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Trie: A data-structure for a set of words 

All words over the alphabet  Σ={a,b,..z}.

In the slides, the alphabet is only {a,b,c,d}.  
S – set of words = {a,aba, a, aca, addd}.

Need to support the operations

•	 insert(w) – add a new word  w  into S.

•	 delete(w) – delete the word  w  from S.

•	 find(w) is w in S ? 


•Future operation:

•Given text (many words) where is w  in the text. 


•The time for each operation should be O(k), where k is 
the number of letters in w


•Usually each word is associated with addition info – 
not discussed here. 
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Trie (Tree+Retrive) for S

■ A tree where each node is a struct consist 

■ Struct node {


■ char[4]  *ar;

■ char flag ;  /* 1 if a word ends at this node. Otherwise 0 */

}

b c da

ar

flag

1

b c da
ar

flag
1

Rule: 

 Each node corresponds to a word w.

 w∈ S  iff   flag=1  4

A trie - example

b c da

b c da b c da
b c da

b c da

b c da

a b d

b

b

1 1 0

0

0

1

The dictionary contains S={a,b,dbb}

Corr. To w=“db”

(not in S, flag=0)

The label of an edge is the label of 

the cell from which this edge exits

p->ar[‘b’-’a’]
p

Corr.  to w=“dbb”

Corresponding to w=“d”
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A quick reminder from Java/C 


the when we write ‘a’, it means “the ascii value of ‘a’.


For example, ‘A’=65,  ‘B’=66,.. ‘Z’=90, ‘a’=97 etc 


This means ‘d’-‘a’=d,   

6

Finding if word w is in the tree

p=root; i =0 // remember - each string ends with `\0’

While(1){


■ If w[i] == ‘\0’  	//we have scanned all letters of w

■ then return the flag of p ; else


■ If    //the entry of p correspond to w[i] 
is NULL


	 	 return false;

■  //Set p  to be the node pointed by this entry 

■ i++;  


}

(p . a[w[i] −′￼a′￼]) = = NULL

p = (p . a[w[i] −′￼a′￼])
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Inserting a word w

■ Try to perform find(w). 

■ If runs into a NULL pointers, create new nodes along the 

path. 

■ The flag fields of all new nodes is 0.


■ Set the flag of the last node to 1 
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Deleting a word w

■ Find the node p corresponding to w  (using `find’ 
operation). 


■ Set the flag field of p to 0.

■ If p is dead  (I.e. flag==0  and all pointers are NULL ) then 	

free(p), set p=parent(p)  and repeat this check. 
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Heuristics for saving space

■ The space required is Θ(|Σ| |S|). 

■ To save some space, if Σ is larger,  there are a few heuristics 

we can use. Assume Σ={a,b..z} . 

■ We use  two types of nodes


■ Type “A”, which is used when the number of children of a 
node is more than 3

p
type a flagb z

Note – the letters are not stores explicitally 
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Heuristics for space saving

■ Type “B” is used if there are 3 or less children:

■ The “letter” of the child is also stored:

p
type letter pointer letter pointer letter pointer      flag

B F R

•The rule of the flag is the same as in type “A” nodes.

•We only store the 3 pointers, but we need to know to which 
letters they corresponds to.
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Another Heuristics – path compression
■ Replace a long sequence of nodes, all 

having only one a single child, with a 
single node (of type “pointer to string”) that 
maintains 

■  a point to the next node, 

■ a point to the string. 

b c da

b c da

b c da

b c da

“bbbb\0”
b c datype
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Suffix tree. 

■ Assume B (for book) is a very long text. 

■ Want to preprocess B, so when a word  w is given, we can 

quickly find if it is in B. 

■ We can find it in O(|w|).

■ Idea: 


■ Consider B as a long string. 

■ Create a trie T of all suffixes of B. 

■ In addition to the flag (specifying if a word ends at node), 

we also stored the index in B where this word begins.

■ Example B=“aabab” 

	 S={“aabab”, “abab”, “bab”, “ab”, “b”}

Observation: w appears in B  

w is the prefix of a suffix of B.

Example: B=“helloniceworld”, w=“nice”.

⇔
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Suffix tree. 
Example B=“aabab”  S={“aabab”, “abab”, “bab”, “ab”, “b”}

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

1

1

1

1

To know where a word 
 appears in B, we store 

with the node of  the 
starting_index of  in B.  


We store only the first 
appearance of the word in 
the text (shown in brown)

w ∈ S
w
w

1  this flag==1 

since 
←

aabab ∈ S

0

0

0

this flag==0

since aa ∉ S

Book= a a b a b
index= 0 1 2 3 4

<latexit sha1_base64="EwNZ88zoyU777TRiGHFL7NwdB8Q="></latexit>

  is a suffix of B

starting_index=2
bab

Starting_index=0

Starting_index=1

Starting_index=2

Starting_index=3
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Size of suffix tree 
Example B=“aabab”  S={“aabab”, “abab”, “bab”, “ab”, “b”}

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

1

1

1

1

1

Assume n=|B|. 

Total length of all string Θ(n2)

Size of a node is |Σ|

So size of the tree is Θ(n2 |Σ| ).


Time to construct the tree Θ(n2)


We can save some space. Example B=“aabab”  

S={“aabab”, “abab”, “bab”, “ab”, “b”}


15

Suffix tries on a diet 
Def: a thread is a path from node u to node v in the 

trie, consisting of nodes of outdegree 1 (except 
maybe the last one) and flag=0. 


Obs: There is a contagious part of B, identical to the 
string the shred represents. We call this part the 
shred-string


We stores the book B itself as an array. 

We use a new type of nodes, called thread-nodes, 

maintain the first  (id1) and last (id2) indexes of 
the shred-string in B. 


 

b c da

b c da

b c da

b c da

b c da

B=“cadbdaadbd

b c datype flagid1 id2
107 7 101
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Suffix tries on a diet -  cont 
Algorithm for constructing a “thin” trie: 

Given B – create an empty trie T, and insert all n 

suffixes of B into T --- generating a trie of size 
Θ(n2).


Traverse the tries, and each time that a shred is 
seen, replace all nodes of the shred with a 
single shred-node. 


 

b c da

b c da

b c da

b c da

b c da
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Suffix tries on a diet -  cont 

•Clearly the use of thread-nodes saves some-but can we prove something ? 


•Observations: Every leaf of T must be the end of some prefix of B. So 
the number of number of leaves of T is .  (n denotes the book size)


•To bound the size of T, we will need to bound the number of internal 
nodes. 


•Observations: 

T might contain special nodes whose flag=1 (a suffix terminates at 

these nodes). 

The number of special nodes is also  (since this is the number of 

suffixes). 

•What about other internal nodes of T ? 

≤ n

≤ n

b c da

b c da

b c da

b c da

b c da
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The “children-blessed Lemma”
We say that a tree T is children-blessed tree if every node is either a leaf or has  children.  

Let T tree with m leaves. We use the following notation:  


Let     denote the number of nodes in T.  

         denote the number of leaves in T. 

         denote the # of internal in T.


Children-blessed Lemma: If T is a children-blessed tree, then .   That is, T has more leaves than 
internal nodes.


Proof by induction on m (the number of leaves in T)


Base case: m=1. A children blessed tree T that has only one leaf  must have zero internal nodes.  If  has a parent, then 
this parent is internal but u is the only child.  So the base case is proven the induction base case.


Induction step. Pick some integer . Assume that we have proven the lemma for every c.b. tree that has   

leaves.  and let T be a children-blessed tree that has  leaves.   Need to show .  

Pick an arbitrary leaf  of T, and let . Now we have two cases, depending on the number of siblings of u:


1.  Case 1: u has at least 2 siblings.  Create a tree T’ by deleting u from T.    

T’ is still children-blessed.   but  .  

Since ,  and our assumption is that the lemma has been proven for all trees with  leaves,  
we know that ,  implying that  


2.  Case 2: u has only one sibling v. Let p=parent(u).   Create a tree T’ by deleting both  from T.   

• In T’,  stopped being an internal node, and is now a leaf.    T’  is still children-blessed.    

•    

• T’ has  leaves, so we could use the induction hypothesis that #internal(T’) #leaves(T’),  therefore  

#internal(T)  #leaves(T).  This ends the proof. 


≥ 2

#nodes(T )
#leaves(T )
#internal(T )

#internal(T ) ≤ #leaves(T )

u u

m ≥ 2 ≤ m
m + 1 #internal(T ) ≤ m + 1

u p = parent(u)

#internal(T ) = #internal(T′￼) #leaves(T ) = #leaves(T′￼) + 1
m = #leaves(T′￼) ≤ m

#internal(T′￼) ≤ #leaves(T′￼) #internal(T ) ≤ #leaves(T )
u,  and v

#internal(T ) = #internal(T′￼) + 1
≤ m ≤

≤
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Back to compressed suffix trees

 


Back to thin suffix tries T created for a book B with n letters. 

• T has   special nodes (with flag=1) and

• T has  leaves (every leaf is the end of a suffix of B)

• Every other nodes has  children.  (with flag=1). Applying the children 

blessed Lemma in this case, implies that the total number of internal nodes 
.


• Conclusion: The number of nodes in T is  (much better than the uncompressed 
version that could have  nodes. 


• So the size of the trie is only a constant more than the size of the book. 


	 	 	 	

≤ n
≤ n

≥ 2

≤ 2n

≤ 3n
Θ(n2)
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Summary, and potential points of confusions

1. A trie stores a set of strings . The memory need is approximately 
 in the worst case. Here  is the number of character in  

.

2. An uncompressed suffix tree is a trie, but the input dictionary consists of all 

suffixes of a book B, and each node also stores where the corresponding suffix 
appears in B.  The memory needed for an uncompressed suffix tree is .    (so 
as bad as 


3. Path compression identifies in the trie long threads of nodes, each point to the next, 
and each has only one child. Such a thread, containing say k nodes, could be 
replaced by a single “fancy” node. However,


3.1. In a regular trie, this node must still store  character, so its size could be very 
large 


3.2. In a suffix tree,  this node only need to stores a pointer to the book, and the 
length of this thread. So only O(1) memory


4. Path compression shrinks the size of the uncompressed suffix tree from  to 
. This is easily the difference between being practical to useless.  We used the 

children-blessed lemma to show the size of the compressed suffix tree

{s1, s2…sn}
|s1 | + |s2 | + |s3 | + … |sn | |si | si

Θ(n2)
n2)

k

Θ(n2)
Θ(n)


