
CSc 451, Spring 2003            Graphics, Slide 1
W. H. Mitchell

Icon Graphics—Introduction

Facilities for graphical programming in Icon evolved in the
period 1990-1994.

A philosophy of Icon is to insulate the programmer from details
and place the burden on the language implementation.  The
graphics facilities were designed with same philosophy.

Icon's graphical facilities are built on the X Window System on
UNIX machines.  On Microsoft Windows platforms the
facilities on built on the Windows API.



CSc 451, Spring 2003            Graphics, Slide 2
W. H. Mitchell

Window basics 

Before any graphical operations can be done, a window must be
opened.

Here is a complete program that opens a window with a specific
width, height, and label:

link graphics
procedure main() # win1
    WOpen("height=100","width=300",

    "label=A Window")
    WDone()
end

As a rule, graphics programs should link graphics.

On UNIX the program can be compiled with icont, as usual. 
Use wicont on Windows.

On a Windows platform, here's the result:

WOpen() accepts zero or more window attributes as
arguments.  Attributes may be specified in any order.

WDone() waits until a q or Q is typed in the window.



CSc 451, Spring 2003            Graphics, Slide 3
W. H. Mitchell

Window basics, continued

Window attributes can be queried with WAttrib(s1, s2,
...).  The value of each named attribute is generated.

WWRite() is like write(), but sends output to the window.

Example:

link graphics
procedure main() # win2
    WOpen("height=100","width=300",
        "label=A Window")
    every WWrite(WAttrib("height", "width",
                         "size", "label"))
    WDone()
end

Resulting window:

In essence, WWrite() treats the window as a scrolling text
window.

write() could be used instead of WWrite(); output would
then go to the "console".



CSc 451, Spring 2003            Graphics, Slide 4
W. H. Mitchell

Coordinate system

The coordinate system is integer based with (0,0) in the upper
left corner of the window.  Here are the corner points for a
window with size=200,100:



CSc 451, Spring 2003            Graphics, Slide 5
W. H. Mitchell

Drawing points

The simplest drawing primitive is DrawPoint(x, y), which
draws one pixel at the specified coordinates in the foreground
color (black, by default).

Example:

link graphics
procedure main() # dp1
    WOpen("size=300,100")

    every x := 0 to 299 by 3 do
        DrawPoint(x, 50)   # horizontal

    every y := 0 to 99 by 7 do
        DrawPoint(150, y)  # vertical

    WDone()
end

Result:



CSc 451, Spring 2003            Graphics, Slide 6
W. H. Mitchell

Drawing points, continued

Some fun with randomly drawn points:

link graphics

$define Height 100  # symbolic constants
$define Width 300   #  via preprocessor

procedure main() # dp2
    WOpen("size=" || Width ||","||Height)

    repeat {
        DrawPoint(?Width-1, ?Height-1)
        }

    WDone()
end

Another angle:

link graphics
$define Height 100
$define Width 300

procedure main(args) # dp3
    WOpen("size=" || Width ||","||Height)
    N := args[1] | 1

    repeat {
        x := y := 0
        every 1 to N do x +:= ?(Width/N)
        every 1 to N do y +:= ?(Height/N)
        DrawPoint(x,y)
        }

    WDone()
end



CSc 451, Spring 2003            Graphics, Slide 7
W. H. Mitchell

Drawing lines

DrawLine(x1, y1, x2, y2) draws a line between the
points (x1, y1) and (x2, y2), inclusive.

link graphics
procedure main(args) # dl2
    WOpen("size=300,100")
    WAttrib("linewidth=" || args[1])
    DrawLine(10, 10, 290, 90)
    DrawLine(10, 90, 290, 10)
    DrawLine(150, 10, 150, 90)
    WDone()
end

When run with no arguments, a default linewidth of 1 is
used:

Here is a linewidth of 5:



CSc 451, Spring 2003            Graphics, Slide 8
W. H. Mitchell

Drawing lines, continued

An arbitrary number of coordinate pairs can be passed to
DrawLine.  It draws a line between the first and second points,
then the second and third points, etc.

procedure main() # dl3
    WOpen("size=300,100")
    DrawLine(100,10,200,10,100,90,200,90)
    WDone()
end

Result:

Icon's list invocation syntax is often used with drawing
functions that accept a variable number of arguments:

procedure main() # dl3a
    WOpen("size=300,100")

    zpts := [100,10,200,10,100,90,200,90]
    DrawLine!zpts  # "list invocation"
    WDone()
end

A related function is DrawSegment, which draws disjoint
segments for each pair of coordinate pairs.



CSc 451, Spring 2003            Graphics, Slide 9
W. H. Mitchell

Drawing lines, continued

Problem: Write a program that produces an approximation of
this image:



CSc 451, Spring 2003            Graphics, Slide 10
W. H. Mitchell

Drawing rectangles

The function DrawRectangle(x, y, w, h) draws the
outline of a rectangle.

With a line width of 1, the upper left corner is at (x, y) and the
lower right corner is at (x+w, y+h).

procedure main(args) # dr1
    WOpen("size=300,150")
    x := y := 0
    every h := 10 to 35 by 5 do {
        DrawRectangle(x, y, h*2, h)
        x +:= h*2
        y +:= h
        }
    WDone()
end

Result:



CSc 451, Spring 2003            Graphics, Slide 11
W. H. Mitchell

Drawing rectangles, continued

FillRectangle(x, y, w, h) is just like
DrawRectangle but it produces a rectangle filled with the
foreground color.

A related function is EraseArea, which accepts the same
arguments and fills the rectangular area with the background
color (white, by default).

procedure main(args) # dr2
    WOpen("size=300,150")
    x := y := 0
    every h := 10 to 35 by 5 do {
        FillRectangle(x, y, h*2, h)
        EraseArea(x, y, 5, 5)
        x +:= h*2
        y +:= h
        }
    WDone()
end

Result:



CSc 451, Spring 2003            Graphics, Slide 12
W. H. Mitchell

Drawing rectangles, continued

Appendix I in the text covers some painful but important details
about the rendering of various figures.

One example of "interesting" behavior is the difference in the
rectangular area when drawn with DrawRectangle versus
FillRectangle:



CSc 451, Spring 2003            Graphics, Slide 13
W. H. Mitchell

Drawing circles

Circles are drawn with DrawCircle(x, y, radius):

procedure main(args) # dc1
    WOpen("size=200,200")

    width := 1
    every r := 3 to 100 by 20 do {
        DrawCircle(100, 100, r)
        WAttrib("linewidth=" || (width +:= 2))
        }

    WDone()
end

Result:



CSc 451, Spring 2003            Graphics, Slide 14
W. H. Mitchell

Drawing circles, continued

The previous example used some defaults.  DrawCircle is
actually more general:

DrawCircle(x, y, r, start, extent)

This draws a circular arc centered at (x, y) with radius r starting
at start radians and continuing through extent radians. 
(Recall that 2B radians equals 360 degrees.)

start is measured with zero at 3 o'clock.  Positive values for
start and extent indicate a clockwise direction; negative values
indicate counter-clockwise direction.

DrawCircle(..., 0, &pi)      DrawCircle(..., &pi, &pi)

                

DrawCircle(..., &pi/3, &pi*.9)

                 

DrawCircle(..., -&pi/8, -&pi*3/2)



CSc 451, Spring 2003            Graphics, Slide 15
W. H. Mitchell

Drawing circles, continued

Here is a simple-minded test program that exercises
DrawCircle and its counterpart, FillCircle:

procedure main(args) # dc3
    WOpen("size=200,240",
        "linewidth=10")
        
    WWrite(repl("\n",30))
    repeat {
        EraseArea()
        
        WWrite("f/d, start, extent? ")
        
        args := split(WRead())
        p := if get(args) == "f"
             then FillCircle else DrawCircle
            
        every !args *:= (2*&pi)/360
        
        p!([100,100,90]|||args)
        WRead()
        }
end

Notes:
Via defaults, EraseArea() erases the entire window.

WRead() reads a line of input typed directly into the
window.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

