Credits:
Steven Rudich

The Mathematics Of 1950's Dating: Who wins the battle of the sexes? Stable marriage (matching) algorithm.

- There are n males and n females
- Each female has her own ranked preference list of all the males
- E.g., women \#1 most prefers male \#3 over any other male.
- Each male has his own ranked preference list of the females
- How should we match them (1-to-1)

Definition of a Matching in this lecture

- A matching in this context is a list of couples that according to the algorithm, should be matched to each other. Each male is married to a single female and vice versa.
$M=\left\{\left(m_{1}, f_{13}\right),\left(m_{2}, f_{7}\right), \ldots \ldots\left(m_{n}, f_{n}\right)\right\}$

The algorithm aims to find a good matching (under some definition)

- Sometimes the term pairing is used

Definitions about the preference lists

 In her list,- male 5 is her top choice.
- If he is not interested, her top choice is male 19.
- If neither 5 nor 19 are interested, his top is $40 \ldots$
- This is a full ranking of all males.

Definition: Rogue Couples

-Consider a given matching M (that is, assume that matching is done). A rouge couple (in this matching) is a couple (female, male) who are not married to each other, but prefer each other over their spouses.
-In the example to the right
Zod is married to Evanora (6), but prefers Aradia (3)
Aradia is married to Syndrom (5) ,but prefers Zod (2)

- They will be called a rogue couple.

- They both would gain from dumping their mates and marry each other.
- A source of confusion: A couple that is married to each other could not be rouge. The other couples are the ones we are concern about.
- A matching is called stable if it does not contain any rouge couples.
- The source of the 'instability': They would both benefit from changing the situation
- How could we obtain stability: Make sure that if one gains, the other loose

The study of stability will be the subject of the entire lecture.

We will: Analyze various mathematical properties of an algorithm that looks a lot like 1950's dating.

Given a set of preference lists, how do we find a stable matching?

Wait! We don't even know that such a matching always exists!

Is there always a stable matching?

Terminology and principles

- A male can propose (marriage) to a female.
- A female can reject the proposal.

- During most of the process, a female would not accept a proposal, but would tell a proposing male "maybe".
- This is called "putting the male on a string"
- Once a male is rejected, he crosses off from his list the rejecting female - he will not propose to her again.
- Once a male proposes, he cannot change his mind until he is rejected.

The Traditional Marriage Algorithm

Traditional Marriage Algorithm (TMA)

1) Repeat at each day \{

- Morning
- Each male proposes to the best female whom he has not yet crossed off
- Afternoon (for each females with at least one proposal)
- To today's best offer: "Maybe, come back tomorrow" (putting him on a string)
- All other proposals are rejected.
- Evening
- Any rejected male crosses the rejecting female off his list.
\}Until all males are on strings.

2) Each female marries the last male she just said "maybe"

Note: Each male proposes to females in decreasing order on his list.

Lemma: If a female has a male b on a string, then she will either marry him, or marry someone she prefers over him.

Proof:

- She would only let go of b in order to "maybe" b' which she prefers over b
- She would only let go of b' for someone b" she prefers over b' etc.
When the process terminates, she is left with someone she prefers over b.

QED

Corollary:

Each female will marry her absolute favorite of the males who visit her during the Traditional Marriage Algorithm (TMA)

Lemma: No male can be rejected by all the females

-Proof by contradiction.
-Suppose male b is rejected by all the females. At that point:

- Each female must have a suitor other than \boldsymbol{b} (By previous Lemma, once a female has a suitor she will always have at least one)
- The \boldsymbol{n} females have \boldsymbol{n} suitors, \boldsymbol{b} not among them.

Thus, there are at least $\boldsymbol{n}+\mathbf{1}$ males.
Contradiction
QED

Theorem: The TMA always terminates after at most \mathbf{n}^{2} days

Proof

- The total length of the lists of all males is

$$
n \times n=n^{2} .
$$

-Each day at least one male gets a "No", so at least one female is deleted from one of the lists.
-Therefore, the number of days is bounded by the original size of the master list $=n^{2}$.

QED

Great! We know that TMA will terminate and produce a pairing.

But is it stable?

Theorem: TMA. Produces a stable pairing.

- Let \boldsymbol{m}_{1} and \boldsymbol{f}_{1} be any couple in \boldsymbol{T}.
- Suppose m_{1} prefers \boldsymbol{f}_{2} over \boldsymbol{f}_{1}.
- We will argue that f_{2} prefers her husband over \boldsymbol{m}_{1}.
- During TMA, male \boldsymbol{m}_{1} proposed to f_{2} before he proposed to f_{1}.
- Hence, at some point f_{2} rejected \boldsymbol{m}_{1} for someone she preferred.
- By the Improvement lemma, the man she married was also preferable to m_{1}
- Thus, every male will be rejected by any female he prefers to his wife.
- T is stable. QED.

Uniqueness

-Question: Given the input preference lists, is there only one stable matching ?
-Answer: Sometimes yes, sometime no. Depending on the input.
-Remember TMA produces a stable matching, but not every possible matching is an output of TMA.

A slow algorithm to produce every stable matching

-For every possible matching M -Check if M is stable.

-Assume a pairing is stable (under the definition given a few slides ago)
-Question: Will every person get her/his top choice in every stable ?
-Answer: Not necessarily (see whiteboard)

- So could we claim that it is minimize or maximize something?
-ANSWER: No. But lest understand why.

The Optimal female

Consider a male m_{i} (say "Mark").

Definition We say that a female f_{j} is the optimal female for Mark if f_{j} is highest ranked female (in Mark's list) for whom there is some stable matching in which Mark is married to f_{j}.
She is the best female he can get in a stable world.
-Presumably, she might be better than the female he gets in the stable pairing output by TMA.
-Note - she might or might NOT be the highest female on his list).

- And note that different males might have different opt females.

Thm
 -The Traditional Marriage Algorithm yields a matching at which each male gets his optimal female

-That is, TMA produces a a male-optimal pairing

Next slides will be dedicated to prove this Theorem

TMA but with exact clock.

- Assume: At each time stamp, (every `tick’ of the clock) there is exactly one event:
- Event: a single man proposes, and if got rejected, his next proposal will be in next time stamp)
- Note: The exact order is not crucial:
- If both $\boldsymbol{m}_{\boldsymbol{1}}, \boldsymbol{m}_{\boldsymbol{2}}$ are proposing to \boldsymbol{f}, the result is the same independent of whom proposed first.

Proof of Thm:
 (TMA produces a male-optimal pairing)

We will show that no male is being rejected by his opt female.
-Suppose by contradiction that Florence is the opt female of Adam, yet during the TMA she has just rejected him to maybe Bob.

- Assume this is the first time a male is rejected by his opt female.
(some males might have been rejected, but not by their opts)
-Bob had not yet been rejected by his optimal female

Thm: TMA produces a male-optimal pairing (cont)

- Bob had not yet been rejected by his optimal female. Therefore in Bob's list Florence is either Bob's optimal female. Or
Florence is higher than his Bob's optimal.
That is, in any stable world, BOB is either married to Florence, or to somebody lower on his list (definition of opt)
- Let \boldsymbol{S} be the matching at which (Adam. Florence) are married
(\boldsymbol{S} is NOT the result of the TMA). Think about S as a parallel universe.
- In S, Bob is married to f_{2}, whom he prefers less than Florence.
- hence (Bob, Florence) are a rouge couple, so S is unstable QED

The Pessimal male

-Let Florence be one of the females.

- Note that there might be different matching which are stable.
-Florence's pessimal male is the lowest ranked male (on her list) for whom there is some stable matching at which she gets him.
- He is the worst male she can conceivably get in a stable world.

Thm: The TMA is female-pessimal.

Proof: We know TMA it is male-optimal.
(Syndrome, Florence) is a couple in TMA,
\rightarrow Florence is Syndrome's optimal female (he cannot do better in a stable world) (the previous theorem)

Consider a stable matching S where Florence does worse than Syndrome.
Let Zod be Florance's husband in S
(Zod is lower on her list than Syndrome)
In \boldsymbol{S}, Syndrome is not married Florence, (taken by Zod) and cannot marry a female he prefers over Florence (otherwise she is not his opt).

So (Syndrome, Florence) is a rogue couple.

- Therefore, S is not stable. QED

REFERENCES

-D. Gale and L. S. Shapley, College admissions and the stability of marriage, American Mathematical Monthly 69 (1962), 9-15
-Dan Gusfield and Robert W. Irving, The Stable Marriage Problem: Structures and Algorithms, MIT Press, 1989

