
CSc 451, Spring 2003 Slide 87
W. H. Mitchell

Lists

Icon has a list data type. Lists hold sequences of values.

One way to create a list:

][[1,2,3];
 r := [1,2,3] (list)

A given list may hold values of differing types:

][L := [1, "two", 3.0, []];
 r := [1,"two",3.0,[]] (list)

An element of a list may be referenced by subscripting:

][L[1];
 r := 1 (integer)

][L[2];
 r := "two" (string)

][L[-1];
 r := [] (list)

][L[10];
Failure

The other way to create a list:

][list(5, "a");
 r := ["a","a","a","a","a"] (list)

CSc 451, Spring 2003 Slide 88
W. H. Mitchell

Lists, continued

A list section may be obtained by specifying two positions:

][L := [1, "two", 3.0, []];
 r := [1,"two",3.0,[]] (list)

][L[1:3];
 r := [1,"two"] (list)

][L[2:0];
 r := ["two",3.0,[]] (list)

Note the asymmetry between subscripting and sectioning:
subscripting produces an element, sectioning produces a list.

][L[2:3];
 r := ["two"] (list)

][L[2];
 r := "two" (string)

][L[2:2];
 r := [] (list)

Contrast with strings:

][s := "123";
 r := "123" (string)

][s[2:3];
 r := "2" (string)

][s[2:2];
 r := "" (string)

Question: What is the necessary source of this asymmetry?

CSc 451, Spring 2003 Slide 89
W. H. Mitchell

Lists, continued

Recall L:

][L;
 r := [1,"two",3.0,[]] (list)

Lists may be concatenated with |||:

][[1] ||| [2] ||| [3];
 r := [1,2,3] (list)

][L[1:3] ||| L[2:0];
 r := [1,"two","two",3.0,[]] (list)

Concatenating lists is like concatenating strings—a new list is
formed:

][L := [1, "two", 3.0, []];
 r := [1,"two",3.0,[]] (list)

][L := L ||| [9999] ||| L ||| [];
 r := [1,"two",3.0,[],9999,1,"two",3.0,[]]

For the code below, what is the final value of nines?

nines := []
every nines |||:= |[9] \ 7

CSc 451, Spring 2003 Slide 90
W. H. Mitchell

Lists, continued

The number of top-level elements in a list may be calculated
with *:

][L := [1, "two", 3.0, []];
 r := [1,"two",3.0,[]] (list)

][*L;
 r := 4 (integer)

][*[];
 r := 0 (integer)

Problem: What is the value of the following expressions?

*[[1,2,3]]

*[L, L,[[]]]

*[,,]

**[[],[]]

*(list(1000000,0) ||| list(1000000,1))

CSc 451, Spring 2003 Slide 91
W. H. Mitchell

Lists, continued

List elements can be changed via assignment:

][L := [1,2,3];
 r := [1,2,3] (list)

][L[1] := 10;
 r := 10 (integer)

][L[-1] := "last element";
 r := "last element" (string)

][L;
 r := [10,2,"last element"] (list)

List sections cannot be assigned to:

][L[1:3] := [];
Run-time error 111
variable expected
...

Problem: Write a procedure assign(L1, i, j, L2) that
approximates the operation L1[i:j] := L2.

CSc 451, Spring 2003 Slide 92
W. H. Mitchell

Complex subscripts and sections

Lists within lists can be referenced by a series of subscripts:

][L := [1,[10,20],[30,40]];
 r := [1,[10,20],[30,40]] (list)

][L[2];
 r := [10,20] (list)

][L[2][1];
 r := 10 (integer)

][L[2][1] := "abc";
 r := "abc" (string)

][L;
 r := [1,["abc",20],[30,40]] (list)

A series of subscripting operations to reference a substring of a
string-valued second-level list element:

][L[2][1];
 r := "abc" (string)

][L[2][1][2:0] := "pes";
 r := "pes" (string)

][L;
 r := [1,["apes",20],[30,40]] (list)

][every write(!L[2][1][2:4]);
p
e
Failure

CSc 451, Spring 2003 Slide 93
W. H. Mitchell

Lists as stacks and queues

The functions push, pop, put, get, and pull provide access
to lists as if they were stacks, queues, and double-ended queues.

push(L, expr) adds expr to the left end of list L and
returns L as its result:

][L := [];
 r := [] (list)

][push(L, 1);
 r := [1] (list)

][L;
 r := [1] (list)

][push(L, 2);
 r := [2,1] (list)

][push(L, 3);
 r := [3,2,1] (list)

][L;
 r := [3,2,1] (list)

CSc 451, Spring 2003 Slide 94
W. H. Mitchell

Lists as stacks and queues, continued

pop(L) removes the leftmost element of the list L and returns
that value. pop(L) fails if L is empty.

][L;
 r := [3,2,1] (list)

][while e := pop(L) do
... write(e);
3
2
1
Failure

][L;
 r := [] (list)

Note that the series of pops clears the list.

A program to print the lines in a file in reverse order:

procedure main()
 L := []
 while push(L, read())
 while write(pop(L))

end

With generators:

procedure main()
 L := []

every push(L, !&input)
every write(!L)

end

CSc 451, Spring 2003 Slide 95
W. H. Mitchell

Lists as stacks and queues, continued

push returns its first argument:

][x := push(push(push([],10),20),30);
 r := [30,20,10] (list)

][x;
 r := [30,20,10] (list)

put(L, expr) adds expr to the right end of L and returns L
as its result:

][L := ["a"];
 r := ["a"] (list)

][put(L, "b");
 r := ["a","b"] (list)

][every put(L, 1 to 3);
Failure

][L;
 r := ["a","b",1,2,3] (list)

CSc 451, Spring 2003 Slide 96
W. H. Mitchell

Lists as stacks and queues, continued

get(L), performs the same operation as pop(L), removing
the leftmost element of the list L and returning that value.
get(L) fails if L is empty.

Yet another way to print the numbers from 1 to 10:

L := []
every put(L, 1 to 10)
while write(get(L))

pull(L) removes the rightmost element of the list L and
returns that value. pull(L) fails if L is empty.

][L := [1,2,3,4];
 r := [1,2,3,4] (list)

][while write(pull(L));
4
3
2
1
Failure

][L;
 r := [] (list)

Any of the five functions push, pop, put, get, and pull can
be used in any combination on any list.

A visual summary:

push ==> ==> pull
pop <== List <== put
get <==

CSc 451, Spring 2003 Slide 97
W. H. Mitchell

List element generation

When applied to lists, ! generates elements:

][.every ![1, 2, ["a", "b"], 3.0, write];
 1 (integer)
 2 (integer)
 ["a","b"] (list)
 3.0 (real)
 function write (procedure)

Problem: Write a procedure common(L1, L2, L3) that
succeeds if the three lists have an integer value in common.
Easy: Assume that the lists contain only integers. Hard: Don't
assume that.

Problem: Write procedures explode(s) and implode(L)
such as those found in ML.

][explode("test");
 r := ["t","e","s","t"] (list)

][implode(r);
 r := "test" (string)

CSc 451, Spring 2003 Slide 98
W. H. Mitchell

Sorting lists

The function sort(L) produces a sorted copy of the list L. L
is not changed.

][L := [5,1,10,7,-15];
 r := [5,1,10,7,-15] (list)

][Ls := sort(L);
 r := [-15,1,5,7,10] (list)

][L;
 r := [5,1,10,7,-15] (list)

][Ls;
 r := [-15,1,5,7,10] (list)

Lists need not be homogeneous to be sorted:

][sort(["a", 10, "b", 1, 2.0, &null]);
 r := [&null,1,10,2.0,"a","b"] (list)

Values are ordered first by type, then by value. Page 161 in the
text shows the type ordering used for heterogenous lists.

A program to sort lines of standard input:

procedure main()
 L := []
 while put(L, read())
 every write(!sort(L))
end

Problem: Describe two distinct ways to sort lines in descending
order.

CSc 451, Spring 2003 Slide 99
W. H. Mitchell

Sorting lists, continued

Sorting a list of lists orders the lists according to their order of
creation—not usually very useful.

The sortf(L, i) function sorts a list of lists according to the
i-th element of each list:

][L := [[1, "one"], [8, "eight"], [2, "two"]];
 r := [[1,"one"], [8,"eight"], [2,"two"]]

][sortf(L, 1);
 r := [[1,"one"],[2,"two"],[8,"eight"]]

][sortf(L, 2);
 r := [[8,"eight"], [1,"one"], [2,"two"]]

The value i can be negative, but not zero.

Lists without an i-th element sort ahead of other lists.

CSc 451, Spring 2003 Slide 100
W. H. Mitchell

Lists in a nutshell

• Create with [expr, ...] and list(N, value)

• Index and section like strings
Can't assign to sections

• Size and element generation like strings

• Concatenate with |||

• Stack/queue access with put, push, get, pop, pull
Parameters are consistent: list first, then value

• Sort with sort and sortf

Challenge:
Find another language where equivalent functionality can
be described as briefly.

CSc 451, Spring 2003 Slide 101
W. H. Mitchell

Reference semantics for lists

Some types in Icon use value semantics and others use reference
semantics.

Strings use value semantics:

][s1 := "string 1";
 r := "string 1" (string)

][s2 := s1;
 r := "string 1" (string)

][s2[1] := "x";
 r := "x" (string)

][s1;
 r := "string 1" (string)
][s2;
 r := "xtring 1" (string)

Lists use reference semantics:

][L1 := [1,2,3];
 r := [1,2,3] (list)

][L2 := L1;
 r := [1,2,3] (list)

][L2[1] := "x";
 r := "x" (string)

][L1;
 r := ["x",2,3] (list)

][L2;
 r := ["x",2,3] (list)

CSc 451, Spring 2003 Slide 102
W. H. Mitchell

Reference semantics for lists, continued

Earlier examples of list operations with ie have been edited.
What ie really shows for list values:

][lst1 := [1,2,3];
 r := L1:[1,2,3] (list)

][lst2 := [[],[],[]];
 r := L1:[L2:[],L3:[],L4:[]] (list)

The Ln tags are used to help identify lists that appear
multiple times:

][[lst1, lst1, [lst1]];
 r := L1:[L2:[1,2,3],L2,L3:[L2]] (list)

Consider this:

][lst := [1,2];
 r := L1:[1,2] (list)

][lst[1] := lst;
 r := L1:[L1,2] (list)

Then this:

][lst[1][2] := 10;
 r := 10 (integer)

][lst;
 r := L1:[L1,10] (list)

CSc 451, Spring 2003 Slide 103
W. H. Mitchell

Reference semantics for lists, continued

More:

][X := [1,2,3];
 r := L1:[1,2,3] (list)

][push(X,X);
 r := L1:[L1,1,2,3] (list)

][put(X,X);
 r := L1:[L1,1,2,3,L1] (list)

][X[3] := [[X]];
 r := L1:[L2:[L3:[L3,1,L1,3,L3]]] (list)

][X;
 r := L1:[L1,1,L2:[L3:[L1]],3,L1] (list)

Explain this:

][L := list(5,[]);
 r := L1:[L2:[],L2,L2,L2,L2] (list)

CSc 451, Spring 2003 Slide 104
W. H. Mitchell

Reference semantics for lists, continued

An important aspect of list semantics is that equality of two list-
valued expressions is based on whether the expressions
reference the same list object in memory.

][lst1 := [1,2,3];
 r := L1:[1,2,3] (list)

][lst2 := lst1;
 r := L1:[1,2,3] (list)

][lst1 === lst2;
 r := L1:[1,2,3] (list)

][lst2 === [1,2,3];
Failure

][[1,2,3] === [1,2,3];
Failure

][[] === [];
Failure

CSc 451, Spring 2003 Slide 105
W. H. Mitchell

Reference semantics for lists, continued

Icon uses call-by-value for transmission of argument values to a
procedure.

However, an argument is a type such as a list, which uses
reference semantics, the value passed is a reference to the list
itself. Changes made to the list will be visible to the caller.

An extension of the procedure double to handle lists:

procedure double(x)
 if type(x) == "string" then
 return x || x
 else if numeric(x) then
 return 2 * x
 else if type(x) == "list" then {
 every i := 1 to *x do
 x[i] := double(x[i])
 return x
 }
 else
 fail
end

Usage: (note that L is changed)

][L := [3, "abc", [4.5, ["xx"]]];
 r := [3, "abc", [4.5, ["xx"]]] (list)

][double(L);
 r := [6, "abcabc", [9.0, ["xxxx"]]] (list)

][L;
 r := [6, "abcabc", [9.0, ["xxxx"]]] (list)

CSc 451, Spring 2003 Slide 106
W. H. Mitchell

image and Image

Lists cannot be output with the write function. To output
lists, the image and Image routines may be used.

The built-in function image(X)produces a string
representation of any value:

][image(1);
 r := "1" (string)

][image("s");
 r := "\"s\"" (string)

][write(image("s"));
"s"
 r := "\"s\"" (string)

][image(write);
 r := "function write" (string)

][image([1,2,3]);
 r := "list_13(3)" (string)

For lists, image only shows a "serial number" and the size.

CSc 451, Spring 2003 Slide 107
W. H. Mitchell

image and Image, continued

The Icon procedure Image can be used to produce a complete
description of a list (or any value):

][write(Image([1,2,[],4]));
L3:[
 1,
 2,
 L4:[],
 4]
 r := "L3:[\n 1,\n 2,\n L4:[],\n 4]"

Note that Image produces a string, which in this case contains
characters for formatting.

An optional second argument of 3 causes Image to produce a
string with no formatting characters:

][write(Image([1,2,[],4], 3));
L8:[1,2,L9:[],4]
 r := "L8:[1,2,L9:[],4]" (string)

Image is not a built-in function; it must be linked:

link image
procedure main()
 ...
end

CSc 451, Spring 2003 Slide 108
W. H. Mitchell

Simple text processing with split

A number of text processing problems can be addressed with
a simple concept: splitting a line into pieces based on
delimiters and then processing those pieces.

There is a procedure split(s, delims) that returns a list
consisting of the portions of the string s delimited by
characters in delims:

][split("just a test here ", " ");
 r := ["just","a","test","here"] (list)

][split("...1..3..45,78,,9 10 ", "., ");
 r := ["1","3","45","78","9","10"] (list)

split is not a built-in function; it must be linked:

link split
procedure main()

...
end

CSc 451, Spring 2003 Slide 109
W. H. Mitchell

split, continued

Consider a file whose lines consist of zero or more integers
separated by white space:

5 10 0 50

200
1 2 3 4 5 6 7 8 9 10

A program to sum the numbers in such a file:

link split
procedure main()
 sum := 0
 while line := read() do {
 nums := split(line, " \t")
 every num := !nums do
 sum +:= num
 }

 write("The sum is ", sum)
end

Problem: Trim down that flabby code!

procedure main()
 sum := 0

 write("The sum is ", sum)
end

If split has a third argument that is non-null, both
delimited and delimiting pieces of the string are produced:

][split("520-621-6613", "-", 1);
 r := ["520","-","621","-","6613"] (list)

CSc 451, Spring 2003 Slide 110
W. H. Mitchell

split, continued

Write a procedure extract(s, m, n) that extracts a portion of a
string s that represents a hierarchical data structure. m is a major
index and n is a minor index. Major sections of the string are
delimited by slashes and are composed of minor sections separated by
colons. Here is a sample string:

/a:b/apple:orange/10:2:4/xyz/

It has four major sections which in turn have two, two, three and one
minor sections.

A call such as extract(s, 3, 2) locates the third major section
("10:2:4") and return the second minor section ("2").

][extract(s, 1, 2);
 r := "b" (string)

][extract(s, 4, 1);
 r := "xyz" (string)

][extract(s, 4, 2);
Failure

CSc 451, Spring 2003 Slide 111
W. H. Mitchell

Command line arguments

The command line arguments for an Icon program are passed to
main as a list of strings.

procedure main(a)
 write(*a, " arguments:")
 every write(image(!a))
end

Execution:

% args just "a test" right here
4 arguments:
"just"
"a test"
"right"
"here"
% args
0 arguments:
%

Problem: Write a program picklines that reads lines from
standard input and prints ranges of lines specified by
command line arguments. Lines may be referenced from the
end of file, with the last line being -1.

Examples:

picklines 1 2 3 2 1 < somefile

picklines 1..10 30 40 50 < somefile

picklines 1..10 -10..-1 < somefile

CSc 451, Spring 2003 Slide 112
W. H. Mitchell

picklines—Solution

link split
procedure main(args)
 lines := []
 while put(lines, read())

 picks := []
 every spec := !args do {
 w := split(spec, ".")
 every put(picks, lines[w[1]:w[-1]+1])
 }

 every write(!!picks)
end

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26

