
CSc 451, Spring 2003, Examination #2 Solutions; page 1

CSc 451, Spring 2003
Examination #2 Solutions

Problem 1: (20 points)

Write a program that opens a 300 x 300 window and permits the user to draw circles of
varying size and color...

procedure main()
 WOpen("size=300,300","drawop=reverse")
 colors := create |WAttrib("fg="||!["red","green","blue"])
 @colors
 repeat {
 case Event() of {
 &rpress: @colors
 &lpress: {
 x := &x
 y := &y
 r := 1
 DrawCircle(x,y,r)
 until (c := Event()) === "." do {
 newr := r
 case c of {
 "+": newr := r + 1
 "-": newr := r - 1
 }
 if newr ~= r then {
 DrawCircle(x,y,r)
 DrawCircle(x,y,r := newr)
 }
 }
 }
 }
 }
end

Mr. Pawlowski had a very interesting solution for the radius increment/decrement. Here is
the essence of it:

case e := Event() of {
 !"+-": radius := e(radius, 1)
 }

Mr. Wampler used co-expressions as co-routines to call between two procedures, place()
and size(), to handle the switching between modes.

CSc 451, Spring 2003, Examination #2 Solutions; page 2

Problem 2: (20 points)

Write a procedure FillGizmo(x, y, cap, stem, inset) that draws a gizmo at the
coordinates (x, y).

procedure FillGizmo(x, y, cap, stem, inset)
 FillCircle(x+cap, y+cap, cap, 0, -&pi)
 FillCircle(x+cap, y+cap+stem, cap, 0, &pi)
 FillRectangle(x+inset, y+cap, (cap-inset)*2, stem)
 return
end

Coordinate translation with dx/dy could be used but in this case it seemed easier to
manually offset than to save/set/restore dx and dy.

Problem 3: (12 points)

Write a procedure format(fmt, v[]) that does simple printf-like formatting of the
values in v based on the specifications in the string fmt. It returns the resulting string.

procedure format(fmt, v[])
 v := copy(v)
 r := ""
 fmt ? {
 while r ||:= tab(upto('%')) do {
 move(1)
 r||:= (
 case move(1) of {
 "v":1
 "i":image
 "I":Image})(get(v))
 }
 r ||:= tab(0)
 }
 return r
end

Problem 4: (8 points)

Write a program vc that reads lines on standard input and prints those lines that contain
more vowels than consonants.

procedure main()
 while line := read() do {
 vc := cc := 0
 map(line) ? while c := move(1) do {
 case c of {
 !'aeiou': vc +:= 1
 !(&lcase--'aeiou'): cc +:= 1
 }
 }
 vc > cc & write(line)
 }
end

CSc 451, Spring 2003, Examination #2 Solutions; page 3

There were some interesting approaches to counting. Mr. Jeffrey and Ms. Yost came up with
this:

every upto('aeiou') do v +:= 1

Mr. Graham did this:

tab(any(vowels)) & v +:= 1

Problem 5: (25 points)

Write a procedure dollars(s) that converts a string specifying a sum of money into a
corresponding real value.

procedure dollars(s)
 local dollars, cents
 s ? {
 value := {
 { cents := tab(many(&digits)) & *cents <= 2 & ="c" &
 cents * .01 } |

 { ="$" & dollars := tab(many(&digits)) & ="." &
 cents := tab(many(&digits)) & *cents = 2 &
 dollars + cents * .01 } |

 { =("one buck"|"one dollar") & 1.0 } |

 { =(english(n := 2 to 20) || (" dollars"|" bucks")) &
 real(n) }

 } & pos(0) & return value
 }
end

Problem 6: (9 points)

Write a PDCO Longest{expr1, expr2, ..., exprN} that returns the argument
with the longest result sequence.

procedure Longest(L)
 R := []
 every c := !L do {
 while @c
 put(R, [c, *c])
 }

 return ^(sortf(R, 2)[-1][1])
end

CSc 451, Spring 2003, Examination #2 Solutions; page 4

Mr. Linn's solution was the easiest to understand:

procedure Longest(L)
 max := 0
 every d := !L do {
 while @d
 if *d > max then c := ^d
 }

 return \c
end

Problem 7: (2 points each; 6 points total)

(a) What is the fundamental difference between an additive color model and a subtractive
color model?

In an additive color model light the component colors contribute energy to produce a
resulting color.

In a subtractive model ink of the component colors absorbs light of various
wavelengths. The light is not absorbed (and thus reflected) is what the viewer sees.

(b) Name a subtractive color model and the colors it uses.

The CMY (cyan, magenta, yellow) color model is subtractive.

(c) What "color" would be produced by the setting Fg("#bababa")?

It would be gray, which technically isn't a color.

EXTRA CREDIT SECTION

(a) (1 point) What is the shortest Icon program that will successfully compile and execute
without error?

 record main()

(b) (1 point) List the last names of ten other students in this class.

Mr. Thayer and Mr. Yee either learn from experience or are social butterflies.

(c) (3 points) An Icon programmer homesick for Java wants to produce output with
System.out.println() instead of write(). Create a file java.icn that provides the
necessary elements to meet the needs of this misdirected individual until professional help
can be obtained.

record java_sys(out)
record java_out(println)
global System
procedure java_init()
 System := java_sys(java_out(write))
end

	Page 1
	Page 2
	Page 3
	Page 4

