
CSc 451, Spring 2003, Examination #2; page 1 of 10

Name:_______________________________________

CSc 451, Spring 2003
Examination #2
April 17, 2003

READ THIS FIRST

Fill in your name above. Do not turn this page until you are told to begin.

DO NOT use your own paper. If you run out of room, write on the back of the page.

If you have a question that can be safely resolved by making an assumption, simply write down that
assumption and proceed. Examples:

"Assuming reverse(s) reverses a string"
"Assuming *t returns the number of keys in table t"

If you have a question you wish to ask, raise your hand and the instructor will come to you. DO NOT
leave your seat.

You may use all elements of Icon.

You may use Icon procedures that have appeared on the slides, or been presented in class, or been
mentioned in e-mail, or that have appeared on an assignment this semester, or that are mentioned in
this exam.

There are no deductions for poor style. Anything that works and meets all problem-specific
restrictions will be worth full credit, but try to keep your solutions brief to save time.

You need not include any explanation in an answer if you are confident it is correct. However, if an
answer is incorrect, any accompanying explanation may help you earn partial credit.

If you are unsure about the form or operation of a language construct that is central to a problem's
solution, you are strongly encouraged to ask the instructor about it. If you're completely puzzled on a
problem, please ask for a hint. Try to avoid leaving a problem completely blank—that will certainly
earn no credit.

This is a sixty minute exam with a total of 100 points and 5 possible points of extra credit. There are
seven regular problems and an extra credit section with three questions.

When you have completed the exam, enter your name on the exam sign-out log and then hand your
exam to the instructor.

When told to begin, double-check that your name is at the top of this page, and then put your initials
in the lower right hand corner of each page, being sure to check that you have all ten pages.

CSc 451, Spring 2003, Examination #2; page 2 of 10

Problem 1: (20 points)

Write a program that opens a 300 x 300 window and permits the user to draw circles of varying size
and color, as follows:

(1) The program starts in "placement mode". A left-click draws a circle of radius 1 centered at the
position of the click and puts the program into "sizing mode".

(2) In sizing mode, typing a "+" causes the radius of the circle to grow by one; a "-" minus causes it
to shrink by one. Thus the user can type a series of +'s and -'s to adjust the size of the circle. Typing
a "." (period) permanently sets the size and position of the circle and returns the program to
placement mode. Other events are ignored in sizing mode. Don't worry about the radius possibly
going negative.

(3) In placement mode right-clicks cycle the current color through red, green, and blue repeatedly.
The initial color is red.

(4) A "q" in placement mode exits the program.

CSc 451, Spring 2003, Examination #2; page 3 of 10

Problem 2: (20 points)

Write a procedure FillGizmo(x, y, cap, stem, inset) that draws the following gizmo at
the coordinates (x, y).

The gizmo is symmetrical around both the X and Y axes. The rounded top and bottom elements are
semicircles with radius cap. Note that the width of the figure is cap*2.

Draw the figure in the current foreground color.

Your implementation may change window attributes, but be sure it restores them to their original
values before it returns.

Don't be concerned with off-by-one-pixel errors. Note that there is no FillSemiCircle() routine
in the library.

CSc 451, Spring 2003, Examination #2; page 4 of 10

Problem 3: (12 points)

RESTRICTIONS FOR THIS PROBLEM: (1) You may not use split. (2) String subscripting

(e.g., s[3]) and sectioning to produce a substring (e.g. s[2:0], s[i:+n]) may not be used. (3)

The string comparison operators, such as == and <<, may not be used. (4) You may not write

procedures such as charAt(s,i) to circumvent these rules.

Write a procedure format(fmt, v[]) that does simple printf-like formatting of the values in v
based on the specifications in the string fmt. It returns the resulting string.

format has three formatting specifiers:

%v Do no conversion on the value; simply concatenate it to the result in progress
%i Call image() for the value and concatenate the result.
%I Call Image() for the value and concatenate the result.

Examples:

][format("x = %v, y = %v, z = %v", 10, 20, 30);
 r := "x = 10, y = 20, z = 30" (string)

][format("%v%v%v", 1, 200, 4000);
 r := "12004000" (string)

][format("list(10) = %i, table(0) = %i", list(10), table(0));
 r := "list(10) = list_22(10), table(0) = table_5(0)" (string)

][write(format("L = %i (%I)", [1,2,3], [1,2,3]));
L = list_25(3) (L6:[
 1,
 2,
 3])
 r := "L = list_25(3) (L6:[\n 1,\n 2,\n 3])" (string)

][format("10 < 20 is %v", 10 < 20);
 r := "10 < 20 is 20" (string)

][format("10 > 20 is %v", 10 > 20);
Failure

Note that format returns a string result; it does no output.

Assume that:

There will be at least as many values as formatting specifiers, i.e., there won't be a call like
format("%v").

The formatting specification is well-formed.

Values corresponding to %v specifiers can be converted to a string, i.e., there won't be a call
like format("%v", []).

There is space for your solution on the next page.

CSc 451, Spring 2003, Examination #2; page 5 of 10

(SPACE FOR SOLUTION FOR PROBLEM 3)

DON'T FORGET THE RESTRICTIONS!

CSc 451, Spring 2003, Examination #2; page 6 of 10

Problem 4: (8 points)

RESTRICTIONS FOR THIS PROBLEM : Same as Problem 3.

Write a program vc that reads lines on standard input and prints those lines that contain more vowels
than consonants.

Example:

% cat vc.1
Would
you
believe
an abalone
wrote this?
% vc < vc.1
you
believe
an abalone
%

CSc 451, Spring 2003, Examination #2; page 7 of 10

Problem 5: (25 points)

RESTRICTIONS FOR THIS PROBLEM : Same as Problem 3.

Write a procedure dollars(s) that converts a string specifying a sum of money into a
corresponding real value.

The sum may be specified in three ways:

(1) One or two digits followed by a "c" (always lower case), such as "8c" or "99c".

(2) A dollar sign, one or more digits, a period, and then two digits.

(3) English such as "one dollar" or "three bucks", up to twenty dollars.
Grammatically incorrect forms such as "one bucks" or "seven dollar" are not allowed. The
units will be either "buck(s)" or "dollar(s)". Only lower case is permitted.

If the specification is valid, a real is returned. If the specification is not valid the procedure fails.

Examples of valid conversions:

][dollars("8c");
 r := 0.08 (real)

][dollars("99c");
 r := 0.99 (real)

][dollars("$1.25");
 r := 1.25 (real)

][dollars("$19985.99");
 r := 19985.99 (real)

][dollars("one buck");
 r := 1.0 (real)

][dollars("ten bucks");
 r := 10.0 (real)

][dollars("nineteen dollars");
 r := 19.0 (real)

Here are calls that fail:

dollars("10cx") # trailing "x"
dollars(" $2.34") # leading blanks
dollars("100c") # more than two digits with "c"
dollars("$.25") # no digits before decimal point
dollars("$1.2") # should be two digits after decimal point
dollars("$100.000") # should be two digits after decimal point
dollars("ten buck") # should be "ten bucks"
dollars("one dollars") # should be "one dollar"
dollars("10") # no unit specified

No whitespace may appear except between the number and the unit in the english specification.

CSc 451, Spring 2003, Examination #2; page 8 of 10

IMPORTANT: You may assume the presence of a procedure english(n) that converts the integer
n to English. For example, english(1) returns "one"; english(20) returns "twenty".

DON'T FORGET THE RESTRICTIONS!

CSc 451, Spring 2003, Examination #2; page 9 of 10

Problem 6: (9 points)

Write a PDCO Longest{expr1, expr2, ..., exprN} that returns the argument with the
longest result sequence. In the case of a tie, one of the tying expressions is produced, but which one
is not specified. The call Longest{} (i.e, with no arguments) fails. You may assume that no
expression has an infinite result sequence.

Examples:

][c := Longest{1 to 3, !"abcde", 1 < 0};
 r := co-expression_29(0) (co-expression)

][while write(@c);
a
b
c
d
e
Failure

][c := Longest{1 < 0, 2};
 r := co-expression_39(0) (co-expression)

][while write(@c);
2
Failure

][c := Longest{3 = 4, !"", [] === []};
 r := co-expression_45(0) (co-expression)

][write(@c);
Failure

Hint: The instructor's solution uses sortf(L, sort_by_posn).

CSc 451, Spring 2003, Examination #2; page 10 of 10

Problem 7: (2 points each; 6 points total)

(a) What is the fundamental difference between an additive color model and a subtractive color
model?

(b) Name a subtractive color model and the colors it uses.

(c) What "color" would be produced by the setting Fg("#bababa")?

EXTRA CREDIT SECTION

(a) (1 point) What is the shortest Icon program that will successfully compile and execute without
error? (Hint: It easily fits in the space provided.)

(b) (1 point) List the last names of ten other students in this class. Use of phonetic spelling is
acceptable.

(c) (3 points) An Icon programmer homesick for Java wants to produce output with
System.out.println() instead of write(). Create a file java.icn that provides the
necessary elements to meet the needs of this misdirected individual until professional help can be
obtained.

Here is a sample program that should work:

link java
procedure main()
 System.out.println("Numbers:")
 every System.out.println(1 to 10)
end

If your solution needs it, you may require that the user call java_init() before using
System.out.println().

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

