
CSc 451, Spring 2003 Graphics, Slide 61
W. H. Mitchell

VIB and Vidgets

Icon has a set of high-level interface objects known as vidgets
(virtual input gadgets).

The program VIB (visual interface builder) is a WYSIWYG tool
for building user interfaces. The command vib starts VIB.
Here is the initial screen:

The icons below the menu bar represent the available vidgets:

Button
Radio buttons
Text list
Text entry
Slider

Scrollbar
Region
Label
Line

CSc 451, Spring 2003 Graphics, Slide 62
W. H. Mitchell

VIB, continued

Clicking on vidget's icon causes it to be added to the canvas of
the interface. A vidget can be moved with a left-drag and its
size can be adjusted by dragging on one of the resize handles.

Here is an interface with several vidgets:

The overall size of the interface can be adjusted via the target in
the lower right hand corner.

CSc 451, Spring 2003 Graphics, Slide 63
W. H. Mitchell

Vidget properties

Right-clicking on a vidget brings up a properties dialog for the
vidget. Here are the properties for the button:

The label is the text displayed on the button.

ID is the internal name of the vidget.

x, y, width, and height are positioning and sizing
information.

regular, check, etc. and outline specify details of the
button's appearance.

toggle indicates whether the button stays pressed or rebounds.

callback specifies the procedure that is called when the
button is pressed.

CSc 451, Spring 2003 Graphics, Slide 64
W. H. Mitchell

Vidget properties, continued

Here are the properties for the radio buttons:

A button can be added or removed by clicking the add or del
button in the appropriate position.

CSc 451, Spring 2003 Graphics, Slide 65
W. H. Mitchell

Vidget properties, continued

Here are the properties for the slider:

vertical/horizontal specifies the orientation, which can
also be changed with the mouse.

top/left and bottom/right indicate the values that
correspond to the left- and right-most positions of the thumb.
initial is the starting position of the thumb.

filter indicates whether to filter out notifications of position
when the slider is being adjusted.

CSc 451, Spring 2003 Graphics, Slide 66
W. H. Mitchell

Details on using VIB

If run with no arguments, VIB generates a file named
app1.icn if no file by that name exists. If app1.icn exists,
then VIB uses app2.icn, and so forth.

If a file is named on the command line, that name is used.

The File menu operations new, open, save, save as, and
quit do what their name implies.

new and quit will warn if changes have been made since the
last save, but no such check is made if the windowing system
exit is actuated.

The operation File | refresh (ALT-R) simply redraws the
screen.

The Edit | copy and delete operations simply copy or
delete the selected vidget. undelete undoes the last deletion.

The Select menu item simply shows a list of all the vidgets
that have been placed. Use it to select a vidget that is obscured.

CSc 451, Spring 2003 Graphics, Slide 67
W. H. Mitchell

Details on using VIB, continued

The Edit | align vert operation is used to vertically align
vidgets. To use it:

(1) Select a vidget.

(2) Click on Edit | align vert.

(3) Clicking on a vidget to cause its Y-coordinate to be set
to match the vidget selected in the first step.

(4) When all vertical adjustments have been made, click on
the canvas (i.e., not on a vidget) to exit the alignment
mode.

The operation of Edit | align horz operation is similar, but
for horizonal alignment.

On UNIX systems a different mouse cursor is used when in
alignment mode.

CSc 451, Spring 2003 Graphics, Slide 68
W. H. Mitchell

Prototype execution with VIB

One of the entries on VIB's File menu is prototype
(accessible with ALT-P). This causes generation, compilation
and execution of an Icon source file named vibproto.icn.

vibproto.icn includes a "stub" routine for each vidget's
callback. Each stub prints the ID of the vidget and the
accompanying data that is passed to the callback. Here's a
sample:

callback: id=button1, value=1
callback: id=button1, value=1
callback: id=radio_button1, value="A"
callback: id=radio_button1, value="C"
callback: id=slider1, value=0.0
callback: id=slider1, value=1.0
callback: id=region1, value=-1
callback: id=region1, value=-4
callback: id=region1, value="a"
callback: id=region1, value="b"

CSc 451, Spring 2003 Graphics, Slide 69
W. H. Mitchell

VIB-generated code

Here is the first portion of the file generated for the example at
hand:

link vsetup

procedure main(args)
 local vidgets, root, paused

 (WOpen ! ui_atts()) | stop("can't open window")
 vidgets := ui() # set up vidgets
 root := vidgets["root"]

 paused := 1 # flag no work to do
 repeat {
 # handle any events that are available, or
 # wait for events if there is no other work to do
 while (*Pending() > 0) | \paused do {
 ProcessEvent(root, QuitCheck)
 }
 # if <paused> is set null, code can be added here
 # to perform useful work between checks for input
 }
end

Both ui() and ui_attrs() are VIB-maintained procedures.

CSc 451, Spring 2003 Graphics, Slide 70
W. H. Mitchell

VIB-generated code, continued

The next portion of the file is simply callback routines that do
nothing but return:

procedure button_cb1(vidget, value)
 return
end

procedure radio_button_cb1(vidget, value)
 return
end

procedure region_cb1(vidget, e, x, y)
 return
end

procedure slider_cb1(vidget, value)
 return
end

CSc 451, Spring 2003 Graphics, Slide 71
W. H. Mitchell

VIB-generated code, continued

Here is the last portion of the generated file:

#===<<vib:begin>>=== modify using vib; do not remove this
marker line
procedure ui_atts()
 return ["size=486,191", "bg=#C0C0C0"]
end

procedure ui(win, cbk)
return vsetup(win, cbk,
 [":Sizer:::0,0,486,191:",],
 ["button1:Button:regular::15,13,32,20:push",button_cb1],
 ["label1:Label:::213,8,54,14:The Region",],
 ["line1:Line:::292,16,382,16:",],
 ["line2:Line:::98,16,188,16:",],
 ["radio_button1:Choice::3:16,43,55,66:",radio_button_cb1,
 ["one","two","three"]],
 ["slider1:Slider:h:1:19,122,51,12:0.0,1.0,0.5",slider_cb1],
 ["region1:Rect:grooved::95,29,289,147:",region_cb1],)
end
#===<<vib:end>>=== end of section maintained by vib

The ui() routine specifies all the attributes of each vidget.

NOTE: The main routine and the callbacks are generated only
on VIB's initial run for the application. On subsequent runs
VIB only manipulates the ui_atts() and ui() routines.

If you add a vidget in a subsequent run you'll need to edit the
file and add a callback routine for it.

BE SURE to exit VIB before manually editing the generated
file.

CSc 451, Spring 2003 Graphics, Slide 72
W. H. Mitchell

Example: Random points

Consider a VIB-built interface for a program, rpoints, that
randomly draws points:

"Clear" is a rebounding button that clears the grid.

"Pause" is a toggle button that pauses drawing.

The radio buttons set the color used for further points.

CSc 451, Spring 2003 Graphics, Slide 73
W. H. Mitchell

Drawing in a region

The most complex problem deals with drawing the points in the
region.

Each vidget is represented by a record. Every type of vidget
except for lines has the fields ax, ay, aw, and ah that describes
the rectangle that the vidget covers.

Regions have an additional set of fields, ux, uy, uw, and uh
that describe the usable area of the vidget.

The variable vidgets references a table keyed by vidget IDs.
(By default it is local but it is sometimes more convenient to
make it a global.)

The first modification is in main, calling a routine that will
cause point_win, a new variable, to reference the usable area
of the region:

global point_win # ADDED
procedure main(args)
 local vidgets, root

 (WOpen ! ui_atts()) | stop("can't open window")
 vidgets := ui() # set up vidgets
 root := vidgets["root"]

 point_win := setup_point_win(vidgets) # ADDED
 ...

CSc 451, Spring 2003 Graphics, Slide 74
W. H. Mitchell

Drawing in a region, continued

Here is the setup_point_win routine:

procedure setup_point_win(vidgets)
 local region
 #
 # Get the record representing the region
 #
 r := vidgets["region1"]

 #
 # The subject window is cloned and translation is applied so
 # so that (0,0) in point_win references the upper left corner of
 # the usable area of the region.
 #
 point_win := Clone(&window,"dx="||r.ux, "dy="||r.uy)

 #
 # Clipping is applied so that EraseArea() is limited to the
 # region.
 Clip(point_win, 0, 0, r.uw, r.uh)

 #
 # Use a white background for the region.
 Bg(point_win, "white")
 EraseArea(point_win)

 return point_win
end

End result: We can use point_win to draw points in the
region.

CSc 451, Spring 2003 Graphics, Slide 75
W. H. Mitchell

Handling the radio buttons

The next thing is to handle the radio buttons that control the
color of the points. We start with a callback routine:

procedure color_cb(vidget, value)
 Fg(point_win, map(value))
 return
end

When one of the radio buttons is pressed, color_cb is called.
value will be set to the label of the button that was pressed,
i.e., either "Black", "Red", or "White".

The value is mapped to lower case and then Fg is called to set
the selected color as the foreground color of point_win.

We also need another line in main:

root := vidgets["root"]

point_win := setup_point_win(vidgets)
VSetState(vidgets["radio_button1"], "Black") # ADDED

The library procedure VSetState(vidget, value) sets
the state of the specified vidget to the given value.

Calling VSetState simulates the effect of the user performing
the corresponding operation, so color_cb is called.

CSc 451, Spring 2003 Graphics, Slide 76
W. H. Mitchell

Handling the Pause button

One element of handling Pause is trivial—a callback routine that
sets the global variable paused:

procedure pause_cb(vidget, value)
 paused := value
 return
end

Because the Pause button is declared as a toggle, value will be
1 when the button is toggled on, and &null when toggled off.

CSc 451, Spring 2003 Graphics, Slide 77
W. H. Mitchell

Handling the Pause button, continued

The next step is to adjust the event processing loop in main. Here
is the original VIB-generated code and comments:

 paused := 1 # flag no work to do

 repeat {

 # handle any events that are available, or

 # wait for events if there is no other work to do

 while (*Pending() > 0) | \paused do {

 ProcessEvent(root, QuitCheck)

 }

 # if <paused> is set null, code can be added here

 # to perform useful work between checks for input

 }

The VIB-generated loop accommodates the potential need to
interleave other processing with vidget event handling.

Here is a revised version that meets our needs:

 paused := &null # CHANGED

 repeat {

 while (*Pending() > 0) | \paused do {

 ProcessEvent(root, QuitCheck)

 }

 draw_points(point_win) # ADDED

 }

When the Pause button is toggled on, pause is non-null and the
application stays in the while loop whether there are events
pending or not. When Pause is toggled off, pause is &null,
causing execution to drop out of the while loop (if no events
pending) and call draw_points().

Note that the variable paused is generated by VIB but declared as
a local. It must be changed to be a global.

CSc 451, Spring 2003 Graphics, Slide 78
W. H. Mitchell

Finishing up

Here is the routine draw_points:

procedure draw_points(W)
 static width, height
 initial {
 width := WAttrib(W, "width")
 height := WAttrib(W, "height")
 }

 every 1 to 100 do
 DrawPoint(W, ?width, ?height)
end

Finally, here is a callback for the Clear button:

procedure clear_cb(vidget, value)
 EraseArea(point_win)
 return
end

Because the Clear button is a rebounding button, value is
always 1.

CSc 451, Spring 2003 Graphics, Slide 79
W. H. Mitchell

Pausing with a click in the points

Problem: Modify the program so that a left click in the points
has the same effect as toggling the Pause button on. A right
click in the points toggles the Pause button off.

Here is the callback for the region:

procedure region_cb1(vidget, e, x, y)
 return
end

Note that the callback for a region is passed the event and the
coordinates of the event.

CSc 451, Spring 2003 Graphics, Slide 80
W. H. Mitchell

rpoints: Complete source

For reference, here is the complete source for rpoints.

link vsetup

global point_win

global paused # CHANGED

global vidgets # CHANGED

procedure main(args)

 local root # CHANGED

 (WOpen ! ui_atts()) | stop("can't open window")

 vidgets := ui() # set up vidgets

 root := vidgets["root"]

 point_win := setup_point_win(vidgets)

 VSetState(vidgets["radio_button1"], "Black")

 paused := &null # CHANGED!

 repeat {

 # handle any events that are available, or

 # wait for events if there is no other work to do

 while (*Pending() > 0) | \paused do {

 ProcessEvent(root, QuitCheck)

 }

 # if <paused> is set null, code can be added here

 # to perform useful work between checks for input

 draw_points(point_win)

 }

end

procedure setup_point_win(vidgets)

 local region

 r := vidgets["region1"]

 point_win := Clone(&window,

 "dx="||r.ux, "dy="||r.uy)

 Clip(point_win, 0, 0, r.uw, r.uh)

 Bg(point_win, "white")

 EraseArea(point_win)

 return point_win

end

CSc 451, Spring 2003 Graphics, Slide 81
W. H. Mitchell

rpoints: Complete source, continued

procedure draw_points(W)

 static width, height

 initial {

 width := WAttrib(W, "width")

 height := WAttrib(W, "height")

 }

 every 1 to 100 do

 DrawPoint(W , ?width, ?height)

end

procedure clear_cb(vidget, value)

 EraseArea(point_win)

 return

end

procedure pause_cb(vidget, value)

 paused := value

 return

end

procedure color_cb(vidget, value)

 Fg(point_win, value)

 return

end

procedure region_cb1(vidget, e, x, y)

 case e of {

 &lpress: VSetState(vidgets["button2"], 1)

 &rpress: VSetState(vidgets["button2"], &null)

 }

 return

end

CSc 451, Spring 2003 Graphics, Slide 82
W. H. Mitchell

rpoints: Complete source, continued

#===<<vib:begin>>=== modify using vib; do not remove this marker

line

procedure ui_atts()

 return ["size=378,198", "bg=#C0C0C0"]

end

procedure ui(win, cbk)

return vsetup(win, cbk,

 [":Sizer:::0,0,378,198:",],

 ["button1:Button:regular::285,9,84,20:Clear",clear_cb],

 ["button2:Button:regular:1:287,43,84,20:Pause",pause_cb],

 ["radio_button1:Choice::3:288,74,57,66:",color_cb,

 ["Black","Red","W hite"]],

 ["region1:Rect:grooved::8,6,262,182:",region_cb1],

)

end

#===<<vib:end>>=== end of section maintained by vib

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22

