
CSc 451, Spring 2003 Slide 130
W. H. Mitchell

Tables

Icon's table data type can be thought of as an array that
can be subscripted with values of any type.

The built-in function table is used to create a table:

][t := table();
 r := T1:[] (table)

To store values in a table, simply assign to an element
specified by a subscript (sometimes called a key):

][t[1000] := "x";
 r := "x" (string)

][t[3.0] := "three";
 r := "three" (string)

][t["abc"] := [1];
 r := L1:[1] (list)

Values are referenced by subscripting.

][t["abc"];
 r := L1:[1] (list)

][t[1000];
 r := "x" (string)

CSc 451, Spring 2003 Slide 131
W. H. Mitchell

Tables, continued

Tables can't be output with write(), but Image can
describe the contents of a table:

][write(Image(t));
T1:[
 1000->"x",
 3.0->"three",
 "abc"->L1:[1]
]

Assigning a value using an existing key simply causes the
old value to be replaced:

][t[3.0] := "Here's 3.0";
 r := "Here's 3.0" (string)

][t["abc"] := "xyz";
 r := "xyz" (string)

][t[1000] := &null;
 r := &null (null)

][write(Image(t));
T2:[
 1000->&null,
 3.0->"Here's 3.0",
 "abc"->"xyz"]

CSc 451, Spring 2003 Slide 132
W. H. Mitchell

Tables, continued

If a non-existent key is specified, the table's default value is
produced. The default default-value is &null:

][t := table();
 r := T1:[] (table)

][t[999];
 r := &null (null)

A default value may be specified as the argument to table:

][t2 := table(0);
 r := T1:[] (table)

][t2["xyz"];
 r := 0 (integer)

][t2["abc"] +:= 1;
 r := 1 (integer)

][t2["abc"];
 r := 1 (integer)

][t3 := table("not found");
 r := T1:[] (table)

][t3[50];
 r := "not found" (string)

Language design issue: References to non-existent list
elements fail, but references to non-existent table elements
succeed and produce an object that can be assigned to. Is
that good or bad?

CSc 451, Spring 2003 Slide 133
W. H. Mitchell

Tables, continued

A key quantity represented with multiple types produces
multiple key/value pairs.

][t := table();
 r := T1:[] (table)

][t[1] := "integer";
 r := "integer" (string)

][t["1"] := "string";
 r := "string" (string)

][t[1.0] := "real";
 r := "real" (string)

][write(Image(t));
T1:[
 1->"integer",
 1.0->"real",
 "1"->"string"]

][t[1];
 r := "integer" (string)

][t["1"];
 r := "string" (string)

Be wary of using reals as table keys. Example:

][t[1.000000000000001];
 r := &null (null)

][t[1.0000000000000001];
 r := "real" (string)

CSc 451, Spring 2003 Slide 134
W. H. Mitchell

Table application: word usage counter

A simple program to count the number of occurrences of
each "word" read from standard input:

link split, image
procedure main()
 wordcounts := table(0)

 while line := read() do
 every word := !split(line) do
 wordcounts[word] +:= 1

 write(Image(wordcounts))
end

Interaction:

% wordtab
to be or
not to be
^D
T1:[
 "be"->2,
 "not"->1,
 "or"->1,
 "to"->2]

Question: How could we also print the number of distinct
words found in the input?

Image is great for debugging, but not suitable for end-user
output.

CSc 451, Spring 2003 Slide 135
W. H. Mitchell

Table sorting

Applying the sort function to a table produces a list
consisting of two-element lists holding key/value pairs.

Example:

][write(Image(wordcounts));
T1:[
 "be"->2,
 "not"->1,
 "or"->1,
 "to"->2]

][write(Image(sort(wordcounts)));
L1:[
 L2:["be", 2],
 L3:["not", 1],
 L4:["or", 1],
 L5:["to", 2]]

sort takes an integer-valued second argument that defaults
to 1, indicating to produce a list sorted by keys. An
argument of 2 produces a list sorted by values:

][write(Image(sort(wordcounts,2)));
L1:[
 L2:["not", 1],
 L3:["or", 1],
 L4:["to", 2],
 L5:["be", 2]]

sort's second argument may also be 3 or 4, which produces
"flattened" versions of the results produced with 1 or 2,
respectively.

CSc 451, Spring 2003 Slide 136
W. H. Mitchell

Table sorting, continued

An improved version of wordtab that uses sort:

link split, image
procedure main()
 wordcounts := table(0)

 while line := read() do
 every word := !split(line) do
 wordcounts[word] +:= 1

 pairs := sort(wordcounts, 2)
 every pair := !pairs do
 write(pair[1], "\t", pair[2])
end

Output:

not 1
or 1
to 2
be 2

Problem: Print the most frequent words first rather than last.

CSc 451, Spring 2003 Slide 137
W. H. Mitchell

Tables—default value pitfall

Recall this pitfall with the list(N, value) function:

][list(5,[]);
 r1 := L1:[L2:[],L2,L2,L2,L2] (list)

There is a similar pitfall with tables:

If [] is specified as the default value, all references to
non-existent keys produce the same list.

Example:

][t := table([]);
 r := T1:[] (table)

][put(t["x"], 1);

][put(t["y"], 2);

][t["x"];
 r := L1:[1,2] (list)

][t["y"];
 r := L1:[1,2] (list)

][[t["x"], t["y"]];
 r := L1:[L2:[1,2],L2] (list)

][[t["x"], t["y"], t["z"]];
 r := L1:[L2:[1,2],L2,L2] (list)

Solution: Stay tuned!

CSc 451, Spring 2003 Slide 138
W. H. Mitchell

Table application: Cross reference

Consider a program that prints a cross reference listing that
shows the lines on which each word appears.

% xref
to be or
not to be is not
going to be
the question
^D
be.............1 2 3
going..........3
is.............2
not............2 2
or.............1
question.......4
the............4
to.............1 2 3

Problem: Sketch out a solution.

CSc 451, Spring 2003 Slide 139
W. H. Mitchell

Cross reference solution

procedure main()
 refs := table()
 line_num := 0

 while line := read() do {
 line_num +:= 1
 every w := !split(line) do {
 /refs[w] := []
 put(refs[w], line_num)
 }
 }

 every pair := !sort(refs) do {
 writes(left(pair[1],15,"."))
 every writes(!pair[2]," ")
 write()
 }
end

Question: Are lists really needed in this solution?

Another approach:

procedure main()
 refs := table([]) # BE CAREFUL!
 line_num := 0

 while line := read() do {
 line_num +:= 1

 every w := !split(line) do
 refs[w] |||:= [line_num]
 }

...
end

CSc 451, Spring 2003 Slide 140
W. H. Mitchell

Tables and generation

When applied to a table, ! generates the values in the table.

Consider a table romans that maps roman numerals to
integers:

][write(Image(romans));
T1:[
 "I"->1,
 "V"->5,
 "X"->10]

][.every !romans;
 10 (integer)
 1 (integer)
 5 (integer)

The key(t) function generates the keys in table t:

][.every key(romans);
 "X" (string)
 "I" (string)
 "V" (string)

][.every romans[key(romans)];
 10 (integer)
 1 (integer)
 5 (integer)

Language design question: What is the Right Thing for !t to
generate?

CSc 451, Spring 2003 Slide 141
W. H. Mitchell

Table key types

Any type can be used as a table key.

][t := table();

][A := [];
][B := ["b"];

][t[A] := 10;
][t[B] := 20;
][t[t] := t;

][write(Image(t));
T2:[
 L1:[]->10,
 L2:[
 "b"]->20,
 T2->T2]

Table lookup is identical to comparison with the ===
operator, using value semantics for scalar types and
reference semantics for structure types.

][A;
 r := L3:[] (list)
][t[A];
 r := 10 (integer)
][t[[]];
 r := &null (null)

][get(B);
 r := "b" (string)
][B;
 r := L3:[] (list)
][t[B];
 r := 20 (integer)

CSc 451, Spring 2003 Slide 142
W. H. Mitchell

Table application: Cyclic list counter

Consider a procedure lists(L) to count the number of
unique lists in a potentially cyclic list:

][lists([]);
 r := 1 (integer)

][lists([[],[]]);
 r := 3 (integer)

][A := [];
][put(A,A);
][put(A,[A]);
][A;
 r := L1:[L1,L2:[L1]] (list)

][lists(A);
 r := 2 (integer)

Implementation:

procedure lists(L, seen)
 /seen := table()

 if \seen[L] then return 0

 count := 1
 seen[L] := 1 # any non-null value would do

 every e := !L & type(e) == "list" do
 count +:= lists(e, seen)
 return count
end

Problems: Write lcopy(L) and lcompare(L1,L2), to
copy and compare lists.

CSc 451, Spring 2003 Slide 143
W. H. Mitchell

csets—sets of characters

Icon's cset data type is used to represent sets of characters.

In strings, the order of the characters is important, but in a
cset, only membership is significant.

A cset literal is specified using apostrophes. Characters in
a cset are shown in collating order:

]['abcd';
 r := 'abcd' (cset)

]['bcad';
 r := 'abcd' (cset)

]['babccabc';
 r := 'abc' (cset)

]['babccabdbaab';
 r := 'abcd' (cset)

Equality of csets is based only on membership:

]['abcd' === 'bcad' === 'bcbbbbabcd';
 r := 'abcd' (cset)

(In other words, csets have value semantics.)

If c is a cset, *c produces the number of characters in the
set.

For !c, the cset is converted to a string and then characters
are generated.

CSc 451, Spring 2003 Slide 144
W. H. Mitchell

csets, continued

Strings are freely converted to character sets and vice-versa.

The second argument for the split procedure is actually a
character set, not a string. Because of the automatic
conversion, this works:

split("...1..3..45,78,,9 10 ", "., ")

But more properly it is this:

split("...1..3..45,78,,9 10 ", '., ')

Curio: Converting a string to a cset and back sorts the
characters and removes the letters.

][string(cset("tim korb"));
 r := " bikmort" (string)

CSc 451, Spring 2003 Slide 145
W. H. Mitchell

csets, continued

A number of keywords provide handy csets:

][write(&digits);
0123456789
 r := &digits (cset)

][write(&lcase);
abcdefghijklmnopqrstuvwxyz
 r := &lcase (cset)

][write(&ucase);
ABCDEFGHIJKLMNOPQRSTUVWXYZ
 r := &ucase (cset)

Others:
&ascii The 128 ASCII characters
&cset All 256 characters in Icon's "world"
&letters The union of &lcase and &ucase

CSc 451, Spring 2003 Slide 146
W. H. Mitchell

csets, continued

The operations of union, intersection, difference, and
complement (with respect to &cset) are available on csets:

]['abc' ++ 'cde'; # union
 r := 'abcde' (cset)

]['abc' ** 'cde'; # intersection
 r := 'c' (cset)

]['abc' -- 'cde'; # difference
 r := 'ab' (cset)

][*~'abc'; # complement
 r := 253 (integer)

Problem: Create csets representing the characters that may
occur in:

(a) A real literal

(b) A Java identifier

(c) A UNIX filename

Problem: Print characters in string s1 that are not in string
s2.

CSc 451, Spring 2003 Slide 147
W. H. Mitchell

csets, continued

Problem: Using csets, write a program to read standard input
and calculate the number of distinct characters encountered.

Problem: Print the numbers in this string (s).

On February 14, 1912, Arizona became the 48th
state.

CSc 451, Spring 2003 Slide 148
W. H. Mitchell

Sets

A set can be created with the set(L) function, which
accepts a list of initial values for the set:

][s := set([1,2,3]);
 r := S1:[2,1,3] (set)

][s2 := set(["x", 1, 2, "y", 1, 2, 3, "x"]);
 r := S1:[2,"x",1,3,"y"] (set)

][s3 := set(split("to be or not to be"));
 r := S1:["to","or","not","be"] (set)

][set([[],[],[]]);
 r := S1:[L1:[],L2:[],L3:[]] (set)

][s4 := set();
 r8 := S1:[] (set)

Values in a set are unordered. All values are unique, using
the same notion of equality as the === operator.

The unary *, !, and ? operators do what you'd expect:

][*s2;
 r := 5 (integer)

][.every !s;
 2 (integer)
 1 (integer)
 3 (integer)

][?s2;
 r := "y" (string)

Sets were a late addition to the language.

CSc 451, Spring 2003 Slide 149
W. H. Mitchell

Sets, continued

The insert(S, x) function adds the value x to the set S,
if not already present, and returns S. It always succeeds.

The delete(S, x) function removes the value x from S
and returns S. It always succeeds.

The member(S, x) function succeeds iff S contains x.

Examples:

][every insert(s,!"testing");
Failure

][s;
 r := S1:["s","e","g","t","i","n"] (set)

][insert(s, "s");
 r := S1:["s","e","g","t","i","n"] (set)

][every delete(s, !"aieou");
Failure

][s;
 r := S1:["s","g","t","n"] (set)

][member(s, "a");
Failure

][member(s, "t");
 r := "t" (string)

CSc 451, Spring 2003 Slide 150
W. H. Mitchell

Sets, continued

Set union, intersection, and difference are supported:

][fives := set([5,10,15,20,25]);
 r := S1:[5,10,15,20,25] (set)

][tens := set([10,20,30]);
 r := S1:[10,20,30] (set)

][fives ** tens;
 r := S1:[10,20] (set)

][fives ++ tens;
 r := S1:[5,10,15,20,25,30] (set)

][fives -- tens;
 r := S1:[5,15,25] (set)

][tens -- fives;
 r := S1:[30] (set)

Problem: Write a program that reads an Icon program on
standard input and prints the unique identifiers. Assume that
reserved() generates a list of reserved words such as "if"
and "while", which should not be printed.

CSc 451, Spring 2003 Slide 151
W. H. Mitchell

Sets and tables—common functions

The insert, delete, and member functions can be
applied to tables:

][t := table();
 r := T1:[] (table)

][t["x"] := 10;
 r := 10 (integer)

][insert(t, "v", 5);
 r := T1:["v"->5,"x"->10] (table)

][member(t, "i");
Failure

][delete(t, "v");
 r := T1:["x"->10] (table)

Note that the only way to truly delete a value from a table is
with the delete function:

][t["x"] := &null; # the key remains...
 r := &null (null)

][t;
 r := T1:["x"->&null] (table)

][delete(t, "x");
 r := T1:[] (table)

CSc 451, Spring 2003 Slide 152
W. H. Mitchell

Records

Icon provides a record data type that is simply an aggregate
of named fields.

A record declaration names the record and the fields.
Examples:

record name(first, middle, last)

record point(x,y)

record declarations are global and appear at file scope.

A record is created by calling the record constructor.

][p := point(3,4);
 r := R1:point_1(3,4) (point)

][type(p);
 r := "point" (string)

][p.x;
 r := 3 (integer)

][p.y;
 r := 4 (integer)

][p2 := point(,3);
 r := R1:point_3(&null,3) (point)

][type(point);
 r1 := "procedure" (string)

][image(point);
 r2 := "record constructor point" (string)

CSc 451, Spring 2003 Slide 153
W. H. Mitchell

Records, continued

A simple example:

record point(x,y)
record line(a, b)

procedure main()
 A := point(0,0)
 B := point(3,4)

 AB := line(A,B)
 write("Length: ", length(AB))

 move(A,-3,-4)
 write("New length: ", length(AB))
end

procedure length(ln)
 return sqrt((ln.a.x-ln.b.x)^2 +
 (ln.a.y-ln.b.y)^2)
end

procedure move(p, dx, dy)
 p.x +:= dx
 p.y +:= dy
end

Output:

Length: 5.0
New length: 10.0

Problem: Modify move() so that a new point is created,
rather than modifying the referenced point.

CSc 451, Spring 2003 Slide 154
W. H. Mitchell

Records, continued

A routine to produce a string representation of a point:

procedure ptos(p)
 return "(" || p.x || "," || p.y || ")"
end

Records can be meaningfully sorted with sortf:

][pts := [point(0,1), point(2,0), point(-3,4)];

][every write(ptos(!sortf(pts,1)));
(-3,4)
(0,1)
(2,0)
Failure

][every write(ptos(!sortf(pts,2)));
(2,0)
(0,1)
(-3,4)
Failure

Fields in a record can be accessed with a subscript:

][pt := point(3,4);

][pt[2];
 r := 4 (integer)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25

