdot \vec{x} \leq b_{2} & A \cdot x \leq \vec{b} . \text { A is a matrix } \\
\text { whose rows are } \vec{a}_{1} \ldots \vec{a}_{n}
\end{array}
$$

:
$\vec{a}_{n} \cdot \vec{x} \leq b$

- Geometrically, ${ }^{n}$ Fix some number i. The region of all the points $x \in \mathbb{R}^{d}$ in the d-dimensional space, satisfies $\vec{a}_{i} \cdot \vec{x} \leq b_{i}$ is a half-space in \mathbb{R}^{d}. The boundary of this region are all the points $x \in \mathbb{R}^{d}$ for which $\vec{a}_{i} \cdot \vec{x}=b_{i}$.
- The dimension d effects the running time much more than the number of contrails n
- LP in high-dim is solved simplex algorithm (available in many libraries - CPLEX is popular)

In the next slide, we are going to talk about network flow problems. We will visit some properties of max flow

We are not going to describe FordFulkeson algorithm.

The CLRS contains a chapter about Network-Flow. We use only the definitions

Flow networks

Definition. A flow network is a directed graph $G=(V, E)$ with two distinguished vertices: a source s and a sink t. Each edge $(u, v) \in E$ is given with a nonnegative capacity $c(u, v)$.

The values could specify the number of cars per minute on this road, or number of Gbyte on this link

Goal: Send as many cars/bytes gallons from sto t, without gallons from s to t, without violating the edges capacities,
and without violating the flow conservation (coming next)

Lemma

positive flow capacity

Lemma: The value of the flow equals to the sum of flows entering t

$$
\sum_{v \in V} p(s, v)=\sum_{u \in V} p(v, t)
$$

Flow in Networks

 edge $(u, v) \in E$. So for the example below, we need to specify the numbers $\{p(s, d), p(s, b), p(d, c), p(g, b) \ldots$
These are the unknown that we need to compute.
$p(u, v)$ is the flow on the edge (u, v). $I f(u, v) \notin E$ then $p(u, v)$ is defined by is 0 .
To be a legal flow, these values must satisfy two sets of conditions:

- Capacity constraint: For all $u, v \in V, 0 \leq p(u, v) \leq c(u, v)$
$0 \leq p(u, v) \leq c(u, v)$.
. Flow conservation: For all $u \in V$, which is not the source nor the sink $\sum_{v_{i} \in V} p\left(v_{i}, u\right)=\sum_{v_{i} \in V} p\left(u, v_{i}\right) \quad /$ What comes in must go out.
-That is, every node is a memory-less router. It receives flow, and steer it to destinations.

The total value of a flow is the sum of the flow flows out of the source:
$\sum_{v \in V} p\left(s, v_{i}\right)$
In the example, the value
In the example, the value
of the flow equals $1+2=3$
\square

total flow into c

The maximum-flow problem

Maximum-flow problem: Given a flow network G, find a flow of maximum value on G.

The value of the maximum flow is 4

LP could solve flow problems (but values might be non-integers)

Unknown variables: $p(u, v)$, for all $u, v \in V$
Constrains:

- Capacity constraint: For all $u, v \in V$,

$$
0 \leq p(u, v) \leq c(u, v) .
$$

- Flow conservation: For all $u \in V-\{s, t\}, \sum_{v \in V} p(u, v)=\sum_{v \in V} p(v, u)$

Maximize the value of the (the net flow out of the source)
$\max \sum_{v \in V} p(s, v)$

Application: Max-Cardinality Bipartite Matching.

- Max-Cardinality matching Given A bipartite graph $G(A \cup B, E)$, find the largest subset M which is a matching.
- A matching is a set of edges M of E, where each vertex of A is adjacent to at most one vertex of B, and vice versa.
- This problem could be solved with in $\mathrm{O}(\mathrm{nm})$ time using Ford-Fulkerson algorithm. Faster algorithms
 exist as well. However, we will use it as an example to the ease of using ILP.
- This method fits well other variants of matching problems

Application: Bipartite Matching.

A graph $G(V, E)$ is called bipartite if V can be partitioned into two sets $V=A \cup B$, and each edge of E connects a vertex of A to a vertex of B. We sometimes denote these graphs by $G(A \cup B, E)$
(we assume that the partition of V to A and B is given)
A matching is a set of edges M of E, where each vertex of A is adjacent to at most one vertex of B, and vice versa.

ILP for Max-Cardinality Bipartite Matching.

- For every edge e, define a Boolean variable x_{e}
- $x_{e}=1$ if e participates in M, and $x_{e}=0$ otherwise.
- The goal is to maximize the number of edges in M, while keeping M a proper matching.
maximize $\sum_{e \in E} x_{e}$
subject to

(1) $0 \leq x_{x} \leq 1$
$\forall e \in E$
(2) x_{i} is an integer
$\forall e \in E$
(3)

$$
\sum
$$

$$
x_{e} \leq 1
$$

$\forall v \in V$
$\{\forall e \in E$ s.t. e is incident to $v\}$
In the example only one of the edges $\left(a_{1,}, b_{1}\right),\left(a_{1,} b_{3}\right)$ will be in M, since $x_{2}+x_{3} \leq 1$

Vertex Cover and ILP

- Given: A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$. A subset $C \subseteq V$ is a vertex cover if every edge $(u, v) \in E$ we have either $u \in C$ or $v \in C$ or both
- Finding the min-cardinality Vertex Cover is NP-Hard
- ILP for this problem: the variables are $x_{1} \ldots x_{n}$. All are integers and between 0 and 1 .
- $v_{i} \in C$ iff $x_{i}=1$ (for $\left.i=1 \ldots n\right)$ s.t.
$x_{i}+x_{j} \geq 1 \quad \forall\left(v_{i}, v_{j}\right) \in E$
minimize $\sum_{i=1}^{n} x_{i}$

Visibility in a polygon. The art Gallery Problem

- Given - a polygon domain D , and a set $P=\left\{p_{1} \ldots p_{n}\right\}$ of potential guards.
- Each potential guard p_{i} sees some region $\operatorname{Vis}\left(p_{i}\right)$ of the polygon, but could not see through walls.
- Formally, p_{i} sees every point q for which the segment $\overline{p_{i} q}$ is fully in D .
- Art Gallery Problem - find the smallest set of guards (all from P) that together see the whole D.
- NP-hard (and extremely practical)
- $\mu_{i}=\operatorname{Area}\left(\operatorname{Vis}\left(p_{i}\right)\right)$ the area (in meters \wedge) that it sees.
- Budget Art-Gallery Problem: Given a number k ('budget'), find a set G of $\leq k$ guards from P, that sees together the maximum area.

Art Gallery - on the board

- Given a polygon, find a subset of the vertices that sees every other vertex
- Let Vis (\boldsymbol{i}) be the set of vertices that vertex i sees
- For a vertex v_{i} we set $x_{i}=1$ if we place a guard at v_{i}
- As usual, x_{i} are integers between 0 to 1 .
minimize $\sum_{i=1}^{n} x_{i}$
S.t.
$\sum_{k \in \operatorname{Vis}(i)}^{\text {S.t. }} x_{k} \geq 1 \quad \forall 1 \leq i \leq n$

This is a set cover problem

- Given - a polygon domain D , and a set $P=\left\{p_{1} \ldots p_{n}\right\}$ of potential guards.
- Every potential guard p_{i} defines a set. This set is $\operatorname{Vis}\left(p_{i}\right)$. A set cover problem is to find a collection of sets that together covers the whole domain.
- Greedy Approach. The first guard is the point that sees maximum area $g_{1}=\arg \max _{p \in P} \mu(p)$
- The second guard g_{2} sees the maximum area that g_{1} does not see
- g_{3} sees the max area not seen by neither g_{1} nor g_{2}, etc...

Set Cover Problems - terminology

General problem: Given a universe $X=\left\{x_{1} \ldots x_{m}\right\}$, each x_{i} is an atoms.
Also given a range space (also called set system). It is a collection of subsets of X. $\mathbf{R}=\left\{S_{1}, S_{2} \ldots\right\}$ a collection of subsets of X. $\left(S_{i} \subseteq X\right)$

$\operatorname{Vis}\left(p_{1}\right)$

Examples:

1. In a polygon D, the atoms are all points of D. Each possible guard p_{i} defines $\operatorname{Vis}\left(p_{i}\right) . \quad \mathbf{R}=\left\{\operatorname{Vis}\left(p_{i}\right) \mid p_{i} \in P\right\}$
2. Given a graph $G(V, E)$, we could treat V as the universe. Each edge is a set of two atoms. (edge-cover)
3. In a graph $G(V, E)$, the atoms are the edges. Each vertex $v_{i} \in V$ defines the set S_{i} of all the edges that v_{i} is adjacent to. (vertex cover)

Min-Weight Vertex Cover and ILP

Sometimes the LP (instead of the ILP) could help us finding good approximations
Given: A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$. Each vertex v_{i} is given with a weight $w_{i}>0$. Think about it as the cost of this vertex.
A subset $C \subseteq V$ is a vertex cover if every edge $(u, v) \in E$ we have either $u \in C$ or $v \in C$ or both
The cost of C is the sum of weights of vertices in C .
Finding the min-cardinality Vertex Cover is NP-Hard
ILP for this problem: the variables are $x_{1} \ldots x_{n}$. All are integers and between 0 and 1 .
$v_{i} \in C$ iff $x_{i}=1$ (for $i=1 \ldots n$)
minimize $\sum_{i=1}^{n} w_{i} x_{i}$

s.t.
$x_{i}+x_{j} \geq 1 \quad \forall\left(v_{i}, v_{j}\right) \in E$

