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Tables

Icon's table data type can be thought of as an array that
can be subscripted with values of any type.

The built-in function table is used to create a table:

][ t := table();
   r := T1:[]  (table)

To store values in a table, simply assign to an element
specified by a subscript (sometimes called a key):

][ t[1000] := "x";
   r := "x"  (string)

][ t[3.0] := "three";
   r := "three"  (string)

][ t["abc"] := [1];
   r := L1:[1]  (list)

Values are referenced by subscripting.

][ t["abc"];
   r := L1:[1]  (list)

][ t[1000];
   r := "x"  (string)
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Tables, continued

Tables can't be output with write(), but Image can
describe the contents of a table:

][ write(Image(t));
T1:[
  1000->"x",
  3.0->"three",
  "abc"->L1:[1]
  ]

Assigning a value using an existing key simply causes the
old value to be replaced:

][ t[3.0] := "Here's 3.0";
   r := "Here's 3.0"  (string)

][ t["abc"] := "xyz";
   r := "xyz"  (string)

][ t[1000] := &null;
   r := &null  (null)

][ write(Image(t));
T2:[
  1000->&null,
  3.0->"Here's 3.0",
  "abc"->"xyz"]
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Tables, continued

If a non-existent key is specified, the table's default value is
produced.  The default default-value is &null:

][ t := table();
   r := T1:[]  (table)

][ t[999];
   r := &null  (null)

A default value may be specified as the argument to table:

][ t2 := table(0);
   r := T1:[]  (table)

][ t2["xyz"];
   r := 0  (integer)

][ t2["abc"] +:= 1;
   r := 1  (integer)

][ t2["abc"];
   r := 1  (integer)

][ t3 := table("not found");
   r := T1:[]  (table)

][ t3[50];
   r := "not found"  (string)

Language design issue: References to non-existent list
elements fail, but references to non-existent table elements
succeed and produce an object that can be assigned to.  Is
that good or bad?
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Tables, continued

A key quantity represented with multiple types produces
multiple key/value pairs.

][ t := table();
   r := T1:[]  (table)

][ t[1] := "integer";
   r := "integer"  (string)

][ t["1"] := "string";
   r := "string"  (string)

][ t[1.0] := "real";
   r := "real"  (string)

][ write(Image(t));
T1:[
  1->"integer",
  1.0->"real",
  "1"->"string"]

][ t[1];
   r := "integer"  (string)

][ t["1"];
   r := "string"  (string)

Be wary of using reals as table keys.  Example:

][ t[1.000000000000001];
   r := &null  (null)

][ t[1.0000000000000001];
   r := "real"  (string)
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Table application: word usage counter

A simple program to count the number of occurrences of
each "word" read from standard input:

link split, image
procedure main()
    wordcounts := table(0)

    while line := read() do
        every word := !split(line) do
            wordcounts[word] +:= 1

    write(Image(wordcounts))
end

Interaction:

% wordtab
to be or
not to be
^D
T1:[
  "be"->2,
  "not"->1,
  "or"->1,
  "to"->2]

Question: How could we also print the number of distinct
words found in the input?

Image is great for debugging, but not suitable for end-user
output.
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Table sorting

Applying the sort function to a table produces a list
consisting of two-element lists holding key/value pairs.

Example:

][ write(Image(wordcounts));
T1:[
  "be"->2,
  "not"->1,
  "or"->1,
  "to"->2]

][ write(Image(sort(wordcounts)));
L1:[
  L2:["be", 2],
  L3:["not", 1],
  L4:["or", 1],
  L5:["to", 2]]

sort takes an integer-valued second argument that defaults
to 1, indicating to produce a list sorted by keys.  An
argument of 2 produces a list sorted by values:

][ write(Image(sort(wordcounts,2)));
L1:[
  L2:["not", 1],
  L3:["or", 1],
  L4:["to", 2],
  L5:["be", 2]]

sort's second argument may also be 3 or 4, which produces 
"flattened" versions of the results produced with 1 or 2,
respectively.
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Table sorting, continued

An improved version of wordtab that uses sort:

link split, image
procedure main()
    wordcounts := table(0)

    while line := read() do
        every word := !split(line) do
            wordcounts[word] +:= 1

    pairs := sort(wordcounts, 2)
    every pair := !pairs do
        write(pair[1], "\t", pair[2])
end

Output:

not     1
or      1
to      2
be      2

Problem: Print the most frequent words first rather than last.
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Tables—default value pitfall

Recall this pitfall with the list(N, value) function:

][ list(5,[]);
   r1 := L1:[L2:[],L2,L2,L2,L2]  (list)

There is a similar pitfall with tables:

If [] is specified as the default value, all references to
non-existent keys produce the same list.

Example:

][ t := table([]);
   r := T1:[]  (table)

][ put(t["x"], 1);

][ put(t["y"], 2);

][ t["x"];
   r := L1:[1,2]  (list)

][ t["y"];
   r := L1:[1,2]  (list)

][ [t["x"], t["y"]];
   r := L1:[L2:[1,2],L2]  (list)

][ [t["x"], t["y"], t["z"]];
   r := L1:[L2:[1,2],L2,L2]  (list)

Solution: Stay tuned!
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Table application: Cross reference

Consider a program that prints a cross reference listing that
shows the lines on which each word appears.

% xref
to be or
not to be is not
going to be
the question
^D
be.............1 2 3
going..........3
is.............2
not............2 2
or.............1
question.......4
the............4
to.............1 2 3

Problem: Sketch out a solution.
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Cross reference solution

procedure main()
    refs := table()
    line_num := 0

    while line := read() do {
        line_num +:= 1
        every w := !split(line) do {
            /refs[w] := []
            put(refs[w], line_num)
            }
        }

    every pair := !sort(refs) do {
        writes(left(pair[1],15,"."))
        every writes(!pair[2]," ")
        write()
        }
end

Question: Are lists really needed in this solution?
       
Another approach:

procedure main()
    refs := table([])  # BE CAREFUL!
    line_num := 0

    while line := read() do {
        line_num +:= 1

        every w := !split(line) do
            refs[w] |||:= [line_num]
        }

...
end
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Tables and generation

When applied to a table, ! generates the values in the table.

Consider a table romans that maps roman numerals to
integers:

][ write(Image(romans));
T1:[
  "I"->1,
  "V"->5,
  "X"->10]

][ .every !romans;
   10  (integer)
   1  (integer)
   5  (integer)

The key(t) function generates the keys in table t:

][ .every key(romans);
   "X"  (string)
   "I"  (string)
   "V"  (string)

][ .every romans[key(romans)];
   10  (integer)
   1  (integer)
   5  (integer)

Language design question: What is the Right Thing for !t to
generate?
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Table key types

Any type can be used as a table key.

][ t := table();

][ A := [];
][ B := ["b"];

][ t[A] := 10;
][ t[B] := 20;
][ t[t] := t;

][ write(Image(t));
T2:[
  L1:[]->10,
  L2:[
    "b"]->20,
  T2->T2]

Table lookup is identical to comparison with the ===
operator, using value semantics for scalar types and
reference semantics for structure types.

][ A;
   r := L3:[]  (list)
][ t[A];
   r := 10  (integer)
][ t[[]];
   r := &null  (null)

][ get(B);
   r := "b"  (string)
][ B;
   r := L3:[]  (list)
][ t[B];
   r := 20  (integer)
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Table application: Cyclic list counter

Consider a procedure lists(L) to count the number of
unique lists in a potentially cyclic list:

][ lists([]);
   r := 1  (integer)

][ lists([[],[]]);
   r := 3  (integer)

][ A := [];
][ put(A,A);
][ put(A,[A]);
][ A;
   r := L1:[L1,L2:[L1]]  (list)

][ lists(A);
   r := 2  (integer)

Implementation:

procedure lists(L, seen)
    /seen := table()
    
    if \seen[L] then return 0
    
    count := 1
    seen[L] := 1   # any non-null value would do
    
    every e := !L & type(e) == "list" do
        count +:= lists(e, seen)
    return count
end

Problems: Write lcopy(L) and lcompare(L1,L2), to
copy and compare lists.
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csets—sets of characters

Icon's cset data type is used to represent sets of characters.

In strings, the order of the characters is important, but in a
cset, only membership is significant.

A cset literal is specified using apostrophes.  Characters in
a cset are shown in collating order:

][ 'abcd';
   r := 'abcd'  (cset)

][ 'bcad';
   r := 'abcd'  (cset)

][ 'babccabc';
   r := 'abc'  (cset)

][ 'babccabdbaab';
   r := 'abcd'  (cset)

Equality of csets is based only on membership:

][ 'abcd' === 'bcad' === 'bcbbbbabcd';
   r := 'abcd'  (cset)

(In other words, csets have value semantics.)

If c is a cset, *c produces the number of characters in the
set.  

For !c, the cset is converted to a string and then characters
are generated.
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csets, continued

Strings are freely converted to character sets and vice-versa. 

The second argument for the split procedure is actually a
character set, not a string.  Because of the automatic
conversion, this works:

split("...1..3..45,78,,9 10  ", "., ")

But more properly it is this:

split("...1..3..45,78,,9 10  ", '., ')

Curio: Converting a string to a cset and back sorts the
characters and removes the letters.

][ string(cset("tim korb"));
   r := " bikmort"  (string)
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csets, continued

A number of keywords provide handy csets:

][ write(&digits);
0123456789
   r := &digits  (cset)

][ write(&lcase);
abcdefghijklmnopqrstuvwxyz
   r := &lcase  (cset)

][ write(&ucase);
ABCDEFGHIJKLMNOPQRSTUVWXYZ
   r := &ucase  (cset)

Others:
&ascii The 128 ASCII characters
&cset All 256 characters in Icon's "world"
&letters The union of &lcase and &ucase
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csets, continued

The operations of union, intersection, difference, and
complement (with respect to &cset) are available on csets:

][ 'abc' ++ 'cde';       # union
   r := 'abcde'  (cset)

][ 'abc' ** 'cde'; # intersection
   r := 'c'  (cset)

][ 'abc' -- 'cde'; # difference
   r := 'ab'  (cset)

][ *~'abc'; # complement
   r := 253  (integer)

Problem: Create csets representing the characters that may
occur in:

(a) A real literal

(b) A Java identifier

(c) A UNIX filename

Problem: Print characters in string s1 that are not in string
s2.
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csets, continued

Problem: Using csets, write a program to read standard input
and calculate the number of distinct characters encountered.

Problem: Print the numbers in this string (s).

On February 14, 1912, Arizona became the 48th
state.
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Sets

A set can be created with the set(L) function, which
accepts a list of initial values for the set:

][ s := set([1,2,3]);
   r := S1:[2,1,3]  (set)

][ s2 := set(["x", 1, 2, "y", 1, 2, 3, "x"]);
   r := S1:[2,"x",1,3,"y"]  (set)

][ s3 := set(split("to be or not to be"));
   r := S1:["to","or","not","be"]  (set)

][ set([[],[],[]]);
   r := S1:[L1:[],L2:[],L3:[]]  (set)

][ s4 := set();
   r8 := S1:[]  (set)

Values in a set are unordered.  All values are unique, using
the same notion of equality as the === operator.

The unary *, !, and ? operators do what you'd expect:

][ *s2;
   r := 5  (integer)

][ .every !s;
   2  (integer)
   1  (integer)
   3  (integer)

][ ?s2;
   r := "y"  (string)

Sets were a late addition to the language.
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Sets, continued

The insert(S, x) function adds the value x to the set S,
if not already present, and returns S.  It always succeeds.

The delete(S, x) function removes the value x from S
and returns S.  It always succeeds.

The member(S, x) function succeeds iff S contains x.

Examples:

][ every insert(s,!"testing");
Failure

][ s;
   r := S1:["s","e","g","t","i","n"]  (set)

][ insert(s, "s");
   r := S1:["s","e","g","t","i","n"]  (set)

][ every delete(s, !"aieou");
Failure

][ s;
   r := S1:["s","g","t","n"]  (set)

][ member(s, "a");
Failure

][ member(s, "t");
   r := "t"  (string)
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Sets, continued

Set union, intersection, and difference are supported:

][ fives := set([5,10,15,20,25]);
   r := S1:[5,10,15,20,25]  (set)

][ tens := set([10,20,30]);
   r := S1:[10,20,30]  (set)

][ fives ** tens;
   r := S1:[10,20]  (set)

][ fives ++ tens;
   r := S1:[5,10,15,20,25,30]  (set)

][ fives -- tens;
   r := S1:[5,15,25]  (set)

][ tens -- fives;
   r := S1:[30]  (set)

Problem: Write a program that reads an Icon program on
standard input and prints the unique identifiers.  Assume that
reserved() generates a list of reserved words such as "if"
and "while", which should not be printed.
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Sets and tables—common functions

The insert, delete, and member functions can be
applied to tables:

][ t := table();
   r := T1:[]  (table)

][ t["x"] := 10;
   r := 10  (integer)

][ insert(t, "v", 5);
   r := T1:["v"->5,"x"->10]  (table)

][ member(t, "i");
Failure

][ delete(t, "v");
   r := T1:["x"->10]  (table)

Note that the only way to truly delete a value from a table is
with the delete function:

][ t["x"] := &null;  # the key remains...
   r := &null  (null)

][ t;
   r := T1:["x"->&null]  (table)

][ delete(t, "x");
   r := T1:[]  (table)
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Records

Icon provides a record data type that is simply an aggregate
of named fields.

A record declaration names the record and the fields. 
Examples:

record name(first, middle, last)

record point(x,y)

record declarations are global and appear at file scope.

A record is created by calling the record constructor.  

][ p := point(3,4);
   r := R1:point_1(3,4)  (point)

][ type(p);
   r := "point"  (string)

][ p.x;
   r := 3  (integer)

][ p.y;
   r := 4  (integer)

][ p2 := point(,3);
   r := R1:point_3(&null,3)  (point)

][ type(point);
   r1 := "procedure"  (string)

][ image(point);
   r2 := "record constructor point"  (string)
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Records, continued

A simple example:

record point(x,y)
record line(a, b)

procedure main()
    A := point(0,0)
    B := point(3,4)

    AB := line(A,B)
    write("Length: ", length(AB))

    move(A,-3,-4)
    write("New length: ", length(AB))
end

procedure length(ln)
    return sqrt((ln.a.x-ln.b.x)^2 +
                (ln.a.y-ln.b.y)^2)
end

procedure move(p, dx, dy)
    p.x +:= dx
    p.y +:= dy
end

Output:

Length: 5.0
New length: 10.0

Problem: Modify move() so that a new point is created,
rather than modifying the referenced point.
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Records, continued

A routine to produce a string representation of a point:

procedure ptos(p)
    return "(" || p.x || "," || p.y || ")"
end

Records can be meaningfully sorted with sortf:

][ pts := [point(0,1), point(2,0), point(-3,4)];

][ every write(ptos(!sortf(pts,1)));
(-3,4)
(0,1)
(2,0)
Failure

][ every write(ptos(!sortf(pts,2)));
(2,0)
(0,1)
(-3,4)
Failure

Fields in a record can be accessed with a subscript:

][ pt := point(3,4);

][ pt[2];
   r := 4  (integer)
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