
CSc 451, Spring 2003         Unicon, Slide 1
W. H. Mitchell

Unicon—History

One predecessor of Unicon is Idol, Icon-derived Object
Language.

Idol was developed at the University of Arizona by Clint Jeffery
in 1988 for a graduate course on object-oriented programming.

"Unicon" initially stood for "UNIX Icon"—a version of Icon
with a set of POSIX extensions by Shamim Mohamed
developed in 1997.  Mohamed learned Icon at the U of A but,
because of Icon's lack of access to many OS facilities, used Perl
for a variety of systems programming tasks.  He wrote:

"While it is true that Perl substitutes for a conglomeration
of sed, awk and shell scripts, it does so with some of the
worst language features from them."

Unicon was his solution.

In 1999 Jeffery and Mohammed merged their work and other
elements, such as an ODBC interface, into a single system,
which was tentatively called Icon-2.

The name Unicon was later recycled, now standing for "Unified
Extended Icon".



CSc 451, Spring 2003         Unicon, Slide 2
W. H. Mitchell

Class and method basics

Here is a simple Unicon class that models a coordinate-less
rectangle:

class Rectangle(width, height)
    method area()
        return width * height
    end

    method perimeter()
        return width*2 + height*2
    end

    method str()
        return "Rectangle(" || width || "x" ||
                               height || ")"
    end
end

The class name is Rectangle.

It has two attributes (or fields), width and height.

It has three methods: area, perimeter, and str.

The str method produces a value such as
"Rectangle(3x4)"



CSc 451, Spring 2003         Unicon, Slide 3
W. H. Mitchell

Class and method basics, continued

For reference:

class Rectangle(width, height)
    method area()
        return width * height
    end
    ...
end

We can create instances of Rectangle like this:

r := Rectangle(3,4)

Rs := [Rectangle(3,4), Rectangle(5.0,7)]

r2 := Rectangle("3.4", 7)

For this class the constructor is essentially a record
constructor—the supplied values are assigned directly to the
fields width and height.

Methods are invoked with a familiar syntax:

a := r.area()

write("Perim: ", r.perimeter())

every write((!Rs).str())

write(Rectangle(2.9, 9.02).perimeter())



CSc 451, Spring 2003         Unicon, Slide 4
W. H. Mitchell

Class and method basics, continued

Just like any other Icon procedure call or record construction, no
error checking is done.  A null value is used for missing
arguments and extra arguments are ignored.

All of the following execute without error:

r1 := Rectangle(3);

r2 := Rectangle("abc", "xyz");

r3 := Rectangle(7, 9, "abc");

Question: Which methods work for which of the above
instances?

Unicon has no provision for access specifications like "public"
and "private"—all attributes and methods are accessible in any
context.  This works:

procedure main()
    rr := Rectangle(3,4)
    rr.width := 20
    rr.height := 30
    write(rr.area())
end

Question: How can encapsulation be enforced?



CSc 451, Spring 2003         Unicon, Slide 5
W. H. Mitchell

Class and method basics, continued

The constructor is a procedure and can be treated like any other
procedure:

R := Rectangle

r1 := R(5,7)

r2 := [R][1](3,4)

r3 := ("Rect"||"angle")(3,4);



CSc 451, Spring 2003         Unicon, Slide 6
W. H. Mitchell

Class and method basics, continued

Here is a program that produces a memory fault on SunOS 5.9:

class X()
    method f()
        write("in f()...")
    end
end

procedure main()
    x := X()
    x.f()
    x.g()
end

Execution:

% bogus
in f()...

Run-time error 302
File bogus.icn; Line 10
memory violation
Traceback:
   main()
   {record X__state_1(record X__state_1(2), 
    record X__methods_1(1)) . g} from line 10
   in bogus.icn



CSc 451, Spring 2003         Unicon, Slide 7
W. H. Mitchell

The initially section

The simplistic behavior of assigning values in a constructor call
to the attribute in the corresponding position is often inadequate.

An initially section can be added to trigger processing
when the constructor is called.

class Rectangle(width, height, _area)
    method area()
        return _area
    end
    ...other methods...
    initially(w, h)
        write("initially: ",
             Image([width, height, _area],3))
        width := w
        height := h
        _area := w * h
end

If present, initially must follow all  methods.  

The end that ends the class definition also ends the
initially section.

][ rr := Rectangle(3,4);
initially: L1:[&null,&null,&null]
   r := ...lots...

][ rr.area();
   r := 12  (integer)

If initially(...) is present, no attributes are
automatically initialized.



CSc 451, Spring 2003         Unicon, Slide 8
W. H. Mitchell

initially, continued

The initially section can be used to enforce constraints on
the constructor's arguments.

class Rectangle(width, height, _area)
    ...
    initially(w, h)
        if /w | /h then fail
        if not numeric(w) |
           not numeric(h) then fail
        width := w
        height := h
        _area := width * height
end

Execution:

][ rr := Rectangle(3);
Failure

][ rr := Rectangle(3, "x");
Failure

][ rr := Rectangle(3, "3.4");
   r := ...lots... 

Note that by default an initially section succeeds.

Problem: There is no overloading of method names or the
initially section.  How could, for example, an omitted
height default to the same value as the width?

r := Rectangle(3)



CSc 451, Spring 2003         Unicon, Slide 9
W. H. Mitchell

initially, continued

If there is a parameterless initially section then the
arguments of the constructor call are used to initialize the
attributes.

Example:

class Counter(count)
    method inc()
        count +:= 1
        return count
    end
    
    method value()
        return count
    end

    initially
        /count := 0
end

Usage:

][ A := Counter(10);
   r := ...lots...

][ B := Counter();
   r := ...lots... 

][ A.value();
   r := 10  (integer)

][ B.value();
   r := 0  (integer)



CSc 451, Spring 2003         Unicon, Slide 10
W. H. Mitchell

The implicit variable self

Unicon's counterpart for Java's this is self.

One use is to distinguish between attributes and parameters:

class Rectangle(_area, width, height)
    initially(width,height)
        self.width := width
        self.height := height
        ...
end



CSc 451, Spring 2003         Unicon, Slide 11
W. H. Mitchell

Class specification—general form

Here is the general form of a class specification:

class classname(attribute1, attribute2, ..., attributeN)

method method1(param1, param2, ..., paramN)
...code for method...

        end

        ...additional methods...

        initially(param1, param2, ..., paramN)
...code to execute upon construction...

end

Note that all attributes are specified in the list following the
class name.

Here is a minimal class definition:

class X()
end



CSc 451, Spring 2003         Unicon, Slide 12
W. H. Mitchell

Method result sequences

Methods may fail, or produce a single result, or be generative,
just like regular Icon procedures.  Imagine a side() method
that generates the width and height of a rectangle:

class Rectangle(width, height, _area)
    ...
    method side()
        suspend width | height
    end
    ...
end

Usage:

procedure main()
    rects := []
    every 1 to 20 do
        put(rects, Rectangle(?20, ?20))

    every r := !rects do
        if r.side() > 10 then
            write(r.str())
end

Output:

Rectangle(7x11)
Rectangle(2x15)
Rectangle(2x15)
Rectangle(11x13)
Rectangle(12x15)
Rectangle(15x5)
...



CSc 451, Spring 2003         Unicon, Slide 13
W. H. Mitchell

Circle drag/drop in Unicon

Recall this program from Graphics slide 31: (drag1)

record circle(x,y,r)
procedure main()
    WOpen("size=600,300","drawop=reverse")
    DrawLine(300,0,300,300)
    circles := make_circles()
    repeat case Event() of {
      &lpress:
        if c := point_in(circles, &x, &y) then {
          lastx := c.x; lasty := c.y
          r := c.r
          repeat case Event() of {
            &ldrag: {
              DrawCircle(lastx, lasty, r)
              DrawCircle(lastx := &x,lasty :=&y, r)
              }
            &lrelease: {
              DrawCircle(lastx, lasty, r)
              if &x <= 300 then {
                    DrawCircle(&x, &y, r)
                    c.x := &x; c.y := &y
                    }
              else
                    delete(circles, c)
                break
              }
            }
          }
        }
end



CSc 451, Spring 2003         Unicon, Slide 14
W. H. Mitchell

Circle drag/drop in Unicon, continued

Here is a version in Unicon.  First, a Circle class:

class Circle(x, y, r)
    method has_pt(pt_x, pt_y)
        if sqrt((x-pt_x)^2+(y-pt_y)^2) < r then
            return self
    end

    method move_to(new_x, new_y)
        erase()
        x := new_x; y := new_y
        draw()
    end

    method erase()
        draw()
    end
    
    method draw()
        DrawCircle(x, y, r)
    end

    initially
        draw()
end

Note that the initially section counts on direct assignment
of attributes from the constructor call.

The code above does not track the on-screen state (drawn or not)
and thus places an additional responsibility on the caller.



CSc 451, Spring 2003         Unicon, Slide 15
W. H. Mitchell

Circle drag/drop in Unicon, continued

Main program:

procedure main()
    WOpen("size=600,300","drawop=reverse")
    DrawLine(300,0,300,300)

    circles := make_circles()

    repeat case Event() of {
      &lpress:
        if c := (!circles).has_pt(&x, &y) then {
          repeat case Event() of {
          
            &ldrag: c.move_to(&x, &y)
            
            &lrelease: {
              if &x <= 300 then
                    c.move_to(&x, &y)
              else {
                    c.erase()
                    delete(circles, c)
                    }
              break
              }
            }
          }
        }
end

Which version is better?



CSc 451, Spring 2003         Unicon, Slide 16
W. H. Mitchell

Inheritance

Here is a simple general form for specifying inheritance:

class class-name : superclass-name (class-attributes)
...
end

Here is a skeletal three class hierarchy to model geometric
shapes:

class Shape(name)
end

class Rectangle: Shape (width, height)
end

class Circle: Shape (radius)
end

Rectangle is a subclass of Shape and has three attributes:
name, width, and height.

Circle is a subclass of Shape and has two attributes: name
and radius.

In Unicon there is no common superclass such as Java's
Object class.



CSc 451, Spring 2003         Unicon, Slide 17
W. H. Mitchell

Superclass initialization

If a subclass has no initially section then the superclass's
initially section is called.  

The superclass's initially section is NOT CALLED if the
subclass has an initially section.

Example:

class Shape(name)
    initially
        write("Shape's initially")
end

class Circle: Shape (radius)
end

class Rectangle: Shape (width, height)
    initially
        write("Rectangle's initially")
end

procedure main()
    c := Circle(5)
    r := Rectangle(3,4)
end

Output:

Shape's initially
Rectangle's initially

If a subclass requires an initially section then it should
explicitly invoke the superclass initially section.



CSc 451, Spring 2003         Unicon, Slide 18
W. H. Mitchell

Superclass initialization, continued

Here is an example of invoking a superclass initially section:

class Shape(name)
    initially(nm)
        name := \nm | "<none>"
        write("Shape initially(), name = ", name)
end

class Rectangle: Shape (width, height)
    initially(w, h, nm)
        write("Rectangle initially()")
        width := w
        height := h
        self$Shape.initially(nm)
end

procedure main()
    r := Rectangle(3, 4)
    write(Image([r.name, r.width, r.height],3))

    r2 := Rectangle(5, 7, "B")
    write(Image([r2.name, r2.width, r2.height],3))
end

Output:

Rectangle initially()
Shape initially(), name = <none>
L1:["<none>",3,4]

Rectangle initially()
Shape initially(), name = B
L2:["B",5,7]

Note that there is no rule that specifies when superclass
initialization must be done.



CSc 451, Spring 2003         Unicon, Slide 19
W. H. Mitchell

Method inheritance and overriding

Unicon's rule for method inheritance is a common one:
Subclasses inherit superclass methods unless they supply their
own version of a method.

class Shape()
    method area()
    end
end

class Rectangle: Shape (_width, _height)
    method area()
        return _width * _height
    end
end

class Circle: Shape (_radius)
end

procedure main()
    r := Rectangle(3, 4)
    c := Circle(5)

    write("r's area = ", r.area())
    write("c's area = ", c.area())
end

Output:

r's area = 12



CSc 451, Spring 2003         Unicon, Slide 20
W. H. Mitchell

Abstract classes

Unicon provides no means to declare a class or method as
abstract.

One way to ensure that a subclass overrides a method is to add
code that produces an error if an overriding method is forgotten:

class Shape()
    method area()
        stop("Shape.area() called!?")
    end
end

Question: Icon's association of type with values rather than
variables implies that some errors are not detectable until the
code is executed.  Would it be possible to enforce an abstract
declaration at compile time?



CSc 451, Spring 2003         Unicon, Slide 21
W. H. Mitchell

Inheritance and dynamic typing

Languages like Java use inheritance to allow code to be written
in terms of a superclass and then be run with subclass instances.

public static Shape biggestArea(Shape shapes[ ]) {
    if (shapes.length == 0) return null;
    Shape it = shapes[0];
    for (int i = 1; i < shapes.length; i = i + 1) {
        if (shapes[i].getArea( ) > it.getArea( ))
            it = shapes[i];
        }
    return it;
    }

Because of Icon's value-based typing, inheritance is not needed
to write such code.

In the following code there is no common superclass for A and
B, but the routine show_what() can a handle a list of As, Bs,
and any other objects that have a what() method.

class A()
    method what()
        return "I'm an A!"
    end
end

class B()
    method what()
        return "I'm a B..."
    end
end

procedure show_what(L)
    every o := !L do
        write(o.what())
end



CSc 451, Spring 2003         Unicon, Slide 22
W. H. Mitchell

Multiple inheritance

Unicon supports multiple inheritance—a class can have any
number of superclasses. Here's an abstract example:

class A(_a)
    method f()
        write("A.f()")
    end
end

class B(_b1, _b2)
    method g()
        write("B.g()")
    end
end

class C(_c)
end

class D(_d1, _d2, _d3)
    method h()
        write("D.h()")
    end
end

class ABC: A : B : C (_abc1)
    method g()
        write("ABC.g()")
    end
end

class M : D : ABC (_m1, _m2)
end

A subclass inherits all attributes and methods of all its
superclasses.

procedure main()
    abc := ABC()
    abc.f() # calls A.f()
    abc.g() # calls ABC.g()

    m := M()
    m.f() # calls A.f()
    m.g() # calls ABC.g()
    m.h() # calls D.h()
end



CSc 451, Spring 2003         Unicon, Slide 23
W. H. Mitchell

Multiple inheritance, continued

A less abstract example—a DrawableRectangle:

class Drawable(_x, _y)
    method draw()
        stop("Drawable.draw() not overridden")
    end
    initially(x,y)
        _x := x; _y := y
end

class DrawableRectangle : Rectangle : Drawable ()
    method draw()
        DrawRectangle(_x, _y, _width, _height)
    end
    initially(w, h, x, y, nm)
        self$Rectangle.initially(w,h,nm)
        self$Drawable.initially(x,y)
end

procedure main()
    WOpen("size=300,300")
    rects := [ ]
    every i := 1 to 20 do
        put(rects, DrawableRectangle(?40, ?40, ?300, ?300))

    every r := !rects do
        if r.area() < 1000 then
            r.draw()

    WDone()
end



CSc 451, Spring 2003         Unicon, Slide 24
W. H. Mitchell

Class variables and methods

Unicon does not have support for class variables and methods.

Problem: What is the essence of class variables and methods and 
how can they be approximated/simulated?



CSc 451, Spring 2003         Unicon, Slide 25
W. H. Mitchell

Class variables and methods, continued

Here is a version of the Rectangle class that uses a global
variable to loosely simulate a class method that returns the
number of rectangles that have been created.

class Rectangle(width, height)
    method area()
        return width*height
    end
    initially
        initial{
            Rectangle_num_created := 0
            }
        Rectangle_num_created +:= 1
end

global Rectangle_num_created

procedure Rectangle_created()
    return Rectangle_num_created
end

procedure main()
    every 1 to 20 do
        Rectangle(?100, ?100)

    write(Rectangle_created(),
" rectangles created")

end

What are the pros and cons of this approach?



CSc 451, Spring 2003         Unicon, Slide 26
W. H. Mitchell

Class variables and methods, continued

Another approach is to use a method with a static variable and
have a parameter serve as a flag indicating whether the value
should be fetched or modified.

class Rectangle(width, height)
    ...
    method created(increment)
        static created
        initial created := 0
        if \increment then
            created +:= 1
        else
            return created
    end

    initially
        created(1)  # any non-null value would do
end

procedure main()
    every 1 to 20 do
        Rectangle(?100, ?100)

    write(Rectangle().created(),
" rectangles created")

end

What are the pros and cons of this approach?



CSc 451, Spring 2003         Unicon, Slide 27
W. H. Mitchell

Class variables and methods, continued

Here is another approach:

class Rectangle(width, height)
    initially
      initial {
       if type(Rectangle_class) == "procedure" then
          Rectangle_class()
          }
      Rectangle_class.new_instance()
end

class Rectangle_class(num_rects)
    method created()
        return num_rects
    end
    method new_instance()
        num_rects +:= 1
    end
    initially
        Rectangle_class := self
        num_rects := 0
end

procedure main()

    every 1 to 20 do
        Rectangle(?100, ?100)

    write(Rectangle_class.created(),
" rectangles created")

end

What are the pros and cons of this approach?



CSc 451, Spring 2003         Unicon, Slide 28
W. H. Mitchell

Behind the scenes in Unicon

Unicon programs are preprocessed, yielding a syntactically valid
Icon program that is then compiled with icont.  The resulting 
bytecode executable can then be run on the Unicon virtual
machine.

A Unicon method is translated into an Icon procedure that has
the class name prepended and an initial argument of self.

The methods in this Unicon class:

class Rectangle(width, height)
    method area()
        return width * height
    end
    method set_width(w)
        width := w
    end
end

are translated into this Icon code:

procedure Rectangle_area(self)
    return self.width * self.height
end

procedure Rectangle_set_width(self, w)
     self.width := w
end



CSc 451, Spring 2003         Unicon, Slide 29
W. H. Mitchell

Behind the scenes in Unicon, continued

Here is the balance of the generated Icon code for the class:

record Rectangle__state(__s, __m, width, height)

record Rectangle__methods(area, set_width)

global Rectangle__oprec

procedure Rectangle(width,height)
    local self,clone
    initial {
        if /Rectangle__oprec then
            Rectangleinitialize()
        }
  self := Rectangle__state(&null, Rectangle__oprec, 
                           width, height)
  self.__s := self
  return self
end

procedure Rectangleinitialize()
    initial Rectangle__oprec :=
       Rectangle__methods(Rectangle_area,
                          Rectangle_set_width)
end

For r := Rectangle(3,4) here is the picture:



CSc 451, Spring 2003         Unicon, Slide 30
W. H. Mitchell

Behind the scenes in Unicon, continued

For reference:

record Rectangle__state(__s,__m, width, height)

record Rectangle__methods(area, set_width)

Here is a main program.  The Unicon preprocessor makes no
changes in it:

procedure main()
    r := Rectangle(3,4)
    r.set_width(7)
    write("Area: ", r.area())
end

Recall that the type of r is Rectangle__state and note that
there is no area field in that record.

What happens is this: When the field operator (binary period)
detects that r has no field named area, it looks to see if the
first field of r is named __s.  If so, it then looks in the record
referenced by the second field (__m) for a field named area
and if found, the value of the field is the result of evaluating
r.area.

To see the result of Unicon preprocessing,  use the -E flag:

unicon -E myclass.icn



CSc 451, Spring 2003         Unicon, Slide 31
W. H. Mitchell

Access to system services

The object-oriented programming facilities are one aspect of
Unicon.  Another is Unicon's access to operating system
services.

One of the services available is the stat() system call, which
produces a variety of information about a file.  Unicon's
stat(fname) call returns a record with the following
information (and more) about the file fname:

Field name Description

dev ID of device containing the file

ino Inode number

mode File mode (e.g. protections)

nlink Number of links

uid,
gid

User-id and group-id

size Size of the file in bytes

atime Time of last access

mtime Time of last modification

ctime Time of last inode change

symlink If a symbolic link, the name
linked to.



CSc 451, Spring 2003         Unicon, Slide 32
W. H. Mitchell

Example: List files by size

bysize is a program that uses stat(fname) to produce a
list of files in a named directory sorted by file size in descending
order:

% bysize /home/cs451/a5
    10663 mtimes
     3730 day
     3461 mtimes.1
     3450 mcycle
      701 mcycle.2
      632 mtimes.2
      562 mtimes.ex
      229 tmtimes.sh
      148 mcycle.1
      104 mtimes.3

An ls, for comparison:

% ls -la /home/cs451/a5
total 60
drwxr-sr-x   3 whm      cs451        4096 Apr 21 03:15 .
drwxr-sr-x  19 whm      cs451        4096 Apr 16 03:40 ..
drwx------   2 whm      cs451        4096 Feb 12 04:45 v1
-r-xr-xr-x   1 whm      cs451        3730 Feb 12 22:33 day
-r-xr-xr-x   1 whm      cs451        3450 Feb 12 21:54 mcycle
-r--r--r--   1 whm      cs451         148 Feb 12 21:54 mcycle.1
-r--r--r--   1 whm      cs451         701 Feb 12 21:54 mcycle.2
-r-xr-xr-x   1 whm      dept        10663 Feb 12 04:42 mtimes
-r-xr-xr-x   1 whm      cs451        3461 Feb 12 04:41 mtimes.1
-r-xr-xr-x   1 whm      cs451         632 Feb 12 04:41 mtimes.2
-r-xr-xr-x   1 whm      cs451         104 Feb 12 04:41 mtimes.3
-r-xr-xr-x   1 whm      cs451         562 Feb 12 04:41 mtimes.ex
-r-xr-xr-x   1 whm      cs451         229 Feb 12 04:41 tmtimes.sh

Note that bysize does not show the three directories (., ..,
and v1)



CSc 451, Spring 2003         Unicon, Slide 33
W. H. Mitchell

bysize.icn

record file_info(name, size)  # name and size of a file

procedure main(args)

    #

    # Change to the directory named on the command line

    chdir(args[1]) |

        stop(args[1], ": Bad directory")

    #

    # A directory can be opened like a file.   Reading from a directory

    # produces the entries in the directory.

    dir := open(".")

    files := [ ]

    # 

    # Read each directory entry and stat it.  If an entry is not a directory,

    # add it to the list.

    #

    while fname := read(dir) do {

        stat_rec := stat(fname)

        #

        # If not a directory, include it.

        #

        if stat_rec.mode[1] ~== "d" then

            put(files, file_info(fname, stat_rec.size))

        }

    #

    # Sort by file size and print.

    #

    files := sortf(files, 2)

    every r := files[*files to 1 by -1] do

        write(right(r.size,9)," ", r.name)

end



CSc 451, Spring 2003         Unicon, Slide 34
W. H. Mitchell

Example: A simple shell

An interesting application of Unicon's system service facilities is
a simple command processor, commonly called a shell, that is
used to invoke programs.

UNIX shells use a "fork and exec" sequence to start programs.

The call fork() creates a child process that is a copy of the
current process.  In the parent process, fork() returns the
process id of the child.  In the child process, fork() returns
zero.

Example:

procedure main()
    if fork() = 0 then
        write("child process id is ", getpid())
    else
        write("parent process id is ", getpid())

    write("Hello, world!")
end

Output:

parent process id is 7713
Hello, world!
child process id is 7716
Hello, world!

Note that fork creates a process, not a thread—there's no sharing
of memory between the two processes.



CSc 451, Spring 2003         Unicon, Slide 35
W. H. Mitchell

A simple shell, continued

Here is a larger example with fork().  Both the parent and
child process identify themselves and then do three random
sleeps (delay()s), printing the time when they awake.

link random
procedure main()
    if fork() = 0 then who := "child "
                  else who := "parent"

    randomize()
    write(who, " process id is ", getpid())
    every 1 to 3 do {
        delay(?10000)
        write(who, " @ ", &clock)
        }

    write(who, " done")
end

Output:

% fork
parent process id is 8730
child  process id is 8733
child  @ 03:43:46
parent @ 03:43:49
parent @ 03:43:49
child  @ 03:43:53
parent @ 03:43:57
parent done
% child  @ 03:43:59
child  done

Questions:
(1) Why is there a "%" in the middle of the output?
(2) What happens if the randomize() call is omitted?



CSc 451, Spring 2003         Unicon, Slide 36
W. H. Mitchell

A simple shell, continued

The second element for a shell is the exec() call:

exec(fname, arg0, arg1, ..., argN)

This call replaces the current process with an execution of the
program named by fname, supplying the remaining parameters
as arguments to the program.

A simple example: (exec0.icn)

procedure main()
    write("Ready to exec ls...")
    exec("/bin/ls", "ls", "-ld", "/")
    write("Done with exec...")
end

Execution:

% exec0
Ready to exec ls...
drwxr-xr-x  27 root  wheel   1024 Apr 13 16:56 /
%

Note that exec()'s arg0 through argN corresponds to, e.g.,
argv[0] through argv[N] in a C program:

void main(int argc, char *argv[])
{
...
}



CSc 451, Spring 2003         Unicon, Slide 37
W. H. Mitchell

A simple shell, continued

As mentioned earlier, UNIX shells use a "fork and exec"
sequence: When the user types a command to run, the shell
forks and then uses an exec() call in the child to overlay the
child process with the command of interest.

A very simple shell:

procedure main()
    while writes("Cmd? ") & cmdline := read() do {
        if (child := fork()) = 0 then {
            #
            # We're the child process.  Split up
            # command line and exec it.
            w := split(cmdline)
            cmd := get(w)
            exec!(["/bin/"||cmd, cmd] ||| w)
            }
        else
            #
            # We're the parent.  Wait for the child
            # to terminate before prompting again.
            wait(child)
        }
end

Execution:

Cmd? ls -ld /
drwxr-xr-x  27 root  wheel     1024 Apr 13 16:56 /
Cmd? date
Mon Apr 21 04:13:29 MST 2003
Cmd? wc /etc/passwd
    1462    3840   98991 /etc/passwd
Cmd? wc </etc/passwd
wc: cannot open </etc/passwd
Cmd? who >out
who: Cannot stat file '>out'



CSc 451, Spring 2003         Unicon, Slide 38
W. H. Mitchell

A simple shell—I/O redirection

UNIX shells allow standard input and standard output to be
redirected with the < and > symbols.

Here is a shell command that runs wc on the class mailing list
mailbox and redirects the output to the file wc.output

% wc < /home/cs451/mail > wc.output

The result:

% cat wc.output
   6257   31501  268989



CSc 451, Spring 2003         Unicon, Slide 39
W. H. Mitchell

IO redirection, continued

For reference:

% wc < /home/cs451/mail > wc.output

A cornerstone of redirection is that the exec() call replaces
the current process with the execution of another program, but
file descriptors are unaffected.  For example, standard input
(&input) in the original process is standard input in the
replacement process.

Here is a program (redir1) that takes advantage of this
carryover of file descriptors to mimic the shell command above:

procedure main()

   infile := open("/home/cs451/mail")
   fdup(infile, &input)  # like &input := infile

   outfile := open("wc.output", "w")
   fdup(outfile, &output)

   exec("wc", "wc")
end

Execution:

% redir1
% cat wc.output
   6257   31501  268989

The fdup(from, to) function replaces the file descriptor
associated with the file value to with the file descriptor
associated with the file value from.



CSc 451, Spring 2003         Unicon, Slide 40
W. H. Mitchell

ish: A shell in Unicon

Here is ish, a rudimentary shell that provides I/O redirection
and background processes (via &):

procedure main()

    while line := (writes("ish -- "), read()) do {

        if *line = 0 then next

        w := split(line)

        cmd := get(w)

        

        background := if w[-1] == "&" then { pull(w); 1} else &null

        if fork() = 0 then {

            pgmargs := [ ]

            stdin := stdout := &null

            while arg := get(w) do {

                case arg[1] of {

                    "<": stdin := arg[2:0]    # assume no space after '<' and '>'

                    ">": stdout:= arg[2:0]

                    default: put(pgmargs, arg)

                    }

                }

            if \stdin then {

                stdin := open(stdin) | stop(stdin, ": Can't open")

                fdup(stdin, &input)

                }

            if \stdout then {

                stdout := open(stdout, "w") | stop(stdin, ": Can't open")

                fdup(stdout, &output)

                }

            exec!([cmd, cmd] ||| pgmargs)

            }

        else {

            if /background then wait()

            }

        }

end



CSc 451, Spring 2003         Unicon, Slide 41
W. H. Mitchell

ish in operation

% ish
ish -- date
Wed Apr 23 23:33:48 MST 2003
ish -- date >out
ish -- cat out
Wed Apr 23 23:33:54 MST 2003
ish -- wc <ish.icn
     38     115     832
ish --
ish -- du /usr >du.out &
ish -- wc du.out
    562    1124   21711 du.out
ish –- who
whm      tty1     Apr  6 23:50
whm      pts/0    Apr  6 23:52 (:0)
ish -- date
Wed Apr 23 23:42:56 MST 2003
ish -- wc du.out
   1644    3288   64077 du.out
ish –- ^D
%

Some work remains:

ish -- 
ish -- ls *.icn
ls: *.icn: No such file or directory
ish --
ish -- ls | wc
ls: |: No such file or directory
ls: wc: No such file or directory



CSc 451, Spring 2003         Unicon, Slide 42
W. H. Mitchell

Pipes

A standard feature of UNIX shells is the ability to send the
output from one program into the input of another program.

ls | wc
ls -t | grep -v ".icn$" | head -1

The supporting mechanism for this is called a pipe.

A pipe is an operating system mechanism that arranges for
output written to a file descriptor to be available as input on
another file descriptor.

Reads from a pipe will block until something is written to the
other end.  Writes to a pipe will block if a sufficient amount of
already written data is still unread.

Unicon's pipe() function creates a pipe and returns a list of
two file values: the first for reading and the second for writing:

][ pipe();
   r := [file(pipe), file(pipe)]  (list)

A trivial example:

procedure main(args)
    pipes := pipe()
    write(pipes[2], "Testing...")
    write(reverse(read(pipes[1])))
end

Output:
...gnitseT



CSc 451, Spring 2003         Unicon, Slide 43
W. H. Mitchell

Pipes, continued

In most cases a pipe is used to send data between two processes.

In the following program a child process writes to a parent
process at random intervals.

procedure main()
    pipe_pair := pipe()
    if fork() = 0 then
        every i := 1 to 5 do {
            delay(?5000)
            write(pipe_pair[2], i)
            }

    while line := read(pipe_pair[1]) do
        write("My child wrote to me! (",
            line, " at ", &clock, ")")
end

Output:

My child wrote to me! (1 at 21:14:04)
My child wrote to me! (2 at 21:14:06)
My child wrote to me! (3 at 21:14:08)
My child wrote to me! (4 at 21:14:10)
My child wrote to me! (5 at 21:14:13)



CSc 451, Spring 2003         Unicon, Slide 44
W. H. Mitchell

Pipes, continued

Consider a program that prompts for two commands and uses a
pipe to connect the output of the first to the output of the
second: (blank lines have been added...)

Pipe from? ls
Pipe to? wc
    118     118     917

Pipe from? ls
Pipe to? grep fork
fork
fork.icn
fork0
fork0.icn

Pipe from? who
Pipe to? wc
     71     355    2201

Pipe from? iota 3
Pipe to? cat
1
2
3

Pipe from? iota 3
Pipe to? tac
3
2
1



CSc 451, Spring 2003         Unicon, Slide 45
W. H. Mitchell

Pipes, continued

Here is the from/to piper:

procedure main()
    repeat {
        writes("Pipe from? ")
        from_cmd := split(read())
        writes("Pipe to? ")
        to_cmd := split(read())

        pipe_pair := pipe()
        if fork() = 0 then {
            fdup(pipe_pair[2], &output)
            close(pipe_pair[1])
            exec!([from_cmd[1]]|||from_cmd)
            write("exec failed! (from)")
            }

        if fork() = 0 then {
            fdup(pipe_pair[1], &input)
            close(pipe_pair[2])
            exec!([to_cmd[1]]|||to_cmd)
            write("exec failed! (to)")
            }

        close(pipe_pair[1])
        close(pipe_pair[2])

        wait()  # wait for both children to
        wait()  # terminate
        }
end

Note that the close()s are needed to make it work.

How could we add piping to ish?



CSc 451, Spring 2003         Unicon, Slide 46
W. H. Mitchell

The select() function

The select() function allows a program to wait on input
from any one of several input sources and, optionally, a delay
time.  It looks like this:

select(file1, file2, ..., wait_time)

It returns when input is available on at least one of the files
and/or the wait time (in milliseconds) has elapsed.  The return
value is a list of files on which input is available.  If the list is
empty, the wait time was exceeded.

In what situations is something like select() necessary?

select() allegedly works on files, network connections,
pipes, and windows.  The following example required a patch to
the Unicon runtime system.



CSc 451, Spring 2003         Unicon, Slide 47
W. H. Mitchell

The select() function, continued

In this program a parent process forks three children and then
waits to hear from each via a pipe.

procedure main()
    cpipes :=[] # input side of pipes from children
    every c := !"ABC" do {
        pipe_pair := pipe()
        put(cpipes, pipe_pair[1])
        if fork() = 0 then {
            randomize()
            repeat {
                delay(?15000) # 15 seconds
                write(pipe_pair[2], c)
                }
            }
        }
    while files := select(cpipes[1], cpipes[2],
      cpipes[3], 3500) do { # should use select!...
        if *files ~= 0 then
            every f := !files do {
                line := read(f)
                write(line, " wrote to me at ",
                      &clock)
                }
        else
             write("My kids never write...")
        }
end

Output:

C wrote to me at 02:22:58
My kids never write...
B wrote to me at 02:23:04
A wrote to me at 02:23:04
My kids never write...
C wrote to me at 02:23:08

A wrote to me at 02:23:11
My kids never write...
B wrote to me at 02:23:18
C wrote to me at 02:23:19
C wrote to me at 02:23:22



CSc 451, Spring 2003         Unicon, Slide 48
W. H. Mitchell

Defaulting and type conversion

Unicon provides a syntactic structure to specify type
conversions and default values.  The general, per-parameter
form is this:

parameter-name : conversion-procedure : default-value

Both conversion-procedure and default-value are optional.

Here's an example that uses only a conversion procedure:

class Rectangle(width, height)
    initially(w:integer, h:integer)
        width := w
        height := h
end

If the value supplied for w or h is not convertible to an integer,
(i.e., if integer(...) fails)  error 101 is produced:

][ r := Rectangle(3, "four");
Run-time error 101
integer expected or out of range
offending value: "four"

][ r := Rectangle();
Run-time error 101
integer expected or out of range
offending value: &null

Note that this specification can be used with both methods and
ordinary procedures.

Question: What's the real benefit of this language element?



CSc 451, Spring 2003         Unicon, Slide 49
W. H. Mitchell

Defaulting and type conversion, continued

For reference:

parameter-name : conversion-procedure : default-value

Recall that split()'s second argument defaults to the
character set containing a blank and a tab.

Instead of this:

procedure split(s, c)
/c := ' \t'

    ... 

We could do this:

procedure split(s, c:' \t')
    ...

We could further constrain the argument values by specifying
conversion routines:

procedure split(s:string, c:cset:' \t')
    ...

Note that only a literal is permitted for the default value.

Problem: What's wrong with the following routine?

procedure f(x:list)
    ...



CSc 451, Spring 2003         Unicon, Slide 50
W. H. Mitchell

Defaulting and type conversion, continued

A user defined procedure may be specified as the conversion
routine.

If the routine fails, then a run-time error is produced.  If it
succeeds, the value returned is passed as the argument value. 
(Just as with a built-in routine like integer.)

Example:

procedure f(n:odd)
    return n * 2
end

procedure odd(x)
    if x % 2 = 1 then return x
end

Usage:

][ f(5);
   r := 10  (integer)

][ f(20);
Run-time error 123
invalid type
offending value: 20

Problem: There's no way to do something like this:

procedure f(x:(integer|string))
    ...

How could that effect be achieved?



CSc 451, Spring 2003         Unicon, Slide 51
W. H. Mitchell

The xcodes facility

The xcodes package in the IPL allows a nearly arbitrary data
structure to be written to a file and later restored.

Here is a program that generates a random list and saves it to a
file using xencode():

link xcodes, random
procedure main()
    randomize()

    L := randlist(10, 15)
    write("List: ", ltos(L))

    f := open("randlist.out", "w")

    xencode(L, f)

    close(f)
end

Execution:

% xcodes1w
List: [29,97,[34,92],[[63,6]],63,35,13]

% cat randlist.out
L
N7
N29
N97
L
N2
N34
N92
L
N1
...a few lines more...



CSc 451, Spring 2003         Unicon, Slide 52
W. H. Mitchell

The xcodes facility, continued

Here is a program that loads any structure written with
xencode():

link xcodes, image
procedure main(args)
    f := open(args[1]) | stop("Can't open file")
    S := xdecode(f)
    write("Restored structure: ", Image(S))
end

Execution:

% xcodes1r randlist.out
Restored structure: L1:[
  29,
  97,
  L2:[
    34,
    92],
  L3:[
    L4:[
      63,
      6]],
  63,
  35,
  13]

xencode() can't accurately save co-expressions, windows,
and files, but allows them to be present in the structure.

Problem: How can a facility like xencode/xdecode be
written?


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52

