
CSc 451 Assignment 10; page 1

CSc 451, Spring 2003
Assignment 10

For Practice Only; Not For Credit

Problem 1. timer.icn

Implement a Timer class that allows one to measure the execution time of Icon code. It has
these methods:

Timer(name:string)
Create a timer with the name specified.

start() Start the timer running, possibly continuing accumulation of time
on a timer that was previously stopped.

stop() Stop the timer.
reset() Reset the timer.
elapsed() Return the elapsed time in milliseconds
string() Print the name of the timer and the current elapsed time.

Timer times CPU time, which can be accessed with &time.

Here's a program that uses two Timers to take a look at the execution of speed of integer versus
real arithmetic:

procedure main()
 ti := Timer("int + int")

 ti.start()
 i := 0
 every 1 to 1000000 do
 i +:= 1
 ti.stop()

 tr := Timer("real + real")
 tr.start()
 i := 0.0
 every 1 to 1000000 do
 i +:= 1.0

 tr.stop()
 write(ti.string())
 write(tr.string())
end

Execution:

int + int: 1061ms
real + real: 1292ms

CSc 451 Assignment 10; page 2

Problem 2. String.icn

In this problem you are to implement an "abstract" class called String and four concrete
subclasses.

String has these methods:

length() Return the length of the String.
value() Return a string (the built-in type) that contains the characters represented

by the String.
char() Generate the characters in String.
at(n) Return the nth character in String.

The first subclass of String is PalString, which represents a palindromic version of the
initializing value:

][ps := PalString("oops");
 r := ...

][ps.value();
 r := "oopsspoo" (string)

][ps.length();
 r := 8 (integer)

][every write(ps.at(1 to ps.length()));
o
o
p
s
s
p
o
o
Failure

][every write(ps.char() \ 5);
o
o
p
s
s
Failure

CSc 451 Assignment 10; page 3

The second subclass of String is ReplString, which represents a string that is replicated
some number of times. Example:

][s1 := ReplString("abc", 2);
][s1.length();
 r := 6 (integer)

][s1.value();
 r := "abcabc" (string)

][every write(s1.char());
a
b
c
a
b
c
Failure

Another example:

][s2 := ReplString(&lcase, 1000000000000000);

][s2.length();
 r := 26000000000000000 (integer)

][s2.at(26000000000000000);
 r := "z" (string)

][every write(s2.char() \ 3);
a
b
c

Note that calling s2.value() would be problematic!

The third subclass is IspString, which represents an "interspersed" string. It is best described
with an example:

][s1 := IspString("abc",".");
][s1.value();
 r := "a.b.c" (string)

The constructor specifies that the string "." is to be interspersed between the characters of the
string "abc".

The interspersing string may be more than one character long:

][s2 := IspString("abcd", "<->");

][s2.value();

CSc 451 Assignment 10; page 4

 r := "a<->b<->c<->d" (string)

][s2.length();
 r := 13 (integer)

][every write(s2.char() \ 5);
a
<
-
>
b
Failure

Another example:

][n := (s3 := IspString(repl("x", 1000000),
 repl(&ucase, 1000000))).length();
 r := 25999975000000 (integer)

][s3.at(1);
 r := "x" (string)

][s3.at(2);
 r := "A" (string)

][s3.at(27);
 r := "Z" (string)

][s3.at(28);
 r := "A" (string)

][s3.at(26000002);
 r := "x" (string)

][s3.at(28000000000);
 r := "M" (string)

][s3.at(28000000001);
 r := "N" (string)

The fourth class is RandomString, which represents a random sequence of characters with a
specified length and consisting of characters from a specified character set. Example:

][rs := RandomString('ATCG', 10).value();
 r := "CGGGGGATCC" (string)

][rs := RandomString('ATCG', 10).value();
 r := "TTAGCGCTTC" (string)

][rs := RandomString('ATCG', 10);

][rs.length();

CSc 451 Assignment 10; page 5

 r := 10 (integer)

][rs.at(1);
 r := "A" (string)

][rs.at(5);
 r := "C" (string)

][rs.at(10);
 r := "C" (string)

][rs.value();
 r := "AGCCCAGAGC" (string)

][rs.at(2);
 r := "G" (string)

][rs2 := RandomString('ATCG', 4000000000);

][rs2.length();
 r := 4000000000 (integer)

][rs2.at(rs2.length());
 r := "A" (string)

Note that once a character is produced with at() or value(), its value is permanently fixed,
i.e, a random choice is made (at most) once for each character. Subsequent references to a
character or the whole string produce the same value.

Restriction: With the exception of PalString, your implementation should be able to

handle very long strings, such as the examples shown above. You may limit your solution
to only handling length() and at() in cases where very long strings are represented.

Miscellaneous

Note that this is a practice assignment to simply give you some experience with Unicon; it will not
be graded. The specification is less rigorous than prior assignments and behavior in many odd
cases in not specified; handle those cases in any way you'd like.

Reference Versions

It's not simple to hide the implementation of classes in Unicon, and to spare you the temptation of
poking around in the instructor's solution, no reference versions are supplied.

Deliverables

None.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

