
CSc 451, Spring 2003 Slide 64
W. H. Mitchell

Generator basics

In most languages, evaluation of an expression always produces
one result. In Icon, an expression can produce zero, one, or
many results.

Consider the following program. The procedure Gen is said to
be a generator.

procedure Gen()
 write("Gen: Starting up...")
 suspend 3

 write("Gen: More computing...")
 suspend 7

 write("Gen: Still computing...")
 suspend 13

 write("Gen: Out of gas...")
 fail # not really needed
end

procedure main()
 every i := Gen() do
 write("Result = ", i)
end

Execution:

Gen: Starting up...
Result = 3
Gen: More computing...
Result = 7
Gen: Still computing...
Result = 13
Gen: Out of gas...

CSc 451, Spring 2003 Slide 65
W. H. Mitchell

Generator basics, continued

The suspend control structure is like return, but the
procedure remains active with all state intact and ready to
continue execution if it is resumed.

Program output with call tracing active:

 : main()
gen.icn : 2 | Gen()
Gen: Starting up...
gen.icn : 8 | Gen suspended 3
Result = 3
gen.icn : 3 | Gen resumed
Gen: More computing...
gen.icn : 10 | Gen suspended 7
Result = 7
gen.icn : 3 | Gen resumed
Gen: Still computing...
gen.icn : 12 | Gen suspended 13
Result = 13
gen.icn : 3 | Gen resumed
Gen: Out of gas...
gen.icn : 14 | Gen failed
gen.icn : 4 main failed

CSc 451, Spring 2003 Slide 66
W. H. Mitchell

Generator basics, continued

Recall the every loop:

every i := Gen() do
 write("Result = ", i)

every is a control structure that looks similar to while, but its
behavior is very different.

every evaluates the control expression and if a result is
produced, the body of the loop is executed. Then, the control
expression is resumed and if another result is produced, the loop
body is executed again. This continues until the control
expression fails.

Anthropomorphically speaking, every is never satisfied with
the result of the control expression.

CSc 451, Spring 2003 Slide 67
W. H. Mitchell

Generator basics, continued

For reference:

every i := Gen() do
 write("Result = ", i)

It is said that every drives a generator to failure.

Here is another way to drive a generator to failure:

write("Result = " || Gen()) & 1 = 0

Output:

Gen: Starting up...
Result = 3
Gen: More computing...
Result = 7
Gen: Still computing...
Result = 13
Gen: Out of gas...

Note: The preferred way to cause failure in an expression is to
use the &fail keyword. Evaluation of &fail always fails:

][&fail;
Failure

CSc 451, Spring 2003 Slide 68
W. H. Mitchell

Generator basics, continued

If a failure occurs during evaluation of an expression, Icon will
resume a suspended generator in hopes that another result will
lead to success of the expression.

A different main program to exercise Gen:

procedure main()
 while n := integer(read()) do {
 if n = Gen() then
 write("Found ", n)
 else
 write(n, " not found")
 }
end

Interaction:

3
Gen: Starting up...
Found 3
10
Gen: Starting up...
Gen: More computing...
Gen: Still computing...
Gen: Out of gas...
10 not found
13
Gen: Starting up...
Gen: More computing...
Gen: Still computing...
Found 13

This is an example of goal directed evaluation (GDE).

CSc 451, Spring 2003 Slide 69
W. H. Mitchell

Generator basics, continued

A generator can be used in any context that an ordinary
expression can be used in:

][write(Gen());
Gen: Starting up...
3
 r := 3 (integer)

][Gen() + 10;
Gen: Starting up...
 r := 13 (integer)

][repl("abc", Gen());
Gen: Starting up...
 r := "abcabcabc" (string)

There is no direct way to whether a procedure's result was
produced by return or suspend.

This version of double works just fine:

procedure double(n)
 suspend 2 * n
end

Usage:

][double(double(10));
 r2 := 40 (integer)

CSc 451, Spring 2003 Slide 70
W. H. Mitchell

The generator to

Icon has many built-in generators. One is the to operator,
which generates a sequence of integers. Examples:

][every i := 3 to 7 do
... write(i);
3
4
5
6
7
Failure

][every i := -10 to 10 by 7 do
... write(i);
-10
-3
4
Failure

][every write(10 to 1 by -3);
10
7
4
1
Failure

][1 to 10;
 r := 1 (integer)

][8 < (1 to 10);
 r := 9 (integer)

][every write(8 < (1 to 10));
9
10
Failure

CSc 451, Spring 2003 Slide 71
W. H. Mitchell

The generator to, continued

Problem: Without using every, write an expression that prints
the odd integers from 1 to 100.

Problem: Write an Icon procedure ints(first, last) that
behaves like to-by with an assumed "by" of 1.

CSc 451, Spring 2003 Slide 72
W. H. Mitchell

Backtracking and bounded expressions

Another way to print the odd integers between 1 and 100:

i := 1 to 100 & i % 2 = 1 & write(i) & &fail

This expression exhibits control backtracking—the flow of
control sometimes moves backwards.

In some cases backtracking is desirable and in some cases it is
not.

Expressions appearing as certain elements of control structures
are bounded. A bounded expression can produce at most one
result, thus limiting backtracking.

One example: Each expression in a compound expression is
bounded.

Contrast:

][i := 1 to 3 & write(i) & &fail;
1
2
3
Failure

][{ i := 1 to 3; write(i); &fail };
1
Failure

CSc 451, Spring 2003 Slide 73
W. H. Mitchell

Bounded expressions, continued

The mechanism of expression bounding is this: if a bounded
expression produces a result, generators in the expression are
discarded.

In while expr1 do expr2, both expressions are
bounded.

In every expr1 do expr2, only expr2 is bounded.

Consider

every i := 1 to 10 do write(i)

and

while i := 1 to 10 do write(i)

The latter is an infinite loop!

In an if-then-else, only the control expression is bounded:

if expr1 then expr2 else expr3

See page 91 in the text for the full list of bounded expressions.

CSc 451, Spring 2003 Slide 74
W. H. Mitchell

Bounded expressions, continued

Here is a generator that simply prints when it is suspended and
resumed:

procedure sgen(n)
 write(n, " suspending")
 suspend
 write(n, " resumed")
end

Notice the behavior of sgen with every:

][every sgen(1) do sgen(2);
1 suspending
2 suspending
1 resumed
Failure

Note that there is no way for a generator to detect that it is being
discarded.

Here is sgen with if-then-else:

][(if sgen(1) then sgen(2) else sgen(3)) & &fail;
1 suspending
2 suspending
2 resumed
Failure

][(if \sgen(1) then sgen(2) else sgen(3)) & &fail;
1 suspending
1 resumed
3 suspending
3 resumed
Failure

What would while sgen(1) do sgen(2)output?

CSc 451, Spring 2003 Slide 75
W. H. Mitchell

The generator "bang" (!)

Another built-in generator is the unary exclamation mark, called
"bang".

It is polymorphic, as is the size operator (*). For character
strings it generates the characters in the string one at a time.

][every c := !"abc" do
... write(c);
a
b
c
Failure

][every write(!"abc");
a
b
c
Failure

][every write(!"");
Failure

A program to count vowels appearing on standard input:

procedure main()
 vowels := 0
 while line := read() do {
 every c := !line do
 if c == !"aeiouAEIOU" then
 vowels +:= 1
 }

 write(vowels, " vowels")
end

CSc 451, Spring 2003 Slide 76
W. H. Mitchell

The generator "bang" (!), continued

If applied to a value of type file, ! generates the lines
remaining in the file.

The keyword &input represents the file associated with
standard input.

A simple line counter (lcount.icn):

procedure main()
 lines := 0

 every !&input do
 lines +:= 1

 write(lines, " lines")
end

Usage:

% lcount < lcount.icn
8 lines
% lcount < /dev/null
0 lines
% lcount < /etc/passwd
1620 lines

Problem: Change the vowel counter to use generation of lines
from &input?

CSc 451, Spring 2003 Slide 77
W. H. Mitchell

The generator "bang" (!), continued

The line counter extended to count characters, too:

procedure main()
 chars := lines := 0

 every chars +:= *!&input + 1 do
 lines +:= 1

 write(lines, " lines, ", chars,
" characters")

end

If ! is applied to an integer or a real, the value is first converted
to a string and then characters are generated:

][.every !1000;
 "1" (string)
 "0" (string)
 "0" (string)
 "0" (string)

][.every !π
 "3" (string)
 "." (string)
 "1" (string)
 "4" (string)
 "1" (string)
 "5" (string)
 "9" (string)
 "2" (string)
 "6" (string)
 ...

Note that .every is an ie directive that drives a generator to
exhaustion, showing each result.

CSc 451, Spring 2003 Slide 78
W. H. Mitchell

Multiple generators

An expression may contain any number of generators:

][every write(!"ab", !"+-", !"cd");
a+c
a+d
a-c
a-d
b+c
b+d
b-c
b-d
Failure

Generators are resumed in a LIFO manner: the generator that
most recently produced a result is the first one resumed.

Another example:

][x := 1 to 10 & y := 1 to 10 & z := 1 to 10 &
x*y*z = 120 & write(x, " ", y, " ", z);

2 6 10

Problem: What are the result sequences of the following
expressions?

(0 to 20 by 2) = (0 to 20 by 3)

1 to !"1234"

(1 to 3) to (5 to 10)

CSc 451, Spring 2003 Slide 79
W. H. Mitchell

Multiple generators, continued

Problem: Write an expression that succeeds if strings s1 and s2
have any characters in common.

Problem: Write a program to read standard input and print all
the vowels, one per line.

CSc 451, Spring 2003 Slide 80
W. H. Mitchell

Multiple generators, continued

A program to show the distribution of the sum of three dice:

procedure main()
 every N := 1 to 18 do {
 writes(right(N,2), " ")
 every (1 to 6) + (1 to 6) + (1 to 6) = N do
 writes("*")
 write()
 }
end

Output:

 1
 2
 3 *
 4 ***
 5 ******
 6 **********
 7 ***************
 8 *********************
 9 *************************
10 ***************************
11 ***************************
12 *************************
13 *********************
14 ***************
15 **********
16 ******
17 ***
18 *

Problem: Generalize the program to any number of dice.

CSc 451, Spring 2003 Slide 81
W. H. Mitchell

Alternation

The alternation control structure looks like an operator:

expr1 | expr2

This creates a generator whose result sequence is the
the result sequence of expr1 followed by the result sequence of
expr2.

For example, the expression

3 | 7

has the result sequence {3, 7}.

The procedure Gen is in essence equivalent to the expression:

3 | 7 | 13

The expression

(1 to 5) | (5 to 1 by -1)

has the result sequence {1, 2, 3, 4, 5, 5, 4, 3, 2, 1}.

What are the result sequences of these expressions?

(1 < 0) | (0 = 1)

(1 < 0) | (0 ~= 1)

Gen() | (Gen() > 10) | (Gen() + 1)

CSc 451, Spring 2003 Slide 82
W. H. Mitchell

Alternation, continued

A result sequence may contain values of many types:

][every write(1 | 2 | !"ab" | real(Gen()));
1
2
a
b
Gen: Starting up...
3.0
Gen: More computing...
7.0
Gen: Still computing...
13.0
Gen: Out of gas...
Failure

Alternation used in goal-directed evaluation:

procedure main()
 while time := (writes("Time? ") & read()) do {
 if time = (10 | 2 | 4) then
 write("It's Dr. Pepper time!")
 }
end

Interaction:

% dptime
Time? 1
Time? 2
It's Dr. Pepper time!
Time? 3
Time? 4
It's Dr. Pepper time!

CSc 451, Spring 2003 Slide 83
W. H. Mitchell

Alternation, continued

A program to read lines from standard input and write out the
first twenty characters of each line:

procedure main()
 while line := read() do
 write(line[1:21])
end

Program output when provided the program itself as input:

 while line := re
 write(line[1

What happened?

Solution:

procedure main()
 while line := read() do
 write(line[1:(21|0)])
end

Output:

procedure main()
 while line := re
 write(line[1
end

What does this expression do?

write((3 | 7 | 13) > 10)

CSc 451, Spring 2003 Slide 84
W. H. Mitchell

Repeated alternation

An infinite result sequence can be produced with repeated
alternation,

| expr

which repeatedly generates the result sequence of expr.

The expression |1 has this result sequence:

{1, 1, 1, ...}

The expression |!"abc" has this result sequence:

{"a", "b", "c", "a", "b", "c", "a", ...}

What are the result sequences of the following expressions?

|1 = 2

9 <= |(1 to 10)

CSc 451, Spring 2003 Slide 85
W. H. Mitchell

Limitation

The limitation construct can be used to restrict a generator to a
maximum number of results.

General form:

expr1 \ expr2

One way to see if an "e" appears in the first twenty characters of
a string:

"e" == !s[1:20]

Another way:

"e" == !s\20

Which is better?

A common use of limitation is to restrict a computation to the
first result of a generator:

if f(Gen()\1) = n then ...

Problem: Using limitation create an expression whose result
sequence is {a, a, b, a, b, c, a, b, c, d} (all strings).

CSc 451, Spring 2003 Slide 86
W. H. Mitchell

More on suspend

If suspend's expression is a generator, each result is
suspended in turn.

Example:

procedure updown(N)
 suspend 1 to N-1
 suspend N to 1 by -1
end

Usage:

][every write(updown(3));
1
2
3
2
1
Failure

The full form of suspend is similar to every:

suspend expr1 do
expr2

If expr1 yields a result, the value is suspended. When the
procedure is resumed, expr2 is evaluated, and the process
repeats until expr1 fails.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

