
Alon Efrat 
Computer Science Department 

University of Arizona

Tries and suffixes trees

2

Trie: A data-structure for a set of words

All words over the alphabet Σ={a,b,..z}.

In the slides, the alphabet is only {a,b,c,d}.  
S – set of words = {a,aba, a, aca, addd}.

Need to support the operations

•	 insert(w) – add a new word w into S.

•	 delete(w) – delete the word w from S.

•	 find(w) is w in S ?

•Future operation:

•Given text (many words) where is w in the text.

•The time for each operation should be O(k), where k is
the number of letters in w

•Usually each word is associated with addition info –
not discussed here.

3

Trie (Tree+Retrive) for S

■ A tree where each node is a struct consist

■ Struct node {

■ char[4] *ar;

■ char flag ; /* 1 if a word ends at this node. Otherwise 0 */

}

b c da

ar

flag

1

b c da
ar

flag
1

Rule:

 Each node corresponds to a word w.

 w∈ S iff flag=1 4

A trie - example

b c da

b c da b c da
b c da

b c da

b c da

a b d

b

b

1 1 0

0

0

1

The dictionary contains S={a,b,dbb}

Corr. To w=“db”

(not in S, flag=0)

The label of an edge is the label of

the cell from which this edge exits

p->ar[‘b’-’a’]
p

Corr. to w=“dbb”

Corresponding to w=“d”

5

A quick reminder from Java/C

the when we write ‘a’, it means “the ascii value of ‘a’.

For example, ‘A’=65, ‘B’=66,.. ‘Z’=90, ‘a’=97 etc

This means ‘d’-‘a’=d,

6

Finding if word w is in the tree

p=root; i =0 // remember - each string ends with `\0’

While(1){

■ If w[i] == ‘\0’ 	//we have scanned all letters of w

■ then return the flag of p ; else

■ If //the entry of p correspond to w[i]
is NULL

	 	 return false;

■ //Set p to be the node pointed by this entry

■ i++;

}

(p . a[w[i] −′￼a′￼]) = = NULL

p = (p . a[w[i] −′￼a′￼])

7

Inserting a word w

■ Try to perform find(w).

■ If runs into a NULL pointers, create new nodes along the

path.

■ The flag fields of all new nodes is 0.

■ Set the flag of the last node to 1

8

Deleting a word w

■ Find the node p corresponding to w (using `find’
operation).

■ Set the flag field of p to 0.

■ If p is dead (I.e. flag==0 and all pointers are NULL) then 	

free(p), set p=parent(p) and repeat this check.

9

Heuristics for saving space

■ The space required is Θ(|Σ| |S|).

■ To save some space, if Σ is larger, there are a few heuristics

we can use. Assume Σ={a,b..z} .

■ We use two types of nodes

■ Type “A”, which is used when the number of children of a
node is more than 3

p
type a flagb z

Note – the letters are not stores explicitally

10

Heuristics for space saving

■ Type “B” is used if there are 3 or less children:

■ The “letter” of the child is also stored:

p
type letter pointer letter pointer letter pointer flag

B F R

•The rule of the flag is the same as in type “A” nodes.

•We only store the 3 pointers, but we need to know to which
letters they corresponds to.

11

Another Heuristics – path compression
■ Replace a long sequence of nodes, all

having only one a single child, with a
single node (of type “pointer to string”) that
maintains

■ a point to the next node,

■ a point to the string.

b c da

b c da

b c da

b c da

“bbbb\0”
b c datype

12

Suffix tree.

■ Assume B (for book) is a very long text.

■ Want to preprocess B, so when a word w is given, we can

quickly find if it is in B.

■ We can find it in O(|w|).

■ Idea:

■ Consider B as a long string.

■ Create a trie T of all suffixes of B.

■ In addition to the flag (specifying if a word ends at node),

we also stored the index in B where this word begins.

■ Example B=“aabab”

	 S={“aabab”, “abab”, “bab”, “ab”, “b”}

Observation: w appears in B

w is the prefix of a suffix of B.

Example: B=“helloniceworld”, w=“nice”.

⇔

13

Suffix tree.
Example B=“aabab” S={“aabab”, “abab”, “bab”, “ab”, “b”}

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

1

1

1

1

To know where a word
 appears in B, we store

with the node of the
starting_index of in B.

We store only the first
appearance of the word in
the text (shown in brown)

w ∈ S
w
w

1 this flag==1

since
←

aabab ∈ S

0

0

0

this flag==0

since aa ∉ S

Book= a a b a b
index= 0 1 2 3 4

<latexit sha1_base64="EwNZ88zoyU777TRiGHFL7NwdB8Q=">AAACSHicbVDBTttAEF2n0IILJZQjl1WjWpwiO0GiFyQEF45UIoAUR9F4PUlWWe9au+uqkcnnceHIrd/QCwcQ6o11sBAFnjTS03szs7MvyQU3Ngz/eI0PS8sfP62s+p/X1r9sNDe/nhlVaIY9poTSFwkYFFxiz3Ir8CLXCFki8DyZHlX++S/Uhit5amc5DjIYSz7iDKyThs1hnOCYy9JCUgjQ8/KSLXA59+NJtdSn9FCp6T4NKAQQJFXFsU+5TPG3U8MgCjpBN9iN43ogRpk+7xs2W2E7XIC+JVFNWqTGybB5E6eKFRlKywQY04/C3A5K0JYzge6qwmAObApj7DsqIUMzKBdBzOl3p6R0pLQraelCfTlRQmbMLEtcZwZ2Yl57lfie1y/s6Meg5DIvLEr29NCoENQqWqVKU66RWTFzBJjm7lbKJqCBWZe970KIXn/5LTnrtKNuu/Nzt3VwWMexQrbJN7JDIrJHDsgxOSE9wsgV+UvuyL137d16D96/p9aGV89skf/QaDwCWyWvDA==</latexit>

 is a suffix of B

starting_index=2
bab

Starting_index=0

Starting_index=1

Starting_index=2

Starting_index=3

14

Size of suffix tree
Example B=“aabab” S={“aabab”, “abab”, “bab”, “ab”, “b”}

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

1

1

1

1

1

Assume n=|B|.

Total length of all string Θ(n2)

Size of a node is |Σ|

So size of the tree is Θ(n2 |Σ|).

Time to construct the tree Θ(n2)

We can save some space. Example B=“aabab”

S={“aabab”, “abab”, “bab”, “ab”, “b”}

15

Suffix tries on a diet
Def: a thread is a path from node u to node v in the

trie, consisting of nodes of outdegree 1 (except
maybe the last one) and flag=0.

Obs: There is a contagious part of B, identical to the
string the shred represents. We call this part the
shred-string

We stores the book B itself as an array.

We use a new type of nodes, called thread-nodes,

maintain the first (id1) and last (id2) indexes of
the shred-string in B.

b c da

b c da

b c da

b c da

b c da

B=“cadbdaadbd

b c datype flagid1 id2
107 7 101

16

Suffix tries on a diet - cont
Algorithm for constructing a “thin” trie:

Given B – create an empty trie T, and insert all n

suffixes of B into T --- generating a trie of size
Θ(n2).

Traverse the tries, and each time that a shred is
seen, replace all nodes of the shred with a
single shred-node.

b c da

b c da

b c da

b c da

b c da

17

Suffix tries on a diet - cont

•Clearly the use of thread-nodes saves some-but can we prove something ?

•Observations: Every leaf of T must be the end of some prefix of B. So
the number of number of leaves of T is . (n denotes the book size)

•To bound the size of T, we will need to bound the number of internal
nodes.

•Observations:

T might contain special nodes whose flag=1 (a suffix terminates at

these nodes).

The number of special nodes is also (since this is the number of

suffixes).

•What about other internal nodes of T ?

≤ n

≤ n

b c da

b c da

b c da

b c da

b c da

18

The “children-blessed Lemma”
We say that a tree T is children-blessed tree if every node is either a leaf or has children.

Let T tree with m leaves. We use the following notation:

Let denote the number of nodes in T.

 denote the number of leaves in T.

 denote the # of internal in T.

Children-blessed Lemma: If T is a children-blessed tree, then . That is, T has more leaves than
internal nodes.

Proof by induction on m (the number of leaves in T)

Base case: m=1. A children blessed tree T that has only one leaf must have zero internal nodes. If has a parent, then
this parent is internal but u is the only child. So the base case is proven the induction base case.

Induction step. Pick some integer . Assume that we have proven the lemma for every c.b. tree that has

leaves. and let T be a children-blessed tree that has leaves. Need to show .

Pick an arbitrary leaf of T, and let . Now we have two cases, depending on the number of siblings of u:

1. Case 1: u has at least 2 siblings. Create a tree T’ by deleting u from T.

T’ is still children-blessed. but .

Since , and our assumption is that the lemma has been proven for all trees with leaves,
we know that , implying that

2. Case 2: u has only one sibling v. Let p=parent(u). Create a tree T’ by deleting both from T.

• In T’, stopped being an internal node, and is now a leaf. T’ is still children-blessed.

•

• T’ has leaves, so we could use the induction hypothesis that #internal(T’) #leaves(T’), therefore

#internal(T) #leaves(T). This ends the proof.

≥ 2

#nodes(T)
#leaves(T)
#internal(T)

#internal(T) ≤ #leaves(T)

u u

m ≥ 2 ≤ m
m + 1 #internal(T) ≤ m + 1

u p = parent(u)

#internal(T) = #internal(T′￼) #leaves(T) = #leaves(T′￼) + 1
m = #leaves(T′￼) ≤ m

#internal(T′￼) ≤ #leaves(T′￼) #internal(T) ≤ #leaves(T)
u, and v

#internal(T) = #internal(T′￼) + 1
≤ m ≤

≤

19

Back to compressed suffix trees

Back to thin suffix tries T created for a book B with n letters.

• T has special nodes (with flag=1) and

• T has leaves (every leaf is the end of a suffix of B)

• Every other nodes has children. (with flag=1). Applying the children

blessed Lemma in this case, implies that the total number of internal nodes
.

• Conclusion: The number of nodes in T is (much better than the uncompressed
version that could have nodes.

• So the size of the trie is only a constant more than the size of the book.

	 	 	 	

≤ n
≤ n

≥ 2

≤ 2n

≤ 3n
Θ(n2)

20

Summary, and potential points of confusions

1. A trie stores a set of strings . The memory need is approximately
 in the worst case. Here is the number of character in

.

2. An uncompressed suffix tree is a trie, but the input dictionary consists of all

suffixes of a book B, and each node also stores where the corresponding suffix
appears in B. The memory needed for an uncompressed suffix tree is . (so
as bad as

3. Path compression identifies in the trie long threads of nodes, each point to the next,
and each has only one child. Such a thread, containing say k nodes, could be
replaced by a single “fancy” node. However,

3.1. In a regular trie, this node must still store character, so its size could be very
large

3.2. In a suffix tree, this node only need to stores a pointer to the book, and the
length of this thread. So only O(1) memory

4. Path compression shrinks the size of the uncompressed suffix tree from to
. This is easily the difference between being practical to useless. We used the

children-blessed lemma to show the size of the compressed suffix tree

{s1, s2…sn}
|s1 | + |s2 | + |s3 | + … |sn | |si | si

Θ(n2)
n2)

k

Θ(n2)
Θ(n)

