# Tries and suffixes trees

Alon Efrat Computer Science Department University of Arizona

### Trie: A data-structure for a set of words

All words over the alphabet  $\Sigma = \{a, b, .., z\}$ . In the slides, the alphabet is only  $\{a, b, c, d\}$ . **S** – set of words =  $\{a, aba, a, aca, addd\}$ . Need to support the operations

- $\frac{1}{2}$  insert(w) add a new word w into S.
- delete(w) delete the word w from S.
- find(w) is w in S ?
  Future operation:
  Given text (many words) where is w in the text.

•The time for each operation should be O(k), where k is the number of letters in w

2

•Usually each word is associated with addition info – not discussed here.





#### A quick reminder from Java/C

the when we write 'a', it means "the ascii value of 'a'.

For example, 'A'=65, 'B'=66,.. 'Z'=90, 'a'=97 etc

This means 'd'-'a'=d,

## Finding if word w is in the tree

p=root; i =0 // remember - each string ends with `\0'
While(1){

- If w[i] == (0') //we have scanned all letters of w
  - then return the flag of p ; else
- If (p. a[w[i] -'a']) = = NULL //the entry of p correspond to w[i] is NULL

#### return false;

- $p = (p \cdot a[w[i] a']) //Set p$  to be the node pointed by this entry
- i++;

}

6

## Inserting a word *w*

- Try to perform find(w).
  - If runs into a NULL pointers, create new nodes along the path.
  - The flag fields of all new nodes is 0.
- Set the flag of the last node to 1

## Deleting a word w

- Find the node p corresponding to w (using `find' operation).
- Set the flag field of **p** to 0.
- If p is dead (I.e. flag==0 and all pointers are NULL) then free(p), set p=parent(p) and repeat this check.

5







# Suffix tree.

- Assume *B* (for book) is a very long text.
- Want to preprocess *B*, so when a word *w* is given, we can quickly find if it is in *B*.
- We can find it in O(|w|).

Observation: w appears in B ⇔ w is the prefix of a suffix of B. Example: B="hello**niceworld**", w="nice".

- Idea:
  - Consider *B* as a long string.
  - Create a trie *T* of all suffixes of *B*.
  - In addition to the flag (specifying if a word ends at node), we also stored the index in *B* where this word begins.
  - Example *B="aabab"*
    - S={"aabab", "abab", "bab", "ab", "b"}







# Suffix tries on a diet - cont

#### Algorithm for constructing a "thin" trie: Given B – create an empty trie T, and insert all nsuffixes of B into T --- generating a trie of size $\Theta(n^2)$ .

Traverse the tries, and each time that a shred is seen, replace all nodes of the shred with a single shred-node.







Back to thin suffix tries *T* created for a book B with n letters.

- *T* has  $\leq n$  special nodes (with flag=1) and
- *T* has  $\leq n$  leaves (every leaf is the end of a suffix of B)
- Every other nodes has  $\geq 2$  children. (with flag=1). Applying the children blessed Lemma in this case, implies that the total number of internal nodes  $\leq 2n$ .

• Conclusion: The number of nodes in T is  $\leq 3n$  (much better than the uncompressed version that could have  $\Theta(n^2)$  nodes.

• So the size of the trie is only a constant more than the size of the book.

- 1. A trie stores a set of strings  $\{s_1, s_2, ..., s_n\}$ . The memory need is approximately  $|s_1| + |s_2| + |s_3| + ... + |s_n|$  in the worst case. Here  $|s_i|$  is the number of character in  $s_i$
- 2. An **uncompressed** suffix tree is a trie, but the input dictionary consists of all suffixes of a book B, and each node also stores where the corresponding suffix appears in B. The memory needed for an uncompressed suffix tree is  $\Theta(n^2)$ . (so as bad as  $n^2$ )
- 3. Path compression identifies in the trie long threads of nodes, each point to the next, and each has only one child. Such a thread, containing say k nodes, could be replaced by a single "fancy" node. However,
  - 3.1. In a regular trie, this node must still store k character, so its size could be very large
  - 3.2. In a suffix tree, this node only need to stores a pointer to the book, and the length of this thread. So only O(1) memory
- 4. Path compression shrinks the size of the uncompressed suffix tree from  $\Theta(n^2)$  to  $\Theta(n)$ . This is easily the difference between being practical to useless. We used the children-blessed lemma to show the size of the compressed suffix tree

19