
CSc 451, Spring 2003 Graphics, Slide 43
W. H. Mitchell

DrawString vs. WWrite et al.:

WWrite() and WWrites() produce output at the current
position of the text cursor and appropriately update the position
of the text cursor.

The text cursor's position can be set with GotoRC() and
GotoXY(). Its position can be queried via the attributes x and
y (coordinates) and row and col.

DrawString() produces output at the specified position and
does not update the text cursor.

DrawString() changes only the pixels of the characters;
WWrite() outputs a rectangle of pixels.

DrawString(), in conjunction with drawop=reverse,
can be used to animate text. (But this does not work on
Windows.)

Bottom line:

WWrite() is convenient, especially with monospaced
text.

DrawString() provides full control.

DrawString/TextWidth and GotoXY/WWrites are
roughly equal "teams".

CSc 451, Spring 2003 Graphics, Slide 44
W. H. Mitchell

Coordinate translation

The dx and dy attributes specify a translation of the X and Y
coordinates. If dx and/or dy have a non-zero value the value is
automatically added to the X and/or Y coordinate specified in
subsequent graphics calls.

Consider this figure:

Here is code to draw it centered at (100,00) with a radius of 75:

x := y := 100
r := 75
DrawCircle(x, y, r)
DrawSegment(x-r, y, x+r, y, x, y-r, x, y+r)

Here is code that uses translation:

WAttrib("dx=100","dy=100")
r := 75
DrawCircle(0, 0, r)
DrawSegment(-r, 0, r, 0, 0, -r, 0, r)

Changes to dx and dy are not cumulative.

CSc 451, Spring 2003 Graphics, Slide 45
W. H. Mitchell

Clipping

Graphics libraries and/or host operating systems typically
constrain graphical output to the target window—if a figure
extends beyond the bounds of the window the out of bounds
pixels are simply not drawn.

In some cases it is desirable to limit drawing to a portion of a
window. The procedure Clip(x, y, w, h) sets a clipping
region—no pixels will be drawn outside the specified rectangle.

The following program draws randomly sized characters at
random positions on the screen. A clipping region is used to
constrain the output to the center of the window.

procedure main() # clip1
 WOpen("size=400,400")
 center_square := [50,50,300,300]
 DrawRectangle!center_square
 Clip!center_square
 repeat {
 Font("serif,"||(60+?200)) | stop()
 DrawString(?400, ?400, ?&letters)
 if *Pending() > 0 then
 Event() & Event()
 WDelay(70)
 }
end

CSc 451, Spring 2003 Graphics, Slide 46
W. H. Mitchell

Example: Clipping and translation

This program draws random circles. A square clipping region is
initially established at the center of the window and gradually
increased.

When the clipping region reaches the full size of the window,
the foreground and background colors are reversed (via the
reverse attribute), the window is erased, and the process
repeats.

Coordinate translation is used both for drawing and defining the
clipping region.

procedure main() # clip2
 WOpen("size=400,400","dx=200","dy=200")

 rev := create |!["on","off"]
 side := 400
 repeat {

 every i := 1 to side by 5 do {
 WAttrib("dx="||200-i/2,
 "dy="||200-i/2)

 Clip(0,0,i,i)
 every 1 to 20 do
 DrawCircle(?i, ?i, ?25)

 if *Pending() > 0 then
 Event() & Event()
 WDelay(70)
 }
 WAttrib("reverse="||@rev)
 EraseArea()
 }
end

CSc 451, Spring 2003 Graphics, Slide 47
W. H. Mitchell

Color specification

A window has attributes for the foreground and background
colors (fg and bg). They can be set via WAttrib() or with
the Fg(s) and Bg(s) procedures.

Routines such as DrawCircle and FillRectangle draw
pixels in the foreground color, which is black by default.

A simple way to specify a color is by naming one of these hues:

black orange
gray yellow
white green
pink cyan
violet blue
brown purple
red magenta

One way to think of hue: The basic nature of a color.

Example:

procedure main() # color1
 WOpen("size=300,300")
 colors := split("black gray white pink _
 violet brown red orange yellow green _
 cyan blue purple magenta")

 every color := !colors do {
 Bg(color)
 EraseArea()
 until Event() === &lpress
 }
end

CSc 451, Spring 2003 Graphics, Slide 48
W. H. Mitchell

Color specification, continued

Icon's color naming system was inspired by a 1982 paper by
Berk, et al.: A New Color-Naming System for Graphics
Languages that uses natural language to describe a color. Here
is the full form:

lightness saturation hue1 hue2

pale
light
medium
dark
deep

weak
moderate
strong
vivid

hue[ish] hue

Saturation is a measure of how far the color is from a gray.

Lightness is the intensity of a color.

Examples:

pale green
pale weak green
yellow green
greenish yellow
pale greenish yellow
moderate pinkish red
dark bluish purple

All elements are optional except for hue2. The defaults of
medium and vivid are underlined.

A specification like "yellow orange" selects a color
halfway between yellow and orange. "yellowish orange"
specifies a color 3/4 of the way toward orange.

CSc 451, Spring 2003 Graphics, Slide 49
W. H. Mitchell

Color specification, continued

The colrbook program in the IPL displays a hue with varying
levels of lightness and saturation.

Here's a simple program for testing color specifications:

procedure main() # color2
 WOpen("size=300,600")

 WAttrib("font=serif,30")
 WWrite()

 y := WAttrib("fheight")
 striph := 75

 while GotoRC(1,1) &
 WWrites(repl(" ",100),"\r") &
 color := WRead() do {
 if *color = 0 then { # <Enter> clears
 EraseArea()
 y := WAttrib("fheight")
 next
 }
 Fg(color) | next
 FillRectangle(0,y,300,striph)
 Fg("black")
 DrawString(10,y+striph/2,color)
 y +:= striph
 }
end

CSc 451, Spring 2003 Graphics, Slide 50
W. H. Mitchell

Numerical color specification

A color can also be specified numerically, in terms of the
brightness of red, green, and blue light. One form is a comma-
separated triple of decimal integer values in the range 0 to
65,535:

<red>,<green>,<blue>

Examples:

Fg("60000,0,0") # bright red
Fg("0,0,30000") # fairly dark blue
Bg("50000,50000,50000") # light gray
Fg("40000,30000,50000") # pale purple

Zero for all three yields black; maximum values yield white.

Alternatively, values can be specified using triples of 1-4 hex
digits:

Fg("#f00")
Bg("#ff21a")
Fg("#7ffa00b88")
Bg("#123456789abc")

With the hexademical form the number of digits must be a
multiple of three.

The procedure ColorValue(s) produces a string that is the
decimal triple form of the color named by the string s.

The sample program color2a is simply color2 augmented
to show the result of ColorValue().

CSc 451, Spring 2003 Graphics, Slide 51
W. H. Mitchell

Color models

The RGB color model is additive—light from three different
component colors contribute to the final value.

The CMY color model is commonly used when printing colors.
It is called a subtractive model because ink is used to subtract
colors from the image. The colors cyan, magenta, and yellow
reflect no red, green, or blue light, respectively.

Diagrams from Adobe.com

CSc 451, Spring 2003 Graphics, Slide 52
W. H. Mitchell

Color models, continued

A third color model is HSV (Hue, Saturation, Value). "Value"
is the brightness of the color. Here is a conical view of the HSV
space from www.wikipedia.org:

The IPL program colrpick can be used to see the
correspondence between the RGB and HSV models:

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

