
CSc 451, Spring 2003 Slide 192
W. H. Mitchell

Example: Recognizing phone numbers

Consider the problem of recognizing phone numbers in a
variety of formats:

555-1212
(520) 555-1212
520-555-1212
<any of the above formats> x <number>

This problem can be approached by using procedures that
execution can backtrack through.

Here is a procedure that matches a series of N digits:

procedure digits(N)
 suspend (move(N) -- &digits) === ''
end

If a series of N digits is not found, digits(N) fails and the
move is undone:

]["555-1212" ? { digits(3) & snap() } ;
&subject = 5 5 5 - 1 2 1 2
&pos = 4 |

]["555-1212" ? { digits(4) & snap() } ;
Failure

CSc 451, Spring 2003 Slide 193
W. H. Mitchell

Phone numbers, continued

For reference:

procedure digits(N)
 suspend (move(N) -- &digits) === ''
end

Using digits(N) we can build a routine that recognizes
numbers like 555-1212:

procedure Local()
 suspend digits(3) & ="-" & digits(4)
end

If Local() is resumed, the moves done in both digits()
calls are undone:

]["555-1212" ? { Local() & snap() } ;
&subject = 5 5 5 - 1 2 1 2
&pos = 9
 |
]["555-1212" ? { Local() & snap("A") & &fail;
 snap("B") } ;
A
&subject = 5 5 5 - 1 2 1 2
&pos = 9 |
B
&subject = 5 5 5 - 1 2 1 2
&pos = 1 |

IMPORTANT:
Using suspend, rather than return, creates this behavior.

CSc 451, Spring 2003 Slide 194
W. H. Mitchell

Phone numbers, continued

Numbers with an area code such as 520-555-1212 are
recognized with this procedure:

procedure ac_form1()
 suspend digits(3) & ="-" & Local()
end

The (520) 555-1212 case is handled with these routines:

procedure ac_form2()
 suspend ="(" & digits(3) & =")" &
 optblank() & Local()
end

procedure optblank()
 suspend =(" "|"")
end

All three forms are recognized with this procedure:

procedure phone()
 suspend Local() | ac_form1() | ac_form2()
end

CSc 451, Spring 2003 Slide 195
W. H. Mitchell

Phone numbers, continued

A driver:

procedure main()
 while writes("Number? ") &
 line := read() do {
 line ? if phone() & pos(0) then
 write("yes")
 else
 write("no")
 }
end

Usage:

% phone
Number? 621-6613
yes
Number? 520-621-6613
yes
Number? 520 621-6613
no
Number? (520) 621-6613
yes
Number? (520) 621-6613
no
Number? 555-1212x
no

CSc 451, Spring 2003 Slide 196
W. H. Mitchell

Phone numbers, continued

Problem: Extend the program so that an extension can be
optionally specified on any number. All of these should
work:

621-6613 x413

520-621-6613 x413

(520)621-6613 x 27

520-555-1212

621-6613x13423

CSc 451, Spring 2003 Slide 197
W. H. Mitchell

Co-expression basics

Icon's co-expression type allows an expression, usually a
generator, to be "captured" so that results may be produced
as needed.

A co-expression is created using the create control
structure:

create expr

Example:

][c := create 1 to 3;
 r := co-expression_2(0) (co-expression)

A co-expression is activated with the unary @ operator.

When a co-expression is activated the captured expression is
evaluated until a result is produced. The co-expression then
becomes dormant until activated again.

][x := @c;
 r := 1 (integer)

][y := @c;
 r := 2 (integer)

][z := x + y + @c;
 r := 6 (integer)

][@c;
Failure

Activation fails when the captured expression has produced
all its results.

CSc 451, Spring 2003 Slide 198
W. H. Mitchell

Co-expression basics, continued

Activation is not generative. At most one result is produced
by activation:

][vowels := create !"aeiou";
 r := co-expression_6(0) (co-expression)

][every write(@vowels);
a
Failure

Another example:

][s := "It is Hashtable or HashTable?";
 r := "It is Hashtable or HashTable?"

][caps := create !s == !&ucase;
 r := co-expression_3(0) (co-expression)

][@caps;
 r := "I" (string)

][cc := @caps || @caps;
 r := "HH" (string)

][[@caps];
 r := ["T"] (list)

][[@caps];
Failure

CSc 451, Spring 2003 Slide 199
W. H. Mitchell

Co-expression basics, continued

Co-expressions can be used to perform generative
computations in parallel:

][upper := create !&ucase;
 r := co-expression_4(0) (co-expression)

][lower := create !&lcase;
 r := co-expression_5(0) (co-expression)

][while write(@upper, @lower);
Aa
Bb
Cc
Dd
...

Here is a code fragment that checks the first 1000 elements
of a binary number generator:

bvalue := create binary() # starts at "1"

every i := 1 to 1000 do
 if integer("2r"||@bvalue) ~= i then
 stop("Mismatch at ", i)

CSc 451, Spring 2003 Slide 200
W. H. Mitchell

Co-expression basics, continued

The "size" of a co-expression is the number of results it has
produced.

][words := create !split("just a test");
 r := co-expression_5(0) (co-expression)

][while write(@words);
just
a
test
Failure

][*words;
 r := 3 (integer)

][*create 1 to 10;
 r := 0 (integer)

Problem: Using a co-expression, write a program to produce
a line-numbered listing of lines from standard input.

CSc 451, Spring 2003 Slide 201
W. H. Mitchell

Example: vcycle

This program uses co-expressions to conveniently cycle
through the elements in a list:

procedure main()
 vtab := table()

 while writes("A or Q: ") & line := read() do {
 parts := split(line,'=')

 if *parts = 2 then {
 vname := parts[1]
 values := parts[2]

 vtab[vname] :=
 create |!split(values, ',')
 }
 else
 write(@vtab[line])
 }
end

Interaction:

% vcycle
A or Q: color=red,green,blue
A or Q: yn=yes,no
A or Q: color
red
A or Q: color
green
A or Q: yn
yes
A or Q: color
blue
A or Q: color
red

Problem: Get rid of those integer subscripts!

CSc 451, Spring 2003 Slide 202
W. H. Mitchell

"Refreshing" a co-expression

A co-expression can be "refreshed" with the unary ^ (caret)
operator:

][lets := create !&letters;
 r := co-expression_4(0) (co-expression)

][@lets;
 r := "A" (string)

][@lets;
 r := "B" (string)

][rlets := ^lets;
 r := co-expression_5(0) (co-expression)

][*rlets;
 r := 0 (integer)

][@lets;
 r := "C" (string)

][@rlets;
 r := "A" (string)

In fact, the "refresh" operation produces a new co-
expression with the same initial conditions as the operand.

"refresh" better describes this operation:

][lets := ^lets;
 r := co-expression_6(0) (co-expression)

][@lets;
 r := "A" (string)

CSc 451, Spring 2003 Slide 203
W. H. Mitchell

Co-expressions and variables

The environment of a co-expression includes a copy of all
the non-static local variables in the enclosing procedure.

][low := 1;

][high := 10;

][c1 := create low to high;

][low := 5;

][c2 := create low to high;

][@c1;
 r := 1 (integer)

][@c2;
 r := 5 (integer)

][@c2;
 r := 6 (integer)

Refreshing a co-expression restores the value of locals at the
time of creation for the co-expression:

][low := 10;
][c1 := ^c1;

][c2 := ^c2;

][@c1;
 r := 1 (integer)

][@c2;
 r := 5 (integer)

CSc 451, Spring 2003 Slide 204
W. H. Mitchell

Co-expressions and variables, continued

Because structure types such as lists use reference semantics,
using a local variable with a list value leads to "interesting"
results:

][L := [];
 r := [] (list)

][c1 := create put(L, 1 to 10) & L;
 r := co-expression_8(0) (co-expression)

][c2 := create put(L, !&lcase) & L;
 r := co-expression_9(0) (co-expression)

][@c1;
 r := [1] (list)

][@c1;
 r := [1,2] (list)

][@c2;
 r := [1,2,"a"] (list)

][@c1;
 r := [1,2,"a",3] (list)

CSc 451, Spring 2003 Slide 205
W. H. Mitchell

Procedures that operate on co-expressions

Here is a procedure that returns the length of a co-
expression's result sequence:

procedure Len(C)
 while @C
 return *C
end

Usage:

][Len(create 1 to 10);
 r := 10 (integer)

][Len(create !&cset);
 r := 256 (integer)

Problem: Write a routine Results(C) that returns the
result sequence of the co-expression C:

][Results(create 1 to 5);
 r := [1,2,3,4,5] (list)

CSc 451, Spring 2003 Slide 206
W. H. Mitchell

PDCOs

By convention, routines like Len and Results are called
programmer defined control operations, or PDCOs.

Icon provides direct support for PDCOs with a convenient
way to pass a list of co-expressions to a procedure:

proc{expr1, expr2, ..., exprN} # Note: curly braces!

This is a shorthand for:

proc([create expr1, ..., create exprN])

Revised usage of Len and Results:

][Len{!&lcase};
 r := 26 (integer)

][Results{1 to 5};
 r := [1,2,3,4,5] (list)

Revised version of Len:

procedure Len(L)
 C := L[1]

 while @C
 return *C
end

CSc 451, Spring 2003 Slide 207
W. H. Mitchell

PDCOs, continued

Imagine a PDCO named Reduce that "reduces" a result
sequence by interspersing a binary operation between
values:

][Reduce{"+", 1 to 10};
 r := 55 (integer)

][Reduce{"*", 1 to 25};
 r := 15511210043330985984000000 (integer)

][Reduce{"||", !&lcase};
 r := "abcdefghijklmnopqrstuvwxyz" (string)

Implementation:

procedure Reduce(L)
 op := @L[1]

result := @L[2] | fail

while result := op(result,@L[2])

return result
end

CSc 451, Spring 2003 Slide 208
W. H. Mitchell

PDCOs, continued

Problem: Write a PDCO that interleaves result sequences:

][.every Interleave{1 to 3, !&lcase,
 ![10,20,30,40]};
 1 (integer)
 "a" (string)
 10 (integer)
 2 (integer)
 "b" (string)
 20 (integer)
 3 (integer)
 "c" (string)
 30 (integer)

Interleave should fail upon the first occurrence of an
argument expression failing.

CSc 451, Spring 2003 Slide 209
W. H. Mitchell

Modeling control structures

Most of Icon's control structures can be modeled with a
PDCO. Example:

procedure Every(L)
 while @L[1] do @^L[2]
end

A simple test: (Note that iand c are globals.)

global i,c
procedure main()

 Every{i := 1 to 5, write(i)}

 Every{i := ![10, 20, 30],
 Every{c := !"abc", write(i, " ", c)}}
end

Output:

1
2
3
4
5
10 a
10 b
10 c
20 a
20 b
20 c
30 a
30 b
30 c

CSc 451, Spring 2003 Slide 210
W. H. Mitchell

Modeling control structures, continued

Here is a model for limitation from pdco.icn in the Icon
Procedure Library:

procedure Limit(L)
 local i, x

 while i := @L[2] do {
 every 1 to i do
 if x := @L[1] then suspend x
 else break
 L[1] := ^L[1]
 }
end

Usage:

][.every Limit{!"abc", 1 to 3};
 "a" (string)
 "a" (string)
 "b" (string)
 "a" (string)
 "b" (string)
 "c" (string)

][.every !"abc" \ (1 to 3);
 "a" (string)
 "a" (string)
 "b" (string)
 "a" (string)
 "b" (string)
 "c" (string)

CSc 451, Spring 2003 Slide 211
W. H. Mitchell

Modeling control structures, continued

Problem: Model the if and while control structures.
Here's a test program:

global line, sum
procedure main()
 sum := 0

 While{line := read(),
 If{numeric(line), sum +:= line}}

 write("Sum: ", sum)
end

Here are the bounding rules:

while expr1 do expr2
if expr1 then expr2

Restriction: You can't use a control structure in its own
model.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

