{ Tries and suffixes trees

Alon Efrat
Computer Science Department
University of Arizona

* Trie: A data-structure for a set of words

All words over the alphabet *={a,b,..z}.

In the slides, the alphabet is only {a,b,c,d}.
S — set of words = {a,aba, a, aca, addd}.
Need to support the operations

. insert(w) — add a new word w into S.
. delete(w) — delete the word w from S.
. find(w)iswin S ?

*Future operation:
*Given text (many words) where is w in the text.

*The time for each operation should be O(k), where k is
the number of letters in w

*Usually each word is associated with addition info —
not discussed here.

* Trie (Tree+Retrive) for S

= A tree where each node is a struct consist

= Struct node {
= char[4] *ar;
» char flag ; /* 1if a word ends at this node. Otherwise 0 */

}

a b c d flag

ar

Rule:
Each node corresponds to a word w.
we S iff flag=1

* A trie - example

p->ar[b-a’]

- The label of an edge is the label of
@ ~_a b*» c d

the cell from which this edge exits

0
2 b
abcd abcd . COEFGSponding to W=“du

N1 (L abed

b Corr. To w="db”

(not in S, flag=0)

The dictionary contains S={a,b,dbb} abecd .

b

abcd

EEE1 |corr. to w=“dbb”

+

A quick reminder from Java/C
the when we write 'a’, it means “the ascii value of 'a’".
For example, ‘A'=65, 'B'=66,.. 'Z'=90, ‘a’=97 etc

This means ‘d-'a’=d,

* Finding if word w is in the tree

p=root; i =0 // remember - each string ends with "\0’
While(1){
= If wli] ==\0" //we have scanned all letters of w
= then return the flag of p ; else
« If (p.a[w[i]—'a’]) = = NULL |[/the entry of p correspond to w[i]
is NULL
return false;
= p=(p.a[wli] —'a’]) //Set p to be the node pointed by this entry
© i+

i Inserting a word w

= Try to perform find(w).
- If runs into a NULL pointers, create new nodes along the
path.
- The flag fields of all new nodes is 0.

« Set the flag of the last node to 1

* Deleting a word w

« Find the node p corresponding to w (using " find’
operation).

= Set the flag field of p to 0.

» Ifpisdead (I.e. flag==0 and all pointers are NULL) then
free(p), set p=parent(p) and repeat this check.

* Heuristics for saving space

= The space required is O(|Z] |S]).

= To save some space, if X is larger, there are a few heuristics
we can use. Assume X2={a,b..z} .

= We use two types of nodes
« Type “A”, which is used when the number of children of a
node is more than 3

type 3 b z flag
5 55 s o |

Note — the letters are not stores explicitally

* Heuristics for space saving

» Type “B” is used if there are 3 or less children:
» The “letter” of the child is also stored:

@ type letter pointer letter pointer letter pointer flag

eThe rule of the flag is the same as in type “A” nodes.
*We only store the 3 pointers, but we need to know to which
letters they corresponds to.

10

nother Heuristics — path compression

» Replace a long sequence of nodes, all

having only one a single child, with a abcd
single node (of type “pointer to string”) that becd
maintains
= apoint to the next node, abced
- a point to the string. F
albcd
type abcd

11

Suffix tree.

= Assume B (for book) is a very long text.

= Want to preprocess B, so when a word w is given, we can
quickly find if it is in B. =
= We can find it in O(|w]). w B.

= Idea:
= Consider B as a long string.
« Create a trie T of all suffixes of B.
= In addition to the flag (specifying if a word ends at node),
we also stored the index in B where this word begins.
- Example B="aabab”
S={*aabab”, “abab”, “bab”, “ab”, “b’}

12

uffix tree. ﬁize of suffix tree

Example B=h’aabab” S={“aabab”, l{ababﬂ, “bab”, llabll, liblj} EXampIe B=ﬂaabab” S {“aabab” ““, bab” l{bab}] “, b]l “bl?
abcd \f,iﬁ: EEH Assume n=|B|.
‘ - Total length of all string ©(n2) *
Size of a node is |Z|
! - So size of the tree is ©(n2 |Z|). /ﬂ #
b cd a b c'd

Time to construct the tree ©(n2) ; : :
To know where a word

w € S appears in B, we store
with the node of w the

starting_index of w in B. We can save some space.

Starting_index=3

b c d

a b cd

Starting_index=2

Example B="aabab”

We store only the first S={"aabab”, “abab”, “bab”, “ab”, “b’}
Starting_index=1 appearance of the word in

- the text (shown in brown)
13 14

uffix tries on a diet / uffix tries on a diet - cont

Def: a thread is a path from node u to node v in the
trie, consisting of nodes of outdegree 7 (except
maybe the last one) and flag=0.

Obs: There is a contagious part of B, identical to the
string the shred represents. We call this part the
shred-string

We stores the book B itself as an array.

We use a new type of nodes, called thread-nodes,
maintain the first (id7) and last (id2) indexes of
the shred-string in B.

Algorithm for constructing a “thin” trie:

Given B — create an empty trie T, and insert all n
suffixes of B into T --- generating a trie of size
o(n2).

Traverse the tries, and each time that a shred is
g seen, replace all nodes of the shred with a 2
single shred-node.

type apcg idl id2 flag

1 7 10
B=“cadbdaadbd15

16

uffix tries on a diet - cont /

«Clearly the use of thread-nodes saves some-but can we prove something ?

. : Every leaf of T must be the end of some prefix of B. So
the number of number of leaves of T is < n. (n denotes the book size)

*To bound the size of T, we will need to bound the number of internal
nodes.

T might contain special nodes whose flag=1 (a suffix terminates at
these nodes).
The number of special nodes is also < n (since this is the number of
suffixes).
eWhat about other internal nodes of T ?

g he “children-blessed Lemmma”

We say that a tree T is children-blessed tree if every node is either a leaf or has > 2 children.
Let T tree with m leaves. We use the following notation:
Let #nodes(7) denote the number of nodes in T.

#leaves(T) denote the number of leaves in T.

#internal(T) denote the # of internal in T.
Children-blessed Lemma: If T is a children-blessed tree, then #internal(T) < #leaves(T). Thatis, T has more leaves than

internal nodes.

Proof by induction on m (the number of leaves in T)

Base case: m=1. A children blessed tree T that has only one leaf u must have zero internal nodes. If u has a parent, then
this parent is internal but u is the only child. So the base case is proven the induction base case.

Induction step. Pick some integer m > 2. Assume that we have proven the lemma for every c.b. tree that has < m
leaves. and let T be a children-blessed tree that has 1 + 1 leaves. Need to show #internal(7’) < m + 1.
Pick an arbitrary leaf u of T, and let p = parent(u). Now we have two cases, depending on the number of siblings of u:

1. Case 1: u has at least 2 siblings. Create a tree T’ by deleting u from T.
T is still children-blessed. #internal(7) = #internal(7’) but #leaves(T) = #leaves(T") + 1.
Since m = #leaves(7"), and our assumption is that the lemma has been proven for all trees with < m leaves,
we know that #internal(7”) < #leaves(7”), implying that #internal(T) < #leaves(T)
2. Case 2: u has only one sibling v. Let p=parent(u). Create a tree T’ by deleting both «, and v from T.
« In T', stopped being an internal node, and is now a leaf. T’ is still children-blessed.
e #internal(T) = #internal(T”) + 1
* T"has < m leaves, so we could use the induction hypothesis that #internal(T")<#leaves(T’), therefore
#internal(T) < #leaves(T). This ends the proof.

17 18
k t d ﬁ__ t Summary, and potential points of confusions
1. A trie stores a set of strings {s,,s,...s,}. The memory need is approximately
|'si|+ 15,1 + s3] +...]s,| in the worst case. Here |s,| is the number of character in s;
Back to thin suffix tries T created for a book B with n letters. ’ . . . o .
“Th < ial nod ith flaa=1) and 2. An uncompressed suffix tree is a trie, but the input dictionary consists of all
as = n special nodes (with flag=1) an suffixes of a book B, and each node also stores where the corresponding suffix
» T has < nleaves (every leaf is the end of a suffix of B) appears in B. The memory needed for an uncompressed suffix tree is @(»?). (so
- Every other nodes has > 2 children. (with flag=1). Applying the children as bad as n*)
blessed Lemma in this case, implies that the total number of internal nodes 3. Path compression identifies in the trie long threads of nodes, each point to the next,
<2 and each has only one child. Such a thread, containing say k nodes, could be
= An. replaced by a single “fancy” node. However,
3.1. In a regular trie, this node must still store k character, so its size could be very
large
« Conclusion: The number of nodes in Tis < 37 (much better than the uncompressed 3.2. In a suffix tree, this node only need to stores a pointer to the book, and the
version that could have @(12%) nodes. length of this thread. So only O(1) memory
4. Path compression shrinks the size of the uncompressed suffix tree from ©(1n?) to
« So the size of the trie is only a constant more than the size of the book. O(n). This is easily the difference between being practical to useless. We used the
children-blessed lemma to show the size of the compressed suffix tree
19 20

