
CSc 451, Spring 2003         Unicon, Slide 1
W. H. Mitchell

Unicon—History

One predecessor of Unicon is Idol, Icon-derived Object
Language.

Idol was developed at the University of Arizona by Clint Jeffery
in 1988 for a graduate course on object-oriented programming.

"Unicon" initially stood for "UNIX Icon"—a version of Icon
with a set of POSIX extensions by Shamim Mohamed
developed in 1997.  Mohamed learned Icon at the U of A but,
because of Icon's lack of access to many OS facilities, used Perl
for a variety of systems programming tasks.  He wrote:

"While it is true that Perl substitutes for a conglomeration
of sed, awk and shell scripts, it does so with some of the
worst language features from them."

Unicon was his solution.

In 1999 Jeffery and Mohammed merged their work and other
elements, such as an ODBC interface, into a single system,
which was tentatively called Icon-2.

The name Unicon was later recycled, now standing for "Unified
Extended Icon".



CSc 451, Spring 2003         Unicon, Slide 2
W. H. Mitchell

Class and method basics

Here is a simple Unicon class that models a coordinate-less
rectangle:

class Rectangle(width, height)
    method area()
        return width * height
    end

    method perimeter()
        return width*2 + height*2
    end

    method str()
        return "Rectangle(" || width || "x" ||
                               height || ")"
    end
end

The class name is Rectangle.

It has two attributes (or fields), width and height.

It has three methods: area, perimeter, and str.

The str method produces a value such as
"Rectangle(3x4)"



CSc 451, Spring 2003         Unicon, Slide 3
W. H. Mitchell

Class and method basics, continued

For reference:

class Rectangle(width, height)
    method area()
        return width * height
    end
    ...
end

We can create instances of Rectangle like this:

r := Rectangle(3,4)

Rs := [Rectangle(3,4), Rectangle(5.0,7)]

r2 := Rectangle("3.4", 7)

For this class the constructor is essentially a record
constructor—the supplied values are assigned directly to the
fields width and height.

Methods are invoked with a familiar syntax:

a := r.area()

write("Perim: ", r.perimeter())

every write((!Rs).str())

write(Rectangle(2.9, 9.02).perimeter())



CSc 451, Spring 2003         Unicon, Slide 4
W. H. Mitchell

Class and method basics, continued

Just like any other Icon procedure call or record construction, no
error checking is done.  A null value is used for missing
arguments and extra arguments are ignored.

All of the following execute without error:

r1 := Rectangle(3);

r2 := Rectangle("abc", "xyz");

r3 := Rectangle(7, 9, "abc");

Question: Which methods work for which of the above
instances?

Unicon has no provision for access specifications like "public"
and "private"—all attributes and methods are accessible in any
context.  This works:

procedure main()
    rr := Rectangle(3,4)
    rr.width := 20
    rr.height := 30
    write(rr.area())
end

Question: How can encapsulation be enforced?



CSc 451, Spring 2003         Unicon, Slide 5
W. H. Mitchell

Class and method basics, continued

The constructor is a procedure and can be treated like any other
procedure:

R := Rectangle

r1 := R(5,7)

r2 := [R][1](3,4)

r3 := ("Rect"||"angle")(3,4);



CSc 451, Spring 2003         Unicon, Slide 6
W. H. Mitchell

Class and method basics, continued

Here is a program that produces a memory fault on SunOS 5.9:

class X()
    method f()
        write("in f()...")
    end
end

procedure main()
    x := X()
    x.f()
    x.g()
end

Execution:

% bogus
in f()...

Run-time error 302
File bogus.icn; Line 10
memory violation
Traceback:
   main()
   {record X__state_1(record X__state_1(2), 
    record X__methods_1(1)) . g} from line 10
   in bogus.icn



CSc 451, Spring 2003         Unicon, Slide 7
W. H. Mitchell

The initially section

The simplistic behavior of assigning values in a constructor call
to the attribute in the corresponding position is often inadequate.

An initially section can be added to trigger processing
when the constructor is called.

class Rectangle(width, height, _area)
    method area()
        return _area
    end
    ...other methods...
    initially(w, h)
        write("initially: ",
             Image([width, height, _area],3))
        width := w
        height := h
        _area := w * h
end

If present, initially must follow all  methods.  

The end that ends the class definition also ends the
initially section.

][ rr := Rectangle(3,4);
initially: L1:[&null,&null,&null]
   r := ...lots...

][ rr.area();
   r := 12  (integer)

If initially(...) is present, no attributes are
automatically initialized.



CSc 451, Spring 2003         Unicon, Slide 8
W. H. Mitchell

initially, continued

The initially section can be used to enforce constraints on
the constructor's arguments.

class Rectangle(width, height, _area)
    ...
    initially(w, h)
        if /w | /h then fail
        if not numeric(w) |
           not numeric(h) then fail
        width := w
        height := h
        _area := width * height
end

Execution:

][ rr := Rectangle(3);
Failure

][ rr := Rectangle(3, "x");
Failure

][ rr := Rectangle(3, "3.4");
   r := ...lots... 

Note that by default an initially section succeeds.

Problem: There is no overloading of method names or the
initially section.  How could, for example, an omitted
height default to the same value as the width?

r := Rectangle(3)



CSc 451, Spring 2003         Unicon, Slide 9
W. H. Mitchell

initially, continued

If there is a parameterless initially section then the
arguments of the constructor call are used to initialize the
attributes.

Example:

class Counter(count)
    method inc()
        count +:= 1
        return count
    end
    
    method value()
        return count
    end

    initially
        /count := 0
end

Usage:

][ A := Counter(10);
   r := ...lots...

][ B := Counter();
   r := ...lots... 

][ A.value();
   r := 10  (integer)

][ B.value();
   r := 0  (integer)



CSc 451, Spring 2003         Unicon, Slide 10
W. H. Mitchell

The implicit variable self

Unicon's counterpart for Java's this is self.

One use is to distinguish between attributes and parameters:

class Rectangle(_area, width, height)
    initially(width,height)
        self.width := width
        self.height := height
        ...
end



CSc 451, Spring 2003         Unicon, Slide 11
W. H. Mitchell

Class specification—general form

Here is the general form of a class specification:

class classname(attribute1, attribute2, ..., attributeN)

method method1(param1, param2, ..., paramN)
...code for method...

        end

        ...additional methods...

        initially(param1, param2, ..., paramN)
...code to execute upon construction...

end

Note that all attributes are specified in the list following the
class name.

Here is a minimal class definition:

class X()
end



CSc 451, Spring 2003         Unicon, Slide 12
W. H. Mitchell

Method result sequences

Methods may fail, or produce a single result, or be generative,
just like regular Icon procedures.  Imagine a side() method
that generates the width and height of a rectangle:

class Rectangle(width, height, _area)
    ...
    method side()
        suspend width | height
    end
    ...
end

Usage:

procedure main()
    rects := []
    every 1 to 20 do
        put(rects, Rectangle(?20, ?20))

    every r := !rects do
        if r.side() > 10 then
            write(r.str())
end

Output:

Rectangle(7x11)
Rectangle(2x15)
Rectangle(2x15)
Rectangle(11x13)
Rectangle(12x15)
Rectangle(15x5)
...



CSc 451, Spring 2003         Unicon, Slide 13
W. H. Mitchell

Circle drag/drop in Unicon

Recall this program from Graphics slide 31: (drag1)

record circle(x,y,r)
procedure main()
    WOpen("size=600,300","drawop=reverse")
    DrawLine(300,0,300,300)
    circles := make_circles()
    repeat case Event() of {
      &lpress:
        if c := point_in(circles, &x, &y) then {
          lastx := c.x; lasty := c.y
          r := c.r
          repeat case Event() of {
            &ldrag: {
              DrawCircle(lastx, lasty, r)
              DrawCircle(lastx := &x,lasty :=&y, r)
              }
            &lrelease: {
              DrawCircle(lastx, lasty, r)
              if &x <= 300 then {
                    DrawCircle(&x, &y, r)
                    c.x := &x; c.y := &y
                    }
              else
                    delete(circles, c)
                break
              }
            }
          }
        }
end



CSc 451, Spring 2003         Unicon, Slide 14
W. H. Mitchell

Circle drag/drop in Unicon, continued

Here is a version in Unicon.  First, a Circle class:

class Circle(x, y, r)
    method has_pt(pt_x, pt_y)
        if sqrt((x-pt_x)^2+(y-pt_y)^2) < r then
            return self
    end

    method move_to(new_x, new_y)
        erase()
        x := new_x; y := new_y
        draw()
    end

    method erase()
        draw()
    end
    
    method draw()
        DrawCircle(x, y, r)
    end

    initially
        draw()
end

Note that the initially section counts on direct assignment
of attributes from the constructor call.

The code above does not track the on-screen state (drawn or not)
and thus places an additional responsibility on the caller.



CSc 451, Spring 2003         Unicon, Slide 15
W. H. Mitchell

Circle drag/drop in Unicon, continued

Main program:

procedure main()
    WOpen("size=600,300","drawop=reverse")
    DrawLine(300,0,300,300)

    circles := make_circles()

    repeat case Event() of {
      &lpress:
        if c := (!circles).has_pt(&x, &y) then {
          repeat case Event() of {
          
            &ldrag: c.move_to(&x, &y)
            
            &lrelease: {
              if &x <= 300 then
                    c.move_to(&x, &y)
              else {
                    c.erase()
                    delete(circles, c)
                    }
              break
              }
            }
          }
        }
end

Which version is better?



CSc 451, Spring 2003         Unicon, Slide 16
W. H. Mitchell

Inheritance

Here is a simple general form for specifying inheritance:

class class-name : superclass-name (class-attributes)
...
end

Here is a skeletal three class hierarchy to model geometric
shapes:

class Shape(name)
end

class Rectangle: Shape (width, height)
end

class Circle: Shape (radius)
end

Rectangle is a subclass of Shape and has three attributes:
name, width, and height.

Circle is a subclass of Shape and has two attributes: name
and radius.

In Unicon there is no common superclass such as Java's
Object class.



CSc 451, Spring 2003         Unicon, Slide 17
W. H. Mitchell

Superclass initialization

If a subclass has no initially section then the superclass's
initially section is called.  

The superclass's initially section is NOT CALLED if the
subclass has an initially section.

Example:

class Shape(name)
    initially
        write("Shape's initially")
end

class Circle: Shape (radius)
end

class Rectangle: Shape (width, height)
    initially
        write("Rectangle's initially")
end

procedure main()
    c := Circle(5)
    r := Rectangle(3,4)
end

Output:

Shape's initially
Rectangle's initially

If a subclass requires an initially section then it should
explicitly invoke the superclass initially section.



CSc 451, Spring 2003         Unicon, Slide 18
W. H. Mitchell

Superclass initialization, continued

Here is an example of invoking a superclass initially section:

class Shape(name)
    initially(nm)
        name := \nm | "<none>"
        write("Shape initially(), name = ", name)
end

class Rectangle: Shape (width, height)
    initially(w, h, nm)
        write("Rectangle initially()")
        width := w
        height := h
        self$Shape.initially(nm)
end

procedure main()
    r := Rectangle(3, 4)
    write(Image([r.name, r.width, r.height],3))

    r2 := Rectangle(5, 7, "B")
    write(Image([r2.name, r2.width, r2.height],3))
end

Output:

Rectangle initially()
Shape initially(), name = <none>
L1:["<none>",3,4]

Rectangle initially()
Shape initially(), name = B
L2:["B",5,7]

Note that there is no rule that specifies when superclass
initialization must be done.



CSc 451, Spring 2003         Unicon, Slide 19
W. H. Mitchell

Method inheritance and overriding

Unicon's rule for method inheritance is a common one:
Subclasses inherit superclass methods unless they supply their
own version of a method.

class Shape()
    method area()
    end
end

class Rectangle: Shape (_width, _height)
    method area()
        return _width * _height
    end
end

class Circle: Shape (_radius)
end

procedure main()
    r := Rectangle(3, 4)
    c := Circle(5)

    write("r's area = ", r.area())
    write("c's area = ", c.area())
end

Output:

r's area = 12



CSc 451, Spring 2003         Unicon, Slide 20
W. H. Mitchell

Abstract classes

Unicon provides no means to declare a class or method as
abstract.

One way to ensure that a subclass overrides a method is to add
code that produces an error if an overriding method is forgotten:

class Shape()
    method area()
        stop("Shape.area() called!?")
    end
end

Question: Icon's association of type with values rather than
variables implies that some errors are not detectable until the
code is executed.  Would it be possible to enforce an abstract
declaration at compile time?



CSc 451, Spring 2003         Unicon, Slide 21
W. H. Mitchell

Inheritance and dynamic typing

Languages like Java use inheritance to allow code to be written
in terms of a superclass and then be run with subclass instances.

public static Shape biggestArea(Shape shapes[ ]) {
    if (shapes.length == 0) return null;
    Shape it = shapes[0];
    for (int i = 1; i < shapes.length; i = i + 1) {
        if (shapes[i].getArea( ) > it.getArea( ))
            it = shapes[i];
        }
    return it;
    }

Because of Icon's value-based typing, inheritance is not needed
to write such code.

In the following code there is no common superclass for A and
B, but the routine show_what() can a handle a list of As, Bs,
and any other objects that have a what() method.

class A()
    method what()
        return "I'm an A!"
    end
end

class B()
    method what()
        return "I'm a B..."
    end
end

procedure show_what(L)
    every o := !L do
        write(o.what())
end



CSc 451, Spring 2003         Unicon, Slide 22
W. H. Mitchell

Multiple inheritance

Unicon supports multiple inheritance—a class can have any
number of superclasses. Here's an abstract example:

class A(_a)
    method f()
        write("A.f()")
    end
end

class B(_b1, _b2)
    method g()
        write("B.g()")
    end
end

class C(_c)
end

class D(_d1, _d2, _d3)
    method h()
        write("D.h()")
    end
end

class ABC: A : B : C (_abc1)
    method g()
        write("ABC.g()")
    end
end

class M : D : ABC (_m1, _m2)
end

A subclass inherits all attributes and methods of all its
superclasses.

procedure main()
    abc := ABC()
    abc.f() # calls A.f()
    abc.g() # calls ABC.g()

    m := M()
    m.f() # calls A.f()
    m.g() # calls ABC.g()
    m.h() # calls D.h()
end



CSc 451, Spring 2003         Unicon, Slide 23
W. H. Mitchell

Multiple inheritance, continued

A less abstract example—a DrawableRectangle:

class Drawable(_x, _y)
    method draw()
        stop("Drawable.draw() not overridden")
    end
    initially(x,y)
        _x := x; _y := y
end

class DrawableRectangle : Rectangle : Drawable ()
    method draw()
        DrawRectangle(_x, _y, _width, _height)
    end
    initially(w, h, x, y, nm)
        self$Rectangle.initially(w,h,nm)
        self$Drawable.initially(x,y)
end

procedure main()
    WOpen("size=300,300")
    rects := [ ]
    every i := 1 to 20 do
        put(rects, DrawableRectangle(?40, ?40, ?300, ?300))

    every r := !rects do
        if r.area() < 1000 then
            r.draw()

    WDone()
end


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

