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  Linear Programming (LP in dimension d with n constrains)   
▪Linear programming problems are minimization problems where we need to calculate the 

values of  unknown . In addition  
▪The cost function is a linear combination of these variables. We are given constant  

and the goal is to minimize  It is very easy to use dot product 
notation - express  is a vector (given to us). We need to minimize 

, where  is the vector of unknowns.  
▪We are also given a set of n vectors , and constants .  Each constrains 

limits the possible locations of .  
▪The constrains are  

  

▪Geometrically, Fix some number i. The region of all the points  in the d-dimensional 
space,  satisfies    is a half-space in .   The boundary of this region are all the 
points  for which .  
▪The dimension d effects the running time much more than the number of contrails n 
▪LP in high-dim is solved  simplex algorithm  (available in many libraries - CPLEX is 

popular)

d (x1, x2, x3…xd)
c1…cd

min c1x1 + c2x2 + …cdxd .
⃗c = (c1, c2…cd)

⃗c ⋅ ⃗x = c1x1 + c2x2 + …cdxd ⃗x = (x1, x2…xd)
⃗a1, ⃗a2… ⃗an b1…bn

⃗x

⃗a1 ⋅ ⃗x ≤ b1

⃗a2 ⋅ ⃗x ≤ b2
⋮

⃗an ⋅ ⃗x ≤ bn x ∈ ℝd

⃗ai ⋅ ⃗x ≤ bi ℝd

x ∈ ℝd ⃗ai ⋅ ⃗x = bi

or, if you are familiar with 
matrix notation, write it as  

.  A is a matrix 
whose rows are 
A ⋅ x ≤ b⃗

⃗a1… ⃗an

Integer  Linear Programming (ILP in dimension d with n constrains)   

▪ Linear programming problems are minimization problems where we need to calculate the values of  unknown . 
In addition  

▪ The cost function is a linear combination of these variables. We are given constant  and the goal is to minimize 
 It is very easy to use dot product notation - express  is a vector (given to us). We 

need to minimize , where  is the vector of unknowns.  
▪ We are also given a set of n vectors , and constants .  Each constrains limits the possible locations of .  
▪ The constrains are  

  

▪   
▪We can add the constrains that the numbers  must be integers. Then the problem 

becomes an Integer Linear Programming (ILP) problems. 
▪ which values of the computed variables must be integers are called  Integer Linear 

Programming (ILP) problems. 
▪There is a huge number of problems that could be phrased as ILP.  
 (include many NP-hard problems, where no polynomial-time  algorithms 

exist )  
▪A few libraries could handle them, including CPLEX.  
▪Running time could varies a lot, and could be extremely slow for some instances.  

d (x1, x2, x3…xd)

c1…cd
min c1x1 + c2x2 + …cd xd . ⃗c = (c1, c2…cd)

⃗c ⋅ ⃗x = c1x1 + c2x2 + …cd xd ⃗x = (x1, x2…xd)
⃗a1, ⃗a2… ⃗an b1…bn ⃗x

⃗a1 ⋅ ⃗x ≤ b1

⃗a2 ⋅ ⃗x ≤ b2
⋮

⃗an ⋅ ⃗x ≤ bn

x1…xd

or, if you are familiar with 
matrix notation, write it as  

.  A is a matrix 
whose rows are 
A ⋅ x ≤ b⃗

⃗a1… ⃗an

In the next slide, we are going to talk about 
network flow problems. We will visit some 
properties of max flow 

We are not going to describe Ford-
Fulkeson algorithm.  

The CLRS contains a chapter about 
Network-Flow. We use only the definitions



Flow networks
Definition.  A flow network is a directed graph G = (V, E) with two 
distinguished vertices: a source s and a sink t.  Each edge (u, v) ∈ E is given 
with a nonnegative capacity c(u, v).  

The values could specify the number of cars per minute on this road, or number 
of Gbyte on this link   

Example:

s t

3
2

3

3 2

2
3000

31

2

1

The 2 here mean “only two 
gallons /minute on this pipe / 
only 2 cars/second on this road. 

Goal: Send as many cars/bytes/
gallons from s to t, without 
violating the edges capacities, 
and without violating the flow 
conservation (coming next)

The total value of a flow 
is the sum of the flow 
flows out of the source: 

In the example, the value 
of the flow equals 1+2=3 

Flow  in Networks
Def: A solution to the flow network flow problem (or in short, the flow) is  on G is a set of values (numbers)   specific for every 
edge .  So for the example below, we need to specify the numbers    
 These are the unknown that we need to compute. 
   p(u,v)  is the flow on the edge (u,v).If  then p(u,v) is defined by is 0. 

 To be a legal flow, these values must satisfy two sets of conditions:  

• Capacity constraint: For all u, v ∈ V,   
 0 ≤ p(u, v) ≤ c(u, v). 

• Flow conservation: For all u ∈ V, which is not the source nor the sink       //What comes in must go out.  

•That is, every node is a memory-less router. It receives flow, and steer it to destinations. 

p(u , v)
(u , v) ∈ E {p(s, d ), p(s, b), p(d , c), p(g, b) . . . }

(u , v) ∉ E

0 ≤ p(u , v) ≤ c(u , v)

∑
vi∈V

p(vi, u) = ∑
vi∈V

p(u , vi)

.

s t

1:3
2:2

2:3

1:1 2:3 1:2

1:2
2:3000

1:3

2:2

 flow capacity

b

d c

g

∑
vi∈V

p(s, vi)

total flow into c 
2+2. Total flow out: 1+1+2

Lemma 

s t

1:3
2:2

2:3

1:1 2:3 1:2

1:2
2:3

1:3

2:2

positive flow capacity

∑
v∈V

p(s, v) = ∑
u∈V

p(v, t)

Lemma: The value of the flow equals to the sum of flows entering t  

The maximum-flow problem

s t

2:3
2:2

2:3

1:1 2:3 1:2

2:2
3:3

0:3

2:2

The value of the maximum flow is 4.

Maximum-flow problem: Given a flow network G, find a flow of maximum value on G.



Maximize the value of 
the (the net flow out of 
the source) 

LP could solve flow problems  
(but values might be non-integers)

Unknown variables:  p(u, v),  for all u, v ∈ V 
Constrains:  
• Capacity constraint: For all u, v ∈ V, 

 0 ≤ p(u, v) ≤ c(u, v). 

• Flow conservation: For all u ∈ V – {s, t}, p(u,v)
v∈V
∑ = p(v,u)

v∈V
∑

max p(s,v)
v∈V
∑ .

s t

1:3
2:2

2:3

1:1 2:3 1:2

1:2
2:3

1:3

2:2

 flow capacity

b

d d

g

Application: Bipartite Matching. 

B

A graph G(V,E) is called bipartite if V can be partitioned into two 
sets V=A∪B, and each edge of E connects a vertex of A to a vertex 
of B. We sometimes denote these graphs by G(A∪B,E)  
 (we assume that the partition of V to A and B is given) 

A matching is a set of edges M of E, where each vertex of A is 
adjacent to at most one vertex of B, and vice versa.  

A BA

Application: Max-Cardinality Bipartite Matching. 

• Max-Cardinality matching Given A bipartite graph  
G(A∪B ,E), find the largest subset M which is a 
matching.  

• A matching is a set of edges M of E, where each 
vertex of A is adjacent to at most one vertex of B, 
and vice versa. 

• This problem could be solved with in O(nm) time 
using Ford-Fulkerson algorithm. Faster algorithms 
exist as well. However, we will use it as an 
example to the ease of using ILP.  

• This method fits well other variants of matching 
problems 

A B

ILP for  Max-Cardinality Bipartite Matching. 

• For every edge e, define a Boolean variable xe.   
• xe =1 if e participates in M, and xe=0 otherwise.  
• The goal is to maximize the number of edges in M, 

while keeping  M a proper matching.

A B

a1

e2

b2

b3

b4

In the example only one of the edges (a1, b1 ), (a1, b3  ) will be in M, 
since x2+x3≤1  

e3

e3 b1



Vertex Cover and ILP

• Given: A graph G(V,E). A subset  is a vertex 
cover if every edge  we have either  

  
• Finding the min-cardinality Vertex Cover is NP-Hard  
• ILP for this problem: the variables are . All are 

integers and between 0 and 1. 
•

C ⊆ V
(u, v) ∈ E

u ∈ C or v ∈ C or both 

x1…xn

vi ∈ C  iff xi = 1 (for i = 1…n)
B

b4

b3

b5

e3

b1 b2 b3

b6

minimize
n

∑
i=1

xis.t. 
xi + xj ≥ 1 ∀(vi, vj) ∈ E

Art Gallery - on the board

minimize
n

∑
i=1

xi

s.t. 
         ∑

k∈Vis(i)

xk ≥ 1 ∀1 ≤ i ≤ n

• Given a polygon, find a subset of the vertices that sees every other vertex 
• Let Vis(i) be the set of vertices that vertex i sees.   
• For a vertex vi we set xi=1 if we place a guard at vi. 
• As usual , xi are integers between 0 to 1.   

Visibility in a polygon. The art Gallery Problem

 • Given - a polygon domain  D, and a set 
 of potential guards.   

• Each potential guard  sees some region 
 of the polygon, but could not see 

through  walls.  
• Formally,  sees every point  for which 

the segment  is fully in D.  
• Art Gallery Problem - find the smallest 

set of guards (all from P) that together 
see the whole D. 

• NP-hard (and extremely practical)  
•   the area (in 

meters^2) that it sees.  
• Budget Art-Gallery Problem: Given a 

number  (`budget’), find a set G of  
guards from P, that sees together the 
maximum area.  

P = {p1…pn}
pi

Vis(pi)

pi q
pi q

μi = Area(Vis(pi))

k ≤ k

D

q

p1

p2

“Standard” Art Gallery:  
Find the smallest set  

s.t  
 

Budget Art Galley:  
Given k, find   

Maximize  

{g1, g2…gr} ⊆ P

D = Vis(g1) ∪ Vis(gi) ∪ . . Vis(gr)

{g1, g2…gk} ⊆ P

Area( Vis(g1) ∪ Vis(g2) ∪ . . Vis(gk))

Vis(p1)
pi , q

This is a set cover problem

Vis(p1)

 
p1

• Given - a polygon domain  D, and a set  of potential guards.  

• Every potential guard   defines a set. This set is . A set cover problem is to 
find a collection of sets that together covers the whole domain. 

• Greedy Approach. The first guard is the point that sees maximum area 
 

• The second guard  sees the maximum area that   does not see  

•  sees the max area not seen by neither  nor ,  etc…

P = {p1…pn}

pi Vis(pi)

g1 = arg max
p∈P

μ(p)

g2 g1

g3 g1 g2

D



Set Cover Problems - terminology 
General problem: Given a universe , each  is an atoms. 
Also given a range space (also called set system). It is a collection of subsets 
of X.   a collection of subsets of X.  ( )    

X = {x1…xm} xi

R = {S1, S2…} Si ⊆ X

Examples:  

1. In a polygon , the atoms are all points of D.  Each possible guard   
defines .     

2. Given a graph ,  we could treat V as the universe. Each edge 
is a set of two atoms. (edge-cover)  

3. In a graph , the atoms are the edges.  Each vertex  
defines the set  of all the edges that  is adjacent to. (vertex cover)   

D pi
Vis(pi) R = {Vis(pi) | pi ∈ P}

G(V, E)

G(V, E) vi ∈ V
Si vi

Vis(p1)
p1

Min-Weight Vertex Cover and ILP

• Sometimes the LP (instead of the ILP) could help us finding good approximations  
• Given: A graph G(V,E). Each vertex  is given with a weight   Think about it as the 

cost of this vertex.  
•  A subset  is a vertex cover if every edge  we have either  

  
• The cost of C is the sum of weights of vertices in C.  
• Finding the min-cardinality Vertex Cover is NP-Hard  
• ILP for this problem: the variables are . All are integers and between 0 and 1. 

•

vi wi > 0.

C ⊆ V (u, v) ∈ E
u ∈ C or v ∈ C or both 

x1…xn

vi ∈ C  iff xi = 1 (for i = 1…n)

b4

b3

b5, 9$   

e3

b1 b2 b3

b6 , 4$

minimize
n

∑
i=1

wixi

s.t. 
xi + xj ≥ 1 ∀(vi, vj) ∈ E


