
CSc 451, Spring 2003 Slide 37
W. H. Mitchell

Explicit conversions, continued

A code fragment to repeatedly prompt until a numeric value is
input:

value := &null # not really needed...

while /value do {
writes("Value? ")
value := numeric(read())
}

write("Value is ", value)

Interaction:

Value? x
Value?
Value? 10
Value is 10

CSc 451, Spring 2003 Slide 38
W. H. Mitchell

The repeat expression

An infinite loop can be produced with while 1 do ... but
the repeat expression is the preferred way to indicate endless
repetition.

The general form:

repeat expr

Example:

repeat write(1)

Another way to copy lines from standard input to standard
output:

repeat {
 if not (line := read()) then
 break
 write(line)
 }

CSc 451, Spring 2003 Slide 39
W. H. Mitchell

The until-do expression

General form:

until expr1 do
expr2

until-do is essentially a while-do, but with an inverted
test, terminating when the test succeeds.

This loop prints lines until a line containing only "start" is
encountered:

until (line := read()) == "start" do
 write(line)

The do clause can be omitted:

until read() == "end"

CSc 451, Spring 2003 Slide 40
W. H. Mitchell

Procedure basics

All executable code in an Icon program is contained in
procedures. A procedure may take arguments and it may return
a value of interest.

Execution begins by calling the procedure main.

A simple program with two procedures:

procedure main()
 while n := read() do
 write(n, " doubled is ", double(n))
end

procedure double(n)
 return 2 * n
end

CSc 451, Spring 2003 Slide 41
W. H. Mitchell

Sidebar: Compilation

If double.icn contains the code on the previous slide, it can
be compiled and linked into an icode executable named
double with the icont command:

% icont double.icn
Translating:
double.icn:
 main
 double
No errors
Linking:
% ls -l double
-rwxrwxr-x 1 whm dept 969 Jan 19 15:50 double
% double
7
7 doubled is 14
15
15 doubled is 30
^D (control-D)
%

The source file name can be followed with -x to cause
execution to immediately follow compilation:

% icont double.icn -x
Translating:
double.icn:
 main
 double
No errors
Linking:
Executing:
100
100 doubled is 200

CSc 451, Spring 2003 Slide 42
W. H. Mitchell

Procedure basics, continued

A procedure may produce a result or it may fail.

Here is a more flexible version of double:

procedure double(x)
 if type(x) == "string" then
 return x || x
 else if numeric(x) then
 return 2 * x
 else
 fail
end

Usage:

][double(5);
 r := 10 (integer)

][double("xyz");
 r := "xyzxyz" (string)

][double(&null);
Failure

][double(double);
Failure

CSc 451, Spring 2003 Slide 43
W. H. Mitchell

Procedure basics, continued

If no value is specified in a return expression, the null value
is returned.

procedure f()
 return
end

Usage:

][f();
 r := &null (null)

If the flow of control reaches the end of a procedure without
returning, the procedure fails.

procedure hello()
 write("Hello!")
end

Usage:

][hello();
Hello!
Failure

CSc 451, Spring 2003 Slide 44
W. H. Mitchell

Procedure basics, continued

Explain the operation of this code:

procedure main()
 while writelong(read(), 10)
end

procedure writelong(s,n)
 if *s > n then
 write(s)
end

CSc 451, Spring 2003 Slide 45
W. H. Mitchell

Procedures—omitted arguments

If any arguments for a procedure are not specified, the value of
the corresponding parameter is null.

procedure wrap(s, w)
 /w := "()" # if w is null, set w to "()"
 return w[1] || s || w[2]
end

][wrap("x", "[]");
 r := "[x]" (string)

][wrap("x");
 r := "(x)" (string)

Any or all arguments can be omitted:

procedure wrap(s, w)
 /s := ""
 /w := "()"
 return w[1] || s || w[2]
end

][wrap("x");
 r := "(x)" (string)

][wrap(,"{}");
 r := "{}" (string)

][wrap(,);
 r := "()" (string)

][wrap();
 r := "()" (string)

Arguments in excess of the formal parameters are simply
ignored.

CSc 451, Spring 2003 Slide 46
W. H. Mitchell

Omitted arguments, continued

Many built-in functions have default values for omitted
arguments.

][right(35, 10, ".");
 r1 := "........35" (string)

][right(35, 10);
 r2 := " 35" (string)

][trim("just a test ");
 r3 := "just a test" (string)

][reverse(trim(reverse(r1), "."));
 r4 := "35" (string)

CSc 451, Spring 2003 Slide 47
W. H. Mitchell

Scope rules

In Icon, variables have either global scope or local scope.

Global variables are accessible inside every procedure in a
program.

Global variables are declared with a global declaration:

global x, y
global z
procedure main()
 x := 1
 z := "zzz..."
 f()
 write("x is ", x)
end

procedure f()
 x := 2
 write(z)
end

Output:

zzz...
x is 2

This is no provision for initializing global variables in the
global declaration.

Global declarations must be declared outside of procedures.

The declaration of a global does not need to precede its first use.

CSc 451, Spring 2003 Slide 48
W. H. Mitchell

Scope rules, continued

The local declaration is used to explicitly indicate that a
variable has local scope.

procedure x()
 local a, b

 a := g()
 b := h(a)
 f(a, b)
end

Local variables are accessible only inside the procedure in
which they are defined (explicitly or implicitly).

Any data referenced by a local variable is free to be reclaimed
when the procedure returns.

If present, local declarations must come first in a procedure.

CSc 451, Spring 2003 Slide 49
W. H. Mitchell

Scope rules—a hazard

Undeclared variables default to local unless they are elsewhere
defined as global. This creates a hazard:

here.icn:

procedure x()
 a := g()
 b := h(a)
 f(a, b)

end

elsewhere.icn:

global a, b
...

A call to x will cause the global variables a and b to be
modified.

Names of built-in functions and Icon procedures are global
variables. Inadvertently using a routine name as an undeclared
local variable will clobber the routine.

procedure f(s)
pos := get_position(s, ...)
...

end

Unfortunately, there is a built-in function named pos!

Rule of thumb: Always declare local variables. (Use icont's
-u flag to find undeclared variables.)

CSc 451, Spring 2003 Slide 50
W. H. Mitchell

static variables

The static declaration is used to indicate that the value of a
variable, implicitly a local, is to be retained across calls.

Here is a procedure that returns the last value it was called with:

procedure last(n)
 static last_value

 result := last_value
 last_value := n
 return result
end

Usage:

][last(3);
 r := &null (null)

][last("abc");
 r := 3 (integer)

][last(7.4);
 r := "abc" (string)

CSc 451, Spring 2003 Slide 51
W. H. Mitchell

static variables, continued

An initial clause can be used to perform one-time
initialization. The associated expression is evaluated on the first
call to the procedure.

Example:

procedure log(s)
 static entry_num
 initial {
 write("Log initialized")
 entry_num := 0
 }

 write(entry_num +:= 1, ": ", s)
end

procedure main()
 log("The first entry")
 log("Another entry")
 log("The third entry")
end

Output:

Log initialized
1: The first entry
2: Another entry
3: The third entry

CSc 451, Spring 2003 Slide 52
W. H. Mitchell

Procedures—odds & ends

For reference, here is the general form of a procedure:

procedure name(param1, ..., paramN)
local-declarations
initial-clause
procedure-body

end

The local-declarations section is any combination of local and
static declarations.

A minimal procedure:

procedure f()
end

Proper terminology:

Built-in routines like read and write are called
functions.

Routines written in Icon are called procedures.

type() returns "procedure" for both functions and
procedures.

Note that every procedure and function either returns a value or
fails.

CSc 451, Spring 2003 Slide 53
W. H. Mitchell

More on compilation

An Icon program may be composed of many procedures. The
procedures may be divided among many source files.

If more than one file is named on the icont command line, the
files are compiled and linked into a single executable. The
command

% icont roaster.icn db.icn iofuncs.icn

compiles the three .icn files and produces an executable
named roaster.

Linking can be suppressed with the -c option,

% icont -c db.icn iofuncs.icn

producing the ucode files db.u1, db.u2, iofuncs.u1, and
iofuncs.u2.

Then, use the link directive in the source file:
roaster.icn:

link db, iofuncs
procedure main()

...

and compile it:

% icont roaster.icn

icont searches the directories named in the IPATH
environment variable for ucode files named in link directives.

CSc 451, Spring 2003 Slide 54
W. H. Mitchell

ie's .inc command

ie does not currently allow procedures to be defined
interactively, but it can load an Icon source file with the .inc
(include) command.

Assuming that the procedure double is in the file
double.icn, it can be used like this:

][.inc double.icn
][double(5);
 r := 10 (integer)
][double("abc");
 r := "abcabc" (string)

With .inc, the included file is recompiled automatically—you
can edit in one window, run ie in another, and the latest saved
version is used each time.

CSc 451, Spring 2003 Slide 55
W. H. Mitchell

Procedures—call tracing

One of Icon's debugging facilities is call tracing.

1 procedure main()
2 write(sum(3))
3 end
4
5 procedure sum(n)
6 return if n = 0 then 0
7 else n + sum(n-1)
8 end

Execution with tracing:

% setenv TRACE -1
% sum
 : main()
sum.icn : 2 | sum(3)
sum.icn : 7 | | sum(2)
sum.icn : 7 | | | sum(1)
sum.icn : 7 | | | | sum(0)
sum.icn : 6 | | | | sum returned 0
sum.icn : 6 | | | sum returned 1
sum.icn : 6 | | sum returned 3
sum.icn : 6 | sum returned 6
6
sum.icn : 3 main failed
% setenv TRACE 0
% sum
15

Handy csh aliases:

alias tn setenv TRACE -1
alias tf unsetenv TRACE

Inside a program, &trace := -1 turns on tracing.

CSc 451, Spring 2003 Slide 56
W. H. Mitchell

Augmented assignment

Aside from the assignment and swap operators, every infix
operator can be used in an augmented assignment.

Examples:

i +:= 1

s ||:= read()

x /:= 2

y ^:= 3

i <:= j

s1 >>:= s2

There are no unary increment/decrement operators such as i++,
but at one point, this was valid:

i++++

CSc 451, Spring 2003 Slide 57
W. H. Mitchell

Comments

Icon's only commenting construct is #, which indicates that the
rest of the line is a comment:

#
The following code will initialize i
#
i := 0 # i is now initialized

In lieu of a block comment capability, Icon's preprocessor can
be used:

write(1)
$ifdef DontCompileThis
write(2)
write(3)
$endif
write(4)

Assuming that DontCompileThis hasn't been defined with a
$define directive, the enclosed write statements are
excluded from the compilation.

CSc 451, Spring 2003 Slide 58
W. H. Mitchell

Multi-line string literals

String literals can be continued across lines by ending the line
with an underscore. The first non-whitespace character resumes
the literal:

s := "This is a long _
 literal\n right here _
 ."
write(s)

Output:

This is a long literal
 right here .

Note that whitespace preceding the underscore is preserved, but
whitespace at the start of a line is elided.

Less efficient, but easier to remember:

s := "This is a long " ||
 "literal\n right here " ||
 "."
write(s)

Be sure to put the concatenation operators at the end of a line,
not at the beginning!

CSc 451, Spring 2003 Slide 59
W. H. Mitchell

Substrings

A substring of a string s is the string that lies between two
positions in s.

Positions are thought of as being between characters and run in
both directions:

 1 2 3 4 5 6 7 8
 | | | | | | | |

 t o o l k i t

 | | | | | | | |
 -7 -6 -5 -4 -3 -2 -1 0

One way to create a substring is with the form s[i:j], which
specifies the portion of s between the positions i and j:

][s := "toolkit";
 r := "toolkit" (string)

][s1 := s[2:4];
 r := "oo" (string)

][s1;
 r := "oo" (string)

][s[-6:-4];
 r := "oo" (string)

][s[5:0];
 r := "kit" (string)

][s[0:5];
 r := "kit" (string)

CSc 451, Spring 2003 Slide 60
W. H. Mitchell

Substrings, continued

For reference:

 1 2 3 4 5 6 7 8
 | | | | | | | |
 t o o l k i t
 | | | | | | | |
 -7 -6 -5 -4 -3 -2 -1 0

The form s[i] is in fact an abbreviation for s[i:i+1]:

][s[1]; (Equivalent to s[1:2])
 r := "t" (string)

][s[-1];
 r := "t" (string)

][s[-2];
 r := "i" (string)

A substring can be specified as the target of an assignment:

][s[1] := "p";
 r := "p" (string)

][s[5:0] := "";
 r := "" (string)

][s[-1] := "dle";
 r := "dle" (string)

][s;
 r := "poodle" (string)

CSc 451, Spring 2003 Slide 61
W. H. Mitchell

Substrings, continued

Note that a null substring can be assigned to:

][s := "xy";
 r := "xy" (string)

][s[2:2];
 r := "" (string)

][s[2:2] := "-";
 r := "-" (string)

][s;
 r := "x-y" (string)

Assignment of string values does not cause sharing of data:

][s1 := "string 1";
 r := "string 1" (string)

][s2 := "string 2";
 r := "string 2" (string)

][s1 := s2;
 r := "string 2" (string)

][s1[1:3] := "";
 r := "" (string)

][s2;
 r := "string 2" (string)

(In other words, strings use value semantics.)

CSc 451, Spring 2003 Slide 62
W. H. Mitchell

Substrings, continued

For reference:

 1 2 3 4 5 6 7 8
 | | | | | | | |
 t o o l k i t
 | | | | | | | |
 -7 -6 -5 -4 -3 -2 -1 0

Another subscripting syntax is s[i+:n], which is equivalent to
s[i:i+n]:

][s[4+:2];
 r := "lk" (string)

][s[-3+:3];
 r := "kit" (string)

][s[-5+:3];
 r := "olk" (string)

A related form is s[i-:n], which is equivalent to s[i:i-n]:

][s[5-:4];
 r := "tool" (string)

][s[0-:3];
 r := "kit" (string)

][s[-2-:2];
 r := "lk" (string)

In essence, all substring specifications name the string of
characters between two positions.

CSc 451, Spring 2003 Slide 63
W. H. Mitchell

Sidebar: Implementation of substrings

Problem: Speculate on how substrings are implemented.

Code to work with:

s := "testing"
c := s[1]
s2 := s[2:-1]

Memory:

CSc 451, Spring 2003 Slide 64
W. H. Mitchell

Generator basics

In most languages, evaluation of an expression always produces
one result. In Icon, an expression can produce zero, one, or
many results.

Consider the following program. The procedure Gen is said to
be a generator.

procedure Gen()
 write("Gen: Starting up...")
 suspend 3

 write("Gen: More computing...")
 suspend 7

 write("Gen: Still computing...")
 suspend 13

 write("Gen: Out of gas...")
 fail
end

procedure main()
 every i := Gen() do
 write("Result = ", i)
end

Execution:

Gen: Starting up...
Result = 3
Gen: More computing...
Result = 7
Gen: Still computing...
Result = 13
Gen: Out of gas...

CSc 451, Spring 2003 Slide 65
W. H. Mitchell

Generator basics, continued

The suspend control structure is like return, but the
procedure remains active with all state intact and ready to
continue execution if it is resumed.

Program output with call tracing active:

 : main()
gen.icn : 2 | Gen()
Gen: Starting up...
gen.icn : 8 | Gen suspended 3
Result = 3
gen.icn : 3 | Gen resumed
Gen: More computing...
gen.icn : 10 | Gen suspended 7
Result = 7
gen.icn : 3 | Gen resumed
Gen: Still computing...
gen.icn : 12 | Gen suspended 13
Result = 13
gen.icn : 3 | Gen resumed
Gen: Out of gas...
gen.icn : 14 | Gen failed
gen.icn : 4 main failed

CSc 451, Spring 2003 Slide 66
W. H. Mitchell

Generator basics, continued

Recall the every loop:

every i := Gen() do
 write("Result = ", i)

every is a control structure that looks similar to while, but its
behavior is very different.

every evaluates the control expression and if a result is
produced, the body of the loop is executed. Then, the control
expression is resumed and if another result is produced, the loop
body is executed again. This continues until the control
expression can produce no more results and fails.

To put it anthropomorphically, every is never satisfied with
the result of the control expression.

while repeatedly evaluates its control expression, executing
the loop until the expression fails.

An infinite loop:

while i := Gen() do
 write("Result = ", i)

Output:

Gen: Starting up...
Result = 3
Gen: Starting up...
Result = 3

CSc 451, Spring 2003 Slide 67
W. H. Mitchell

Generator basics, continued

For reference:

every i := Gen() do
 write("Result = ", i)

It is said that every drives a generator to failure.

Here is another way to drive a generator to failure:

write("Result = " || Gen()) & 1 = 0

Output:

Gen: Starting up...
Result = 3
Gen: More computing...
Result = 7
Gen: Still computing...
Result = 13
Gen: Out of gas...

CSc 451, Spring 2003 Slide 68
W. H. Mitchell

Generator basics, continued

A different main program to exercise Gen:

procedure main()
 while n := integer(read()) do {
 if n = Gen() then
 write("Found ", n)
 else
 write(n, " not found")
 }
end

Interaction:

3
Gen: Starting up...
Found 3
10
Gen: Starting up...
Gen: More computing...
Gen: Still computing...
Gen: Out of gas...
10 not found
13
Gen: Starting up...
Gen: More computing...
Gen: Still computing...
Found 13
0
Gen: Starting up...
Gen: More computing...
Gen: Still computing...
Gen: Out of gas...
0 not found

This is an example of goal directed evaluation (GDE).

CSc 451, Spring 2003 Slide 69
W. H. Mitchell

The generator to

Icon has many built-in generators. One is the to operator,
which generates a sequence of integers. Examples:

][every i := 3 to 7 do
... write(i);
3
4
5
6
7
Failure

][every i := -10 to 10 by 7 do
... write(i);
-10
-3
4
Failure

][every write(10 to 1 by -3);
10
7
4
1
Failure

][1 to 10;
 r := 1 (integer)

][8 < (1 to 10);
 r := 9 (integer)

][every write(8 < (1 to 10));
9
10
Failure

CSc 451, Spring 2003 Slide 70
W. H. Mitchell

The generator to, continued

One way to print the odd numbers from 1 to 100:

every write(1 to 100 by 2)

Problems:
(1) Do it without "every"

(2) Instead of using "by" use the remainder operator (%)
and goal directed evaluation.

Problem: Write an Icon procedure ints(first, last) that
behaves like to-by with an assumed "by" of 1.

CSc 451, Spring 2003 Slide 71
W. H. Mitchell

The generator "bang" (!)

Another built-in generator is the unary exclamation mark, called
"bang".

It is polymorphic, as is the size operator (*). For character
strings it generates the characters in the string one at a time.

][every c := !"abc" do
... write(c);
a
b
c
Failure

][every write(!"abc");
a
b
c
Failure

][every write(!"");
Failure

A program to count vowels appearing on standard input:

procedure main()
 vowels := 0
 while line := read() do {
 every c := !line do
 if c == !"aeiouAEIOU" then
 vowels +:= 1
 }

 write(vowels, " vowels")
end

CSc 451, Spring 2003 Slide 72
W. H. Mitchell

The generator "bang" (!), continued

If applied to a value of type file, ! generates the lines
remaining in the file.

The keyword &input represents the file associated with
standard input.

A simple line counter (lcount.icn):

procedure main()
 lines := 0

 every !&input do
 lines +:= 1

 write(lines, " lines")
end

Usage:

% lcount < lcount.icn
8 lines
% lcount < /dev/null
0 lines
% lcount < /etc/passwd
1620 lines

How could the vowel counter be changed to use generation of
lines from &input?

CSc 451, Spring 2003 Slide 73
W. H. Mitchell

The generator "bang" (!), continued

The line counter extended to count characters, too:

procedure main()
 chars := lines := 0

 every chars +:= *!&input + 1 do
 lines +:= 1

 write(lines, " lines, ", chars,
" characters")

end

If ! is applied to an integer or a real, the value is first converted
to a string and then characters are generated:

][.every !1000;
 "1" (string)
 "0" (string)
 "0" (string)
 "0" (string)

][.every !3.141592;
 "3" (string)
 "." (string)
 "1" (string)
 "4" (string)
 "1" (string)
 "5" (string)
 "9" (string)
 "2" (string)

Note that .every is an ie directive that drives a generator to
exhaustion, showing each result.

CSc 451, Spring 2003 Slide 74
W. H. Mitchell

Alternation

The alternation control structure looks like an operator:

expr1 | expr2

This creates a generator whose result sequence is the
the result sequence of expr1 followed by the result sequence of
expr2.

For example, the expression

3 | 7

has the result sequence {3, 7}.

The procedure Gen is in essence equivalent to the expression:

3 | 7 | 13

The expression

(1 to 5) | (5 to 1 by -1)

has the result sequence {1, 2, 3, 4, 5, 5, 4, 3, 2, 1}.

What are the result sequences of these expressions?

(1 < 0) | (0 = 1)

(1 < 0) | (0 ~= 1)

Gen() | (Gen() > 10) | (Gen() + 1)

CSc 451, Spring 2003 Slide 75
W. H. Mitchell

Alternation, continued

A result sequence may contain values of many types:

][every write(1 | 2 | !"ab" | real(Gen()));
1
2
a
b
Gen: Starting up...
3.0
Gen: More computing...
7.0
Gen: Still computing...
13.0
Gen: Out of gas...
Failure

Alternation used in goal-directed evaluation:

procedure main()
 while time := (writes("Time? ") & read()) do {
 if time = (10 | 2 | 4) then
 write("It's Dr. Pepper time!")
 }
end

Interaction:

% dptime
Time? 1
Time? 2
It's Dr. Pepper time!
Time? 3
Time? 4
It's Dr. Pepper time!

CSc 451, Spring 2003 Slide 76
W. H. Mitchell

Alternation, continued

A program to read lines from standard input and write out the
first twenty characters of each line:

procedure main()
 while line := read() do
 write(line[1:21])
end

Program output when provided the program itself as input:

 while line := re
 write(line[1

What happened?

Solution:

procedure main()
 while line := read() do
 write(line[1:(21|0)])
end

Output:

procedure main()
 while line := re
 write(line[1
end

What does this expression do?

write((3 | 7 | 13) > 10)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40

