
CSc 451, Spring 2003 Graphics, Slide 31
W. H. Mitchell

Example: Dragging objects

This program allows manipulation of randomly drawn circles.

record circle(x,y,r)
procedure main() # drag1
 WOpen("size=600,300","drawop=reverse")

 DrawLine(300,0,300,300)

 circles := make_circles()

 repeat case Event() of {
 &lpress:
 if c := point_in(circles, &x, &y) then {
 lastx := c.x; lasty := c.y
 r := c.r
 repeat case Event() of {
 &ldrag: {
 DrawCircle(lastx, lasty, r)
 DrawCircle(lastx := &x,
 lasty := &y, r)
 }
 &lrelease: {
 DrawCircle(lastx, lasty, r)
 if &x <= 300 then {
 DrawCircle(&x, &y, r)
 c.x := &x; c.y := &y
 }
 else
 delete(circles, c)
 break
 }
 }
 }
 }
end

CSc 451, Spring 2003 Graphics, Slide 32
W. H. Mitchell

Example: Dragging objects, continued

Helper routines:

#
Return a circle that contains the point (x,y)
#
procedure point_in(circles, x, y)
 every c := !circles do
 if sqrt((c.x-x)^2+(c.y-y)^2) < c.r then
 return c
end
#
Create a set of randomly placed and sized
circles
#
procedure make_circles()
 circles := set()
 every 1 to 30 do {
 r := ?40; x := ?(300-r); y := ?300
 DrawCircle(x,y,r)
 insert(circles, circle(x,y,r))
 }
 return circles
end

Additional behaviors to consider:
(1) Dropping one circle on another adds area to target circle.
(2) Dropping a circle on right half turns it into a square.
(3) Dropping a circle on right half adds to pile at bottom of

right half.
(4) Don't center circle on pointer's hotspot.
(5) Support additional types, such as lines.
(6) Have circle pop like a bubble when dropped on right half.

CSc 451, Spring 2003 Graphics, Slide 33
W. H. Mitchell

Mouse tracking

There is no notion of mouse motion events in Icon's graphics
system but the pointer (mouse) position can be queried via the
pointerx and pointery attributes.

The following program repeatedly queries the pointer position
attributes and prints the position upon a change in either
coordinate:

procedure main() # mpoll1
 WOpen("size=300,300")
 repeat {
 x := WAttrib("pointerx")
 y := WAttrib("pointery")
 if not (x = \lastx & y = \lasty) then {
 WWrite("(", x, "," , y, ")")
 lastx := x
 lasty := y
 }

 WDelay(10)
 }
end

Notes:
(1) Without the WDelay() the CPU can be saturated.
(2) Out of window positions are reported and are relative to the

upper left corner of the window.

Speculate: On a 600Mhz Windows system, how much of the
CPU is consumed by the above program? How about with a
smaller delay—1 millisecond?

CSc 451, Spring 2003 Graphics, Slide 34
W. H. Mitchell

Mouse tracking, continued

The following program tracks the pointer on a grid.

procedure main(args) # mpoll3
 WOpen("size=300,300")
 csize := 20
 every x := 0 to 300 by csize do
 DrawLine(x,0,x,300)
 every y := 0 to 300 by csize do
 DrawLine(0,y,300,y)

 repeat {
 x := WAttrib("pointerx") - 4
 y := WAttrib("pointery") - 23
 x := (x / csize) * csize
 y := (y / csize) * csize

 EraseArea!\last
 last := [x+1, y+1, csize-1, csize-1]
 FillRectangle!last
 WDelay(10)
 }
end

Notes:
(1) Note the "fudge" values of 4 and 23.
(2) Improvement: update only on pointer movement.

CSc 451, Spring 2003 Graphics, Slide 35
W. H. Mitchell

Font handling basics

One of the attributes associated with a window is its font. A
font is a set of characters in a particular typeface (or family),
style (such as bold or italic), and size (in "points").

The font attribute can be set or queried with WAttrib() or,
more conveniently, with Font().

procedure main() # font1
 WOpen("size=600,300")
 WWrite("A line of text! (", Font(), ")\n")

 specs := [
 "Arial,20", "Chiller,bold,25",
 "Jokerman,30,italic", "Forte,35"]

 every spec := !specs do {
 Font(spec)
 WWrite("A line of text! (",Font(),")\n")
 }
 WDone()
end

CSc 451, Spring 2003 Graphics, Slide 36
W. H. Mitchell

Font handling basics, continued

Typeface names are system-specific but the following names are
"guaranteed" to work:

mono monospaced, sans-serif
typewriter monospaced, serif
sans proportionally spaced, sans-serif
serif proportionally spaced, serif

In a monospaced font, all characters are the same width.

Character widths vary in a proportionally spaced font.

Font() fails if the requested specification cannot be met.

There is no way to specify a font along with a text-output
operation such as WWrite(). The mode of operation is
always to set the font attribute and then perform text output
operations.

CSc 451, Spring 2003 Graphics, Slide 37
W. H. Mitchell

Rows and columns of characters

Icon's graphics system has some support for treating a window
as a two-dimensional array of characters. The involved
functions assume that all characters in the window are in the
same font and that the font is monospaced.

The window attributes rows and columns can be used to size
a window based on rows and columns of text. The statement

WOpen("font=typewriter,20", "rows=24",
 "columns=80", "cursor=on")

opens a window that can hold 24 rows of 80 characters of text in
a 20-point monospaced font, and turns on the text cursor.

The text cursor can be positioned at a particular row and column
with GotoRC(row, column):

GotoRC(10,20)

Two more variables that are available in conjunction with an
event are &row and &col.

CSc 451, Spring 2003 Graphics, Slide 38
W. H. Mitchell

A start on a text editor

Here is a precursor to a text editor:

$include "keysyms.icn"
procedure main(args) # font2
 #
 # Read file
 every put(lines := [], !open(args[1]))
 #
 # Find length of longest line
 maxline := sort(mapf("*", lines))[-1]

 WOpen("font=typewriter,20", "cursor=on",
 "rows="||*lines+1, "columns="||maxline)
 every WWrite(!lines)

 GotoRC(1,1)
 row := col := 1

 repeat {
 case Event() of {
 Key_Down: row +:= 1 # "Arrow keys"
 Key_Up: row -:= 1 # from keysyms.icn
 Key_Left: col -:= 1
 Key_Right: col +:= 1
 &lpress:
 GotoRC(row := &row, col := &col)
 }
 GotoRC(*lines+1,1)
 WWrites("Row ", right(row,2),
 ", Col ", right(col,2),
 " (", (lines[row][col]|" "), ")")
 GotoRC(row,col)
 }
end

Notes:
(1) Values of row and col are not constrained.
(2) &row and &col seem misaligned on Windows.

CSc 451, Spring 2003 Graphics, Slide 39
W. H. Mitchell

Details on fonts

Fonts have several attributes that can be queried. These
attributes are sometimes called font metrics.

Text is drawn so that the characters stand on a baseline. Some
characters have descenders that extend below the baseline.

The ascent provides an amount of space above the baseline that
is typically taller than the tallest character. The descent provides
space below the baseline.

The leading is the space between baselines. By default it is the
sum of the font's ascent and descent, but it can be set.

The width is the width of the font's widest character.

CSc 451, Spring 2003 Graphics, Slide 40
W. H. Mitchell

Details on fonts, continued

The routine DrawString(x, y, s) draws the string s
using y for a baseline and positioning the left edge of the first
character at x. Example:

procedure main(args) # font3
 WOpen("size=300,150","font="arial,60")
 WWrite()
 ascent := WAttrib("ascent")
 descent := WAttrib("descent")
 leading := WAttrib("leading")

y := leading

 DrawLine(0, y, 300, y)
 DrawString(50,y, "Buy low")

 DrawLine(0, y-ascent, 300, y-ascent)
 DrawLine(0, y+descent, 300, y+descent)

 y +:= leading
 DrawLine(0, y, 300, y)
 DrawString(50,y,"Sell high")

 WDone()
end

Result:

CSc 451, Spring 2003 Graphics, Slide 41
W. H. Mitchell

Example: Boxes around text

This program reads lines from standard input and tiles the
window with boxed text.

The main program reads lines and calls drawBoxedText to
actually draw the text boxes.

Before each box is drawn the width is checked using
TextWidth(s), which returns the width in pixels of the string
s when drawn in the current font.

If there is insufficient space on the current line, a new line is
started by adding leading to y, and resetting x.

record box(rect, text)
global boxes
procedure main() # font4
 boxes := set() # set of box records
 WOpen("size=600,600","font=serif,20")
 gap := 5
 x := gap
 y := 0
 while word := reverse(trim(reverse(read())))do{
 width := TextWidth(word)
 if x + width > WAttrib("width") then {
 x := gap
 y +:= WAttrib("leading") + gap
 }

 x +:= drawBoxedText(x, y, word) + gap
 }

 process(0, y)
end

CSc 451, Spring 2003 Graphics, Slide 42
W. H. Mitchell

Boxes around text, continued

The following routine displays the string s in a box with an
upper left corner at (x,y).

procedure drawBoxedText(x,y,s)
 hspace := 2 # pad with two pixels
 width := TextWidth(s) + hspace*2
 ascent := WAttrib("ascent")
 descent := WAttrib("descent")
 baseline := y + ascent
 height := ascent + descent

 DrawString(x+hspace, baseline, s)

 rect := [x,y,width,height]
 DrawRectangle!rect

 insert(boxes, box(rect,s))
 return width
end

The following routine uses GotoXY() to position the text
cursor and then processes events, using WWrite() to print
words that are clicked on.

procedure process(x, y)
 Font(Font()||",italic")
 GotoXY(x,y + WAttrib("leading") * 2)
 repeat case Event() of {
 &lpress: {
 every b := !boxes do {
 rect := b.rect
 if rect[1] <= &x <= rect[1]+rect[3] &
 rect[2] <= &y <= rect[2]+rect[4] then
 WWrite(b.text)
 }
 }
 }
end

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

