
CSc 451, Spring 2003 Slide 155
W. H. Mitchell

String scanning basics

Icon's string scanning facility is used for analysis of strings.

The string scanning facility allows string analysis operations
to be intermixed with general computation.

String scanning is initiated with ?, the scanning operator:

expr1 ? expr2

The value of expr1 is established as the subject of the scan
(&subject) and the scanning position in the subject (&pos)
is set to 1. expr2 is then evaluated.

]["testing" ? { write(&subject); write(&pos) };
testing
1
 r := 1 (integer)

The result of the scanning expression is the result of expr2.

The procedure snap() displays &subject and &pos:

]["testing" ? snap();
&subject = t e s t i n g
&pos = 1 |
 r := &null (null)

CSc 451, Spring 2003 Slide 156
W. H. Mitchell

String scanning—move(n)

The built-in function move(n) advances &pos by n and
returns the substring of &subject between the old and new
values of &pos. move(n) fails if n is too large.

]["testing" ? {
... snap()
... move(1)
... snap()
... write(move(2))
... snap()
... write(move(2))
... snap()
... write(move(10))
... snap()
... };

first snap():
&subject = t e s t i n g
&pos = 1 |

move(1):
&subject = t e s t i n g
&pos = 2 |

write(move(2)):
es
&subject = t e s t i n g
&pos = 4 |

write(move(2)):
ti
&subject = t e s t i n g
&pos = 6 |

write(move(10)):
&subject = t e s t i n g
&pos = 6 |

CSc 451, Spring 2003 Slide 157
W. H. Mitchell

String scanning—move(n), continued

&pos can be thought of as a scanning "cursor". move(n)
adjusts &pos (the cursor) by n, which can be negative.

 A scanning expression that iterates:

]["testing" ? while move(1) do {
... snap()
... write(move(1))
... };

&subject = t e s t i n g
&pos = 2 |
e

&subject = t e s t i n g
&pos = 4 |
t

&subject = t e s t i n g
&pos = 6 |
n

&subject = t e s t i n g
&pos = 8 |
Failure

Negative movement:

]["testing" ? { move(5); snap();
... write(move(-3)); snap()};
&subject = t e s t i n g
&pos = 6 |
sti
&subject = t e s t i n g
&pos = 3 |

CSc 451, Spring 2003 Slide 158
W. H. Mitchell

String scanning—move(n), continued

Example: segregation of characters in odd and even
positions:

][ochars := echars := "";
 r := "" (string)

]["12345678" ? while ochars ||:= move(1) do
... echars ||:= move(1);
Failure

][ochars;
 r := "1357" (string)

][echars;
 r := "2468" (string)

Does this work properly with an odd number of characters in
the subject string? How about an empty string as the
subject?

CSc 451, Spring 2003 Slide 159
W. H. Mitchell

String scanning—tab(n)

The built-in function tab(n) sets &pos to n and returns the
substring of &subject between the old and new positions.
tab(n) fails if n is too large.

]["a longer example" ? {
... write(tab(4))
... snap()
... write(tab(7))
... snap()
... write(tab(10))
... snap()
... write(tab(0))
... snap()
... write(tab(12))
... snap()
... };
a l (write(tab(4))
&subject = a l o n g e r e x a m p l e
&pos = 4 |

ong (write(tab(7))
&subject = a l o n g e r e x a m p l e
&pos = 7 |

er (write(tab(10))
&subject = a l o n g e r e x a m p l e
&pos = 10 |

example (write(tab(0))
&subject = a l o n g e r e x a m p l e
&pos = 17 |

ample (write(tab(12))
&subject = a l o n g e r e x a m p l e
&pos = 12 |

CSc 451, Spring 2003 Slide 160
W. H. Mitchell

String scanning—move vs. tab

Be sure to understand the distinction between tab and
move:

Use tab for absolute positioning.

Use move for relative positioning.

Example:

][&lcase ? { write(tab(3)); write(tab(3));
... write(move(3)); write(move(3)) };
ab

cde
fgh

CSc 451, Spring 2003 Slide 161
W. H. Mitchell

String scanning—many(cs)

The built-in function many(cs) looks for one or more
occurrences of the characters in the character set cs.

many(cs)returns the position of the end of a run of one or
more characters in cs, starting at &pos.

For reference:

 x x y z . . .
| | | | | | | |
1 2 3 4 5 6 7 8

many in operation:

]["xxyz..." ? many('x');
 r := 3 (integer)

]["xxyz..." ? many('xyz');
 r := 5 (integer)

]["xxyz..." ? many('xyz.');
 r1 := 8 (integer)

]["xxyz..." ? { move(2); many('yz') };
 r2 := 5 (integer)

Note that many(cs) fails if the next character is not in cs:

]["xxyz..." ? many('.');
Failure

]["xxyz..." ? { move(1); many('yz') };
Failure

CSc 451, Spring 2003 Slide 162
W. H. Mitchell

many(cs), continued

many is designed to work with tab—many produces an
absolute position in a string and tab sets &pos, the cursor, to
an absolute position.

For reference:

 x x y z . . .
| | | | | | | |
1 2 3 4 5 6 7 8

many and tab work together:

]["xxyz..." ? { p := many('xyz'); tab(p);
snap() };

&subject = x x y z . . .
&pos = 5 |

]["xxyz..." ? { tab(many('xyz')); snap() };
&subject = x x y z . . .
&pos = 5 |

]["xxyz..." ? { tab(many('xyz') + 2); snap()};
&subject = x x y z . . .
&pos = 7 |

Sometimes it is better to describe what is not being looked for:

]["xxyz..." ? { tab(many(~'.')); snap() };
&subject = x x y z . . .
&pos = 5 |

CSc 451, Spring 2003 Slide 163
W. H. Mitchell

String scanning—upto(cs)

The built-in function upto(cs) generates the positions in
&subject where a character in the character set cs occurs.

]["bouncer" ? every write(upto('aeiou'));
2
3
6
Failure

A loop to print out vowels in a string:

]["bouncer" ? every tab(upto('aeiou')) do
... write(move(1));
o
u
e
Failure

A program to read lines and print vowels:

procedure main()
 while line := read() do {
 line ? every tab(upto('aeiou')) do
 write(move(1))
 }
end

When should upto be used with move, rather than tab?

CSc 451, Spring 2003 Slide 164
W. H. Mitchell

upto vs. many

An attempt at splitting a string into pieces:

]["ab.c.xyz" ? while write(tab(upto('.'))) do
... move(1);
ab
c
Failure

A solution that works:

]["ab.c.xyz" ? while write(tab(many(~'.'))) do
... move(1);
ab
c
xyz
Failure

How could we make a list of the pieces?

How could we handle many dots, e.g., "ab...c..xyz"?

How could the upto('.') approach be made to work?

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

