
• Definition: A directed graph G(V,E) that contains no cycles is called a directed acyclic graph (DAG).

• Given a DAG, assume that we are given also a unique label lbl[v], with each vertex v. The label is a unique number between 1…n

(n - number of vertices)

• Think about these labels as order by which we could visit the vertices: (first, second…last).

• Definition: we say that the vertices are topologically sorted if for every edge (u,v), the label of u is smaller than the label of v.

Given the DAG (without the labels, we want to find such an order if possible, or to be informed that no such order exists.

(u, v) ∈ E implies lbl((u) < lbl(v)

Topological order of a directed graph.

Kuhn Algorithm

2

6

3

1

x

5 4y w a

b clbl[b]=2

lbl[c]=3

lbl[y]=1

….

Example; The vertices are {a,b,c,x,y,w}

labels are the red numbers

 Def: InDegree(v, E), be the number of edges that “enter” v.

	

Topological order of a directed graph.

 v

InDegree(v,E)=3

 x1

 x2
 x3

InDegree(x1,E)=0

Kuhn Algorithm:
Input: A directed graph G(V,E).

Output: a label for each vertex that is a topological order (if exists)

Algorithm: for every node v set lbl[v]=NULL

S ← Set of all nodes with no incoming edge in E. // (InDegree=0)

cnt=1 ;

while S is non-empty do

	 remove a node u from S

	 lbl[u] =cnt ; cnt++ ;

	 for each node v with an edge (u,v) in E (each nbr of u) do

	 	 If lbl(v) is not NULL – Error. There are cycles. Else

	 	 remove (u,v) from E

	 	 Indegree(v) --

 	 	 if v has no other incoming edges then

	 	 insert v into S

if E is not empty then return error (graph has at least one cycle) else return the
labels of all vertices.

Kuhn Algorithm:
Input: A directed graph G(V,E).

Output: a label for each vertex that is a topological order (if exists)

Algorithm: for every node v set lbl[v]=NULL

S ← Set of all nodes with no incoming edge in E. // (InDegree=0)

cnt=1 ;

while S is non-empty do

	 remove a node u from S

	 lbl[u] =cnt ; cnt++ ;

	 for each node v with an edge (u,v) in E (each nbr of u) do

	 	 If lbl(v) is not NULL – Error. There are cycles. Else

	 	 remove (u,v) from E

	 	 Indegree(v) --

 	 	 if v has no other incoming edges then

	 	 insert v into S

if E is not empty then return error (graph has at least one cycle) else return the
labels of all vertices.

Running time O(|V|+|E|)

