
CSc 451, Spring 2003 Graphics, Slide 83
W. H. Mitchell

Text lists

The text list vidget displays a scrollable list of lines of text.
Here is a text list with the letters A-F:

A text list can be configured as "select one", "select many", or
"read only". The list can be scrolled vertically but not
horizontally.

The items of a text list can be set with VSetItems():

VSetItems(vidgets["list1"],
 ["A","B","C","D","E","F"])

There is no provision for adjusting the list other than to call
VSetItems() with a different list of values.

The list can be retrieved with VGetItems(V).

CSc 451, Spring 2003 Graphics, Slide 84
W. H. Mitchell

Text lists, continued

Here is the VIB-generated callback for a text list:

procedure list_cb1(vidget, value)
 return
end

If the list is single-selection, clicking on an item (e.g., "A")
produces a callback with value equal to "A".

If the list is multiple-selection, the callback is invoked with a list
of the currently selected items, such as ["A"], ["B","E"],
or [] (if no items are selected).

The state of a list can be retrieved with VGetState(V). The
value produced is a list. The first element is the index of the
first visible list entry. The following elements are the indices of
the selected entries, if any.

 (textlist2)

Vidget: list2
Value: "B"
State: [1,2]

Vidget: list3
Value: ["C","E","F"]
State: L7:[3,3,5,6]

CSc 451, Spring 2003 Graphics, Slide 85
W. H. Mitchell

Text lists, continued

For reference:

Here is the pertinent code:

File scope:
global vidgets

In main:

every VSetItems(vidgets["list"||(1 to 3)],
 ["A","B","C","D","E","F","G","H"])

In list_cb:

procedure list_cb(vidget, value)
 vidget := vidgets[vidget.id] # REQUIRED!?!
 write("Vidget: ", vidget.id)

write("Value: ", Image(value,3))
write("State: ", Image(VGetState(vidget),3))
write()

 return
end

Note that the same callback, list_cb, is specified for all three lists.

CSc 451, Spring 2003 Graphics, Slide 86
W. H. Mitchell

sel—A line selection tool

sel reads lines on standard input and displays a text list containing the
lines. The user then indicates which lines are of interest and then sel
prints them on standard output.

If the file days contains the days of the week, the command

sel < days

displays this:

Clicking on "Sunday", then "Friday", then Done would produce two
lines of output. The same clicks, then Invert, then Done, would
produce five lines of output.

This tool might be used to produce an argument list for another
command:

% rm `ls | sel`
% tar cvf x.tar `ls | sel`

(The shell construct `x` runs the command x and substitutes the output
in the command line.)

CSc 451, Spring 2003 Graphics, Slide 87
W. H. Mitchell

sel—Implementation

In main, just above the event-processing loop:

every put(items := [], !&input)
VSetItems(vidgets["list1"], items)

Callbacks:

global selected
procedure list_cb1(vidget, value)
 selected := value
 return
end

#
To invert the list we first query the state and
then build a list, 'inverted', that contains
every position that doesn't appear in the current
state.
#
Example: With a five item list, if the state is
[2,4] then inverted will be [1,3,5].

procedure invert_cb(vidget, value)
 vidget := vidgets["list1"] # REQUIRED!?!
 selected := VGetState(vidget)

 inverted := [get(selected)] # preserve position

 every i := 1 to *VGetItems(vidget) do
 if not (i = !selected) then put(inverted,i)

 VSetState(vidget, inverted) # calls list_cb1
 return
end

procedure done_cb(vidget, value)
 every write(!selected)
 exit()
end

CSc 451, Spring 2003 Graphics, Slide 88
W. H. Mitchell

Sliders and scrollbars

Consider a program, adjust, that permits adjustment of the "height"
and line width of an ellipse via a scrollbar and a slider:

The implementation is simple: Redraw the ellipse whenever the slider or
scrollbar is adjusted, using the current state of the two vidgets to control
the height and line width.

The slider is configured with a minimum value of 1 and a maximum of
20, directly specifying a line width. The initial value is 1. Filtering is
turned off.

The scrollbar uses the default range of 0.0 to 1.0 and an initial value of
0.5. Filtering is turned off.

CSc 451, Spring 2003 Graphics, Slide 89
W. H. Mitchell

Sliders and scrollbars, continued

As in the rpoints example, a cloned window (ewin) that
corresponds to the region is established:

procedure setup_ewin()
 r := vidgets["region1"]
 ewin := Clone(&window,
 "dx="||r.ux, "dy="||r.uy)
 Clip(ewin, 0, 0, r.uw, r.uh)
end

Note that both ewin and vidgets are declared as globals.

Upon an adjustment we simply call draw(), which actually draws the
ellipse. The same callback can be used by both the slider and the
scrollbar:

procedure adjust_cb(vidget, value)
 draw()
 return
end

In main, we simply create ewin and call draw() to get the initial
ellipse:

...
root := vidgets["root"]

setup_ewin() # Added
draw() # Added

paused := 1
repeat {
...

CSc 451, Spring 2003 Graphics, Slide 90
W. H. Mitchell

Sliders and scrollbars, continued

Here is the drawing routine:

procedure draw()
 static height, width
 initial {
 width := WAttrib(ewin, "clipw")
 height := WAttrib(ewin, "cliph")
 }

 EraseArea(ewin)

 curheight :=
 VGetState(vidgets["sbar1"]) * (height-20)

 WAttrib(ewin, "linewidth=" ||
 VGetState(vidgets["slider1"]))

 DrawArc(ewin, 10, 10, width-20, curheight)
end

VGetState() is used to query the positions of both the scrollbar and
the slider.

The range of the scrollbar (sbar1) is 0.0 to 1.0 and that value is scaled
by the height.

The range of the slider is 1 to 20 and that value is used as the line width.

An alternative to the VGetState() calls would be to use separate
callbacks for the slider and scrollbar. The slider callback would use
WAttrib() to set the line width. The scrollbar callback would put the
value passed to the callback (the second argument) in a global variable
that would be accessed in draw().

The 10s and 20s simply provide centering of the ellipse.

CSc 451, Spring 2003 Graphics, Slide 91
W. H. Mitchell

Text vidgets

A text vidget consists of a label and a field in which to type text. This
application, text1, has two text vidgets and, on the line below, a label.
To the right of the label is a region with an invisible border.

The concatenation of the text entered in the two text vidgets, and the
length, is displayed.

Text vidgets are somewhat limited in functionality. Characters are
recognized only when the mouse is over the vidget. A callback is
generated only when the user presses return and until the user the
presses return, VGetState() returns null.

Further, due to a bug in the Windows implementation the input-
sensitive region is not aligned what's drawn on the screen. The
atrocious but currently best workaround for this is to position the
window so that the upper left corner of the canvas is in the upper left
corner of the display. On Windows NT, this does it:

WAttrib("pos=-4,-23")

CSc 451, Spring 2003 Graphics, Slide 92
W. H. Mitchell

Text vidgets, continued

The callback for each text vidget simply stores the value in a global
variable, and calls a routine to update the result:

procedure text_input_cb1(vidget, value)
 first_part := value
 show_result()
 return
end

text_input_cb2 is similar, but assigns to second_part.

CSc 451, Spring 2003 Graphics, Slide 93
W. H. Mitchell

Text vidgets, continued

The common way to produce computed text on a VIB interface is to
create an invisible region where the text is to appear and use the
coordinates and size of that region to control the output.

Here is a utility routine that is like WWrites(), but accepts a region
vidget (or its ID) as its first argument and writes the text of the
following arguments into the region, truncating appropriately.

procedure RWWrites(rvidget, args[])
 r := \vidgets[rvidget] | rvidget
 GotoXY(r.ux, r.uy+WAttrib("ascent"))

 s := ""
 every s ||:= !args
 WWrites(left(s, r.uw/TextWidth("x")))
 return
end

Use link whmvib to access the routine.

Here is the routine called by the text vidget callbacks:

procedure show_result()
 RWWrites("region1",
 s := first_part || " " || second_part,
 " (", *s, " chars)")
end

CSc 451, Spring 2003 Graphics, Slide 94
W. H. Mitchell

Example: A text window

Here is an example of using keyboard events from a region to
implement a very simple text editing window.

procedure region_cb1(vidget, e, x, y)
 static r
 initial r := ""
 case e of {
 default: if type(e) == "string" then {
 case e of {
 "\r": r ||:= "\r\n"
 "\b": if r[-1] == "\n" then
 r[0-:2] := ""
 else
 r[-1] := ""
 default:
 r ||:= e
 }
 EraseArea(point_win)
 GotoRC(point_win,1,1)
 WWrites(point_win,r,"_")
 }
 }
 return
end

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

