Searching a key x in a sorted linked list

1. `cell *p = head;`
2. `while (p->key < x) p = p->next;`
3. `return p;` // (which is either equal or larger than x)

Note:
- The $-\infty$ and ∞ elements are not “real” keys.
- They are in the list to prevent checking special cases.
- Sometimes we prefer to return the element preceding the one containing x. **Then line 2 is replaced with**
- `while (p->next->key < x) p = p->next;`

Inserting a key into a Sorted linked list

To insert 35 -
- `p = find(35);` // find the proceeding element – the next one is > 35
- `CELL *p1 = (CELL *) malloc(sizeof(CELL));`
- `p1->key = 35;`
- `p1->next = p->next;`
- `p->next = p1;`
Deleting a key from a sorted list

```
To delete 37 -
  p = find(37); // Again find proceeding element
  CELL * p1 = p->next;
  p->next = p1->next;
  free(p1);
```

SKIP LIST - A data structure for maintaining keys in a sorted order

Rules:
- Consists of several levels.
- All keys appear in level 1.
- Each level is a sorted list.
- If key \(x \) appears in level \(i \), then it also appears in all levels below level \(i \)
- First element in each level has key \(-\infty\).
- Last element has key \(+\infty\).
- First element in upper level is pointed to by variable `top`.

More rules

- An element in level \(i > 1 \) points (via down pointer) to the element with the same key in the level below.
- Elements in the lowest level have `down-pointer=NULL`.
- Also maintain a counter specifying the number of levels.
An empty SkipList

Finding an element with key x

- p=top;
- while(1){
 - while (p->next.key x) p=p->next;
 - if (p->down == NULL) return p
 - p=p->down;
- }

If the key x is in SL, we return a pointer to the lowest element containing x.
If x is not in SL, return pointer to lowest predecessor.

A “perfect” SkipList

Scheme for creation a well-performing SL
- Start from Level 1 (lowest level)
- For i=2,3...
 - Generating of Level i, we scan the keys in level i-1.
 - Each second key is “promoted” to participate in level i as well.
A "perfect" SkipList

A SL is Perfect if between every two consecutive keys of level \(i \) there is exactly one key of level \(i-1 \).

Scheme for creation a well-performing SL:
- Start from Level 1 (lowest level)
- For \(i = 2, 3 \ldots \) Generation of Level \(i \)
 - we scan the keys in level \(i-1 \).
 - Each second key is "promoted" to participate in level \(i \) as well.

Most SL are not perfect.

Another example

```
p = top;
while(1){
    while (p->next->key <= x) {
        p = p->next;
        if (p->down == NULL) return p;
    }
    p = p->down;
}
```

Inserting new element \(x \)

- Determine \(k \geq j \) defined as the number of levels in which \(x \) participates (explained later how)
- Perform find(\(x \)), but once the search path is in one of the lowest \(k \) levels:
 - \(x \) is inserted after the elements at which the search path branches down or terminates.
 - The next-pointer behave like a “standard” linked list
 - The down pointer(s) point between themselves.
Inserting an element - cont.

- If \(k \) is larger than the current number of levels, add new levels (and update \(top \) and \(num_of_levels \) counter)
- Example - insert(119) when \(k=4 \)
- Heuristic: Add at most one new level (not needed for the analysis)

<table>
<thead>
<tr>
<th>Top</th>
<th>Level 3</th>
<th>Level 2</th>
<th>Level 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>119</td>
<td>119</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>71</td>
<td>37</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>119</td>
<td>43</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>119</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>119</td>
<td>71</td>
<td>71</td>
</tr>
</tbody>
</table>

Determining \(k \)

- \(k \) - the number of levels at which an element \(x \) participate.
- Use a random function \(OurRnd() \) --- returns 1 or 0 (True/False) with equal probability.
 - \(k=1 \);
 - \(While(\ OurRnd()==1) \ k++ ; \)

Deleting a key \(x \)

- Find \(x \) in all the levels it participates, using find(\(x \))
- During the “find”, delete \(x \) from each level it participates using the standard “delete from a linked list” method
- If one or more of the upper levels become empty, remove them (and update \(top \) and \(num_of_levels \))

<table>
<thead>
<tr>
<th>Top</th>
<th>Level 3</th>
<th>Level 2</th>
<th>Level 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete(71)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>71 down-pointer</td>
<td>71 delete</td>
<td>71 next-pointer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>119 119</td>
<td>43</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>119 119</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>119 119</td>
<td>71</td>
<td>71</td>
</tr>
</tbody>
</table>
expected space requirement

- **Claim**: The expected number of elements is $O(n)$.

- The term “expected” here refers to the experiments we do while tossing the coin (or calling `OurRand()`). No assumption about input distribution.

- So imagine a given set, given set of operations insert/del/find, but we repeat many times the experiments of
 - constructing the SL, and count the #elements.

Facts about SL

- **Def**: The height of the SL is the number of levels
- **Claim**: The expected number of levels is $O(\log n)$
 (here n is the number of keys)
- **“Proof”**
 - The number of elements participate in the lowest level is n.
 - Since the probability of an element to participate in level 2 is $\frac{1}{2}$, the expected number of elements in level 2 is $n/2$.
 - Since the probability of an element to participate in level 3 is $\frac{1}{4}$, the expected number of elements in level 3 is $n/4$.
 -...
 - The probability of an element to participate in level j is $(1/2)^j$ so number of elements in this level is $n/2^j$.
 - So after $\log(n)$ levels, no element is left.

Facts about SL

- **Claim**: The expected number of elements is $O(n)$.
 (here n is the number of keys)
- **“Proof”** (a rigorous proof requires the use of random variables)
 - The total number of elements is

 $$n + n/2 + n/4 + n/8 + \ldots \leq n(1 + 1/2 + 1/4 + 1/8 + \ldots) = 2n$$

 To reduce the worst case scenario, we verify during insertion that k (the number of levels that an element participates in) is $\leq \log n$

 Conclusion: The expected storage is $O(n)$.
More facts

- **Thm**: The expected time for find/insert/delete is $O(\log n)$

- **Proof** For all Insert and Delete, the time is \leq expected #elements scanned during find(x) operation.

- Will show: Need to scan expected $O(\log n)$ elements.

Thm: Expected time for 'find' operation is $O(\log n)$

- **Proof** – we know that there are $O(\log n)$ levels. Will show that we spend $O(1)$ time in each level.
- Assume during find(x), we scanned t elements, (for $t>8$) in level r. Assume first that r is not the upper level.
 - The search visited b_1 branched down to b_2 and then visited $b_2...b_8$ (not sure what happened before or after)

 ![Diagram](attachment:image)

 All smaller than x

 None of these 7 elements reached level $r+1$ (why?)

 The probability that none of these 7 elements reached level $r+1$ is $1/2^7$. For larger value of 7 – very slim.

Bounding time for insert/delete/find

- Putting it together The expected number of elements scanned in each level is $O(1)$
- There are $O(\log n)$ levels
- Total time is $O(\log n)$
- As stated, getting bounds for time for insert/delete are similar
How likely is that the SL is too tall?

- Let's ask how likely it is that the #levels is $Z \log_2 n$, where $Z=1,2,3...$
- That is, we estimate the probability that the height of the SL is
 - $\log_2 n$
 - $2 \log_2 n$
 - $3 \log_2 n$
 - $4 \log_2 n$
 - ...

Reminder from probability

- Assume that A,B are two events. Let
 - $\Pr(A)$ be the probability that A happens,
 - $\Pr(B)$ be the probability that B happens
 - $\Pr(A \cup B)$ is the probability that either event A happens or event B happens (or both).
- So probably that at least one of them happened is $\Pr(A)+\Pr(B)-\Pr(A \cap B) \leq \Pr(A)+\Pr(B)$
- Similarly, for 3 Events A_1, A_2, A_3 the probability that at least one of them happens $\Pr(A_1 \cup A_2 \cup A_3) \leq \Pr(A_1)+\Pr(A_2)+\Pr(A_3)$

Example: In a roulette, we pick a number k between 1..38
 - Event A: k is even. $\Pr(A)=\Pr(k \text{ is even}) = 19/38 = 0.5$
 - Event B: k is divided by 3. $\Pr(B)=12/38=0.315$
 - $\Pr(A \text{ or } B)=\Pr(A \cup B)=\Pr((k \text{ is divided by 2}) \text{ or } (k \text{ is divided by 3})) \leq 0.5+0.315\leq 0.815$

But how likely is that the SL is too tall?

- Assume the keys in the SL are $\{x_1, x_2, ... x_n\}$
- The probability that x_1 participates in $\geq k+1$ levels is 2^{-k}.
 - (same probability for all x).
- Define: A_k is the event that x_k participates in $\geq k+1$ levels.
 - $\Pr(A_k)=2^{-k}$
- Define: A is the event that x participates in $\geq k+1$ levels.
 - $\Pr(A)=2^{-k}$ (for every j)
- If the height of SL $\geq k+1$ then at least one of the x_j participates in $\geq k+1$ levels.
- The probability that any x (one or more) participates in $\geq k+1$ levels is $\Pr(A_1)+\Pr(A_2)+...+\Pr(A_n)=n 2^{-k}$
- This is the probability that the height of the SL is $\geq k+1$
But how likely is that the SL is tall?

- The probability that any \(x \) participates in at least \(k \) levels is \(\leq n2^{-k} \). Then the height of the SL \(\geq k+1 \).
- Ignore the ‘+1’
- If none of the \(x \)'s is at level \(\geq k \) then the height is \(\leq k \).

Recall \(y^{(ab)}=y^{a}y^{b} \)

- \(2^{\log_2 n} = n \) and \(2^5(\log_2 n) = (n)^5 \)
- Write \(k = -1+Z \log_2 n \)

Want to find: The probability that the height is \(Z \) times \(\log_2 n \).

That is, \(\log_2 n \times 3 \) time \(\log_2 n \), \(4 \) times \(\log_2 n \)...

\[2^{-(k+1)} = 2^{-(Z \log n)} = 2^{(2 \log n)Z} = n^{-2Z} = 1/n^{2Z} \]

So \(n2^{-k} \leq n / n^{2Z} = 1/n^{Z} \)

This is the probability that the height of SL \(\geq Z \log_2 n \)

Example: \(n=1000 \)

- The probability that the height \(\geq 7 \log_2 n \) is \(\leq 1/1000 = 1/10^3 \)
- The probability that the height \(< 7 \log_2 n \) is \(\geq 1-1/10^18 \)
- The prob. that the height \(< 10 \log_2 n \) is \(\geq 1-1/10^{27} \)

In other words (and with hand-waving)

- Assume we have a set of \(n>1000 \) keys, and we keep rebuilding SkipLists for them.
- Call a SL bad if its height \(> 7 \log_2 n \)
- First build SL_1,
- Then build SL_2 (for the same keys)
- Then ...(and so on)
- Then SL_M where \(M=10^{20} \)
- Then less than 200 of them are bad (with high probability)