Tries and suffixes trees

Alon Efrat

Computer Science Department
University of Arizona

Trie: A data-structure for a set of words
All words over the alphabet $\Sigma=\{a, b, . . z\}$. In the slides, the alphabet is only $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
$S-$ set of words = $\{\mathrm{a}, \mathrm{aba}, \mathrm{a}, \mathrm{aca}, \mathrm{addd}\}$.
Need to support the operations

- insert (w) - add a new word w into S.
- \quad delete (w) - delete the word w from S.
find (w) is w in S ?
-Future operation:
- Given text (many words) where is w in the text.
-The time for each operation should be $O(k)$, where k is the number of letters in w
- Usually each word is associated with addition info not discussed here.

Trie (Tree+Retrive) for S

- A tree where each node is a struct consist
- Struct node \{
- char[4] *ar;
* char flag ; /* 1 if a word ends at this node. Otherwise 0 */
\}

A quick reminder from Java/C
the when we write ' a ', it means "the ascii value of ' a '.
For example, ' $A^{\prime}=65, ~ ' B '=66, . . ~ ' Z '=90, ~ ' a '=97 ~ e t c ~$
This means ' $\mathrm{d}^{\prime}-\mathrm{a} \mathrm{a}^{\prime}=\mathrm{d}$,

Inserting a word w

- Try to perform find(w).
- If runs into a NULL pointers, create new nodes along the path.
- The flag fields of all new nodes is 0 .
- Set the flag of the last node to 1

Finding if word w is in the tree

$\mathrm{p}=$ root; $\mathrm{i}=0 / /$ remember - each string ends with ${ }^{`} \backslash 0$ ’ While(1)\{

- If $w[i]==$ ' 0 ' //we have scanned all letters of w
- then return the flag of p; else
- If $\left(p . a\left[w[i]-{ }^{\prime} a^{\prime}\right]\right)==N U L L / /$ the entry of p correspond to $\mathrm{w}[\mathrm{i}]$ is NULL return false;
- $p=\left(p \cdot a\left[w[i]-{ }^{\prime} a^{\prime}\right]\right) / / S e t \mathrm{p}$ to be the node pointed by this entry
- i++;
\}

Deleting a word w

- Find the node p corresponding to w (using `find' operation).
- Set the flag field of p to 0 .
- If p is dead (I.e. flag==0 and all pointers are NULL) then free(p), set $p=$ parent (p) and repeat this check.

Heuristics for saving space

- The space required is $\Theta(|\Sigma||S|)$.
- To save some space, if Σ is larger, there are a few heuristics we can use. Assume $\Sigma=\{a, b . . z\}$.
- We use two types of nodes
- Type " A ", which is used when the number of children of a node is more than 3
p \qquad

Note - the letters are not stores explicitally

Another Heuristics - path compression

- Replace a long sequence of nodes, all having only one a single child, with a single node (of type "pointer to string") that maintains
- a point to the next node,
- a point to the string.

Heuristics for space saving

- Type " B " is used if there are 3 or less children:
- The "letter" of the child is also stored:

-The rule of the flag is the same as in type "A" nodes. -We only store the 3 pointers, but we need to know to which letters they corresponds to.

|Suffix tree.

- Assume B (for book) is a very long text.
- Want to preprocess B, so when a word w is given, we can quickly find if it is in B.
- We can find it in $\mathrm{O}(|w|)$.
- Idea:

```
W is the prefix of a suffix of B.
```

Exan
Example: $\mathrm{B}=$ "helloniceworld", $\mathrm{w}=$ "nice".

- Consider B as a long string.
- Create a trie T of all suffixes of B.
- In addition to the flag (specifying if a word ends at node), we also stored the index in B where this word begins.
- Example B="aabab"

```
S={"aabab", "abab", "bab", "ab", "b"}
```

Suffix tree.
Example $B=$ "aabab" $S=\{" a a b a b ", ~ " a b a b ", ~ " b a b ", ~ " a b ", ~ " b "\} ~$

13

Size of suffix tree

Example $B=$ "aabab" $S=\{" a a b a b ", ~ " a b a b ", ~ " b a b ", ~ " a b ", ~ " b "\} ~$
Assume $\mathrm{n}=|\mathrm{B}|$.
Total length of all string $\Theta\left(n^{2}\right)$
Size of a node is $|\Sigma|$
So size of the tree is $\Theta\left(n^{2}|\Sigma|\right)$.
Time to construct the tree $\Theta\left(n^{2}\right)$

We can save some space.

$$
\begin{aligned}
& \text { Example } B=" a a b a b " \\
& S=\{" a a b a b ", " a b a b ", " b a b ", " a b ", " b "\}
\end{aligned}
$$

Suffix tries on a diet

Def: a thread is a path from node u to node v in the
 trie, consisting of nodes of outdegree 1 (except maybe the last one) and flag=0.
Obs: There is a contagious part of B, identical to the string the shred represents. We call this part the shred-string
We stores the book B itself as an array.
We use a new type of nodes, called thread-nodes, maintain the first (id1) and last (id2) indexes of the shred-string in B.

$\mathrm{B}={ }^{1} \mathrm{c}$ adbda${ }^{7}{ }^{7}{ }^{10}{ }^{10}$

Suffix tries on a diet - cont

-Clearly the use of thread-nodes saves some-but can we prove something ?

- Observations: Every leaf of T must be the end of some prefix of B. So the number of number of leaves of T is $\leq n$. (n denotes the book size)
-To bound the size of T, we will need to bound the number of internal nodes.
-Observations:
T might contain special nodes whose flag=1 (a suffix terminates at these nodes)
OThe number of special nodes is also $\leq n$ (since this is the number of suffixes).
-What about other internal nodes of T ?

Back to compressed suffix trees

Back to thin suffix tries T created for a book B with n letters.

- Thas $\leq n$ special nodes (with flag=1) and
- T has $\leq n$ leaves (every leaf is the end of a suffix of B)
- Every other nodes has ≥ 2 children. (with flag=1). Applying the children blessed Lemma in this case, implies that the total number of internal nodes $\leq 2 n$.
- Conclusion: The number of nodes in T is $\leq 3 n$ (much better than the uncompressed version that could have $\Theta\left(n^{2}\right)$ nodes.

So the size of the trie is only a constant more than the size of the book

The "children-blessed Lemma"

We say that a tree T is children-blessed tree if every node is either a leaf or has ≥ 2 children
Let T tree with m leaves. We use the following notation:
Let \#nodes (T) denote the number of nodes in
fleaves (T) denote the number of leaves in
internal(T) denote the \# of internal in T .
Children-blessed Lemma: If T is a children-blessed tree, then \#internal $(T) \leq \#$ \#eaves (T). That is, T has more leaves than internal nodes.
Proof by induction on m (the number of leaves in T)
Base case: $\mathbf{m = 1}$. A children blessed tree T that has only one leaf u must have zero internal nodes. If u has a parent, then this parent is internal but u is the only child. So the base case is proven the induction base case.

Induction step. Pick some integer $m \geq 2$. Assume that we have proven the lemma for every c.b. tree that has $\leq m$ leaves. and let T be a children-blessed tree that has $m+1$ leaves. Need to show \#internal $(T) \leq m+1$.
Pick an arbitrary leaf u of T , and let $p=$ parent (u). Now we have two cases, depending on the number of siblings of u :

1. Case 1: u has at least 2 siblings. Create a tree T^{\prime} by deleting u from T.
T^{\prime} is still children-blessed. \#internal $(T)=$ \#internal $\left(T^{\prime}\right)$ but \#leaves $(T)=$ \#leaves $\left(T^{\prime}\right)+1$.
since $m=$ \#leaves $\left(T^{\prime}\right)$, and our assumption is that the lemma has been proven for all trees with $\leq m$ leaves, we know that \#internal $\left(T^{\prime}\right) \leq$ \#leaves $\left(T^{\prime}\right)$, implying that \#internal $(T) \leq$ \#leaves (T)
2. Case $2: \mathrm{u}$ has only one sibling v . Let $\mathbf{p}=$ parent(\mathbf{u}). Create a tree T^{\prime} by deleting both u, and v from T

- In T^{\prime}, stopped being an internal node, and is now a leaf. T^{\prime} is still children-blessed.
- \#internal $(T)=$ \#internal $\left(T^{\prime}\right)+$
T^{\prime} has $\leq m$ leaves, so we could use the induction hypothesis that \#internal(T^{\prime}) $\leq \#$ leaves $\left(T^{\prime}\right)$, therefore \#internal(T$) \leq$ \#leaves (T). This ends the proof.

Summary, and potential points of confusions

1. A trie stores a set of strings $\left\{s_{1}, s_{2} \ldots s_{n}\right\}$. The memory need is approximately $\left|s_{1}\right|+\left|s_{2}\right|+\left|s_{3}\right|+\ldots\left|s_{n}\right|$ in the worst case. Here $\left|s_{i}\right|$ is the number of character in s_{i}
2. An uncompressed suffix tree is a trie, but the input dictionary consists of all suffixes of a book B, and each node also stores where the corresponding suffix appears in B. The memory needed for an uncompressed suffix tree is $\Theta\left(n^{2}\right)$. (so as bad as n^{2})
3. Path compression identifies in the trie long threads of nodes, each point to the next, and each has only one child. Such a thread, containing say k nodes, could be replaced by a single "fancy" node. However,
3.1. In a regular trie, this node must still store k character, so its size could be very large
3.2. In a suffix tree, this node only need to stores a pointer to the book, and the length of this thread. So only $\mathrm{O}(1)$ memory
4. Path compression shrinks the size of the uncompressed suffix tree from $\Theta\left(n^{2}\right)$ to $\Theta(n)$. This is easily the difference between being practical to useless. We used the children-blessed lemma to show the size of the compressed suffix tree
