
CSc 451, Spring 2003 Graphics, Slide 21
W. H. Mitchell

Interaction basics

Certain actions by the user of a graphical Icon program cause
events to be produced.

Events fall into three categories: keystrokes, mouse actions, and
window resizing.

The Event() function returns the next event from the event
queue. If the queue is empty, Event() waits.

Mouse events are represented by keywords such as &lpress
and &rrelease.

A simple example:

procedure main() # ev1
 WOpen("size=300,400")
 repeat {
 case Event() of {
 &lpress: WWrite("left button down")
 &lrelease: WWrite("left button up")
 &rpress: break
 }
 }
end

CSc 451, Spring 2003 Graphics, Slide 22
W. H. Mitchell

Interaction basics, continued

Each event is actually represented by three values: an event
code, and x and y coordinates.

Event() returns the code for the next event and as a side effect
sets &x and &y. For mouse events the code is a small negative
integer, such as -1 for &lpress.

Here is a program that identifies the quadrant in which the left
button was clicked:

procedure main() # ev2
 WOpen("size=300,300")
 DrawSegment(150,0,150,300,0,150,300,150)
 repeat {
 case Event() of {
 &lpress: {
 if &y < WAttrib("height")/2 then
 WWrites("Upper ")
 else
 WWrites("Lower ")
 if &x < WAttrib("width")/2 then
 WWrite("left")
 else
 WWrite("right")
 }
 &rpress: break
 }
 }
end

Recall that DrawSegment draws non-contiguous lines.

CSc 451, Spring 2003 Graphics, Slide 23
W. H. Mitchell

Interaction basics, continued

Here is a very simple drawing program from the text, page 185:

procedure main() # ev3
 WOpen("size=400,300")
 repeat {
 case Event() of {
 &lpress: {
 DrawPoint(&x, &y)
 x := &x
 y := &y
 }

 &ldrag: {
 DrawLine(x, y, &x, &y)
 x := &x
 y := &y
 }

 &rpress|&rdrag:
 EraseArea(&x - 2, &y - 2, 5, 5)
 }
 }
end

Problem: Describe what would be necessary to save and load
drawings.

CSc 451, Spring 2003 Graphics, Slide 24
W. H. Mitchell

Interaction—keystroke events

Keystrokes produce events. For keys such as A, $, 4, ?, and =,
the value produced by Event() is a string that corresponds to
the key. For other keys, such as the function keys and cursor
keys, Event() produces an integer.

procedure main() # key1
 WOpen("size=300,400")
 repeat {
 case e := Event() of {
 "q"|"Q": break
 default: WWrite(image(e))
 }
 }
end

The library file keysyms.icn has $defines for various
non-textual keys. Examples:

$define Key_Home 36
$define Key_Insert 45
$define Key_F1 112

Use $include "keysyms.icn" (not link).

Keystrokes and mouse actions can be intermixed:

case Event() of {
&lpress: ...
!"Qq"|&rpress: ...
}

CSc 451, Spring 2003 Graphics, Slide 25
W. H. Mitchell

Interaction—keystrokes, continued

Just like with mouse events, &x and &y are set when a keystroke
event is fetched with Event().

The keywords &control, &shift, and &meta can be used to
test whether the control, shift, and/or meta (ALT) keys were
pressed in conjunction with generation of the event.

The keyword &interval is set to the number of milliseconds
that elapsed between this event and the last event.

This program shows information about events:

procedure main() # key3 (based on p.187 of text)
 WOpen("size=300,400")
 repeat {
 e := Event()

 WWrites(if &control then "c" else "-")
 WWrites(if &shift then "s" else "-")
 WWrites(if &meta then "m" else "-")

 WWrite(" ", left(image(e),7),
 left("("||&x||","||&y||")", 12),
 right(&interval,6), "ms")
 }
end

Notes:
(1) &control, et al. either succeed or fail
(2) It is the act of calling Event() that causes &x,

&control, &interval, etc., to be set.
(3) Two other values that are set: &row and &col

CSc 451, Spring 2003 Graphics, Slide 26
W. H. Mitchell

Sidebar: Reversible Drawing

By default, drawing is done in "copy" mode, which overwrites
existing pixels with the pixels being drawn.

If the window attribute drawop is set to reverse, drawing a
figure "inverts" the target pixels. Drawing the same figure
again in the same place causes the figure to disappear, as if it
had never been drawn.

The following program moves a circle across a grid.

procedure main() # rub1a
 WOpen("size=600,300","linewidth=3")
 every x := 50 to 550 by 50 do
 DrawLine(x, 0, x, 299)
 every y := 50 to 250 by 50 do
 DrawLine(0, y, 599, y)
 x := y := 0
 WAttrib("drawop=reverse")
 repeat {
 DrawCircle(x, y, 40) # uses defaults
 WDelay(31) # sleeps for 31 ms
 DrawCircle(x, y, 40)
 x +:= 2
 y +:= 1
 }
end

CSc 451, Spring 2003 Graphics, Slide 27
W. H. Mitchell

Interaction example: rubberbanding

This program draws "rubberbanded" lines:

procedure main() # rub2
 WOpen("size=600,300","linewidth=3")
 WAttrib("drawop=reverse")
 repeat {
 case Event() of {
 &lpress: {
 start_x := &x
 start_y := &y
 }
 &ldrag: {
 DrawLine(start_x, start_y,
 \last_x, \last_y)
 DrawLine(start_x, start_y,
 &x, &y)
 last_x := &x
 last_y := &y
 }
 &lrelease: last_x := last_y := &null
 }
 }
end

Notes:
(1) A left click establishes a starting position for the line.

(2) On each drag event the previously drawn line is erased
and the new line is drawn.

(3) A non-null/null value for last_x indicates that a
line is/is not in progress.

CSc 451, Spring 2003 Graphics, Slide 28
W. H. Mitchell

Rubberbanding, continued

This slight variation draws rubberbanded circles:

procedure main() # rub3
 WOpen("size=600,300","linewidth=3")
 WAttrib("drawop=reverse")
 repeat {
 case Event() of {
 &lpress: {
 start_x := &x
 start_y := &y
 }
 &ldrag: {
 r := sqrt((\last_x-start_x)^2 +

 (last_y-start_y)^2)

 DrawCircle(start_x, start_y, \r)

 DrawCircle(start_x, start_y,
 sqrt((&x-start_x)^2 +
 (&y-start_y)^2))

 last_x := &x
 last_y := &y
 }
 &lrelease: last_x := r := &null
 }
 }
end

CSc 451, Spring 2003 Graphics, Slide 29
W. H. Mitchell

Interaction—blocking vs. polling

The preceding event handling examples all employ
blocking—the Event() call blocks until an event is available.

An alternative to blocking is polling—the program periodically
checks to see if any events are available. If so the events are
processed. If not, other processing is done.

The Pending() function returns the list of events that are
pending. If the list is empty, no events are pending.

Here is a version of the random point drawing program that uses
polling to offer the user some control:

$define Height 100 # symbolic constants
$define Width 300 # via preprocessor
procedure main() # poll1
 WOpen("size=" || Width ||","||Height)
 repeat {
 if *Pending() = 0 then
 DrawPoint(?Width-1, ?Height-1)
 else
 case Event() of {
 &lpress: EraseArea(0,0,300,100)
 " ": until Event() === " "
 !"Qq": exit()
 }
 }
end

CSc 451, Spring 2003 Graphics, Slide 30
W. H. Mitchell

Example: Target game

This program draws a circular target. If the player clicks inside
the target within 800ms, the radius shrinks by 10%. If not, the
radius grows by 10%.

$define Width 600
$define Height 600
procedure main() # target
 WOpen("size="||Width||","||Height,
 "drawop=reverse")

 x := ?Width; y := ?Height; r := 50
 repeat {
 DrawCircle(x, y, r)
 hit := &null
 every 1 to 80 do {
 WDelay(10)
 while *Pending() > 0 do {
 if Event()=== &lpress then {
 if sqrt((x-&x)^2+(y-&y)^2)
 < r then {
 FillCircle(x,y, r)
 WDelay(500)
 FillCircle(x,y,r)
 hit := 1
 break break
 }
 }
 }
 }
 DrawCircle(x,y,r)
 if \hit then r *:= .9 else r *:= 1.10
 x := ?Width; y := ?Height
 }
end

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

