
CSc 451, Spring 2003 Unicon, Slide 24
W. H. Mitchell

Class variables and methods

Unicon does not have support for class variables and methods.

Problem: What is the essence of class variables and methods and
how can they be approximated/simulated?

CSc 451, Spring 2003 Unicon, Slide 25
W. H. Mitchell

Class variables and methods, continued

Here is a version of the Rectangle class that uses a global
variable to loosely simulate a class method that returns the
number of rectangles that have been created.

class Rectangle(width, height)
 method area()
 return width*height
 end
 initially
 initial{
 Rectangle_num_created := 0
 }
 Rectangle_num_created +:= 1
end

global Rectangle_num_created

procedure Rectangle_created()
 return Rectangle_num_created
end

procedure main()
 every 1 to 20 do
 Rectangle(?100, ?100)

 write(Rectangle_created(),
" rectangles created")

end

What are the pros and cons of this approach?

CSc 451, Spring 2003 Unicon, Slide 26
W. H. Mitchell

Class variables and methods, continued

Another approach is to use a method with a static variable and
have a parameter serve as a flag indicating whether the value
should be fetched or modified.

class Rectangle(width, height)
 ...
 method created(increment)
 static created
 initial created := 0
 if \increment then
 created +:= 1
 else
 return created
 end

 initially
 created(1) # any non-null value would do
end

procedure main()
 every 1 to 20 do
 Rectangle(?100, ?100)

 write(Rectangle().created(),
" rectangles created")

end

What are the pros and cons of this approach?

CSc 451, Spring 2003 Unicon, Slide 27
W. H. Mitchell

Class variables and methods, continued

Here is another approach:

class Rectangle(width, height)
 initially
 initial {
 if type(Rectangle_class) == "procedure" then
 Rectangle_class()
 }
 Rectangle_class.new_instance()
end

class Rectangle_class(num_rects)
 method created()
 return num_rects
 end
 method new_instance()
 num_rects +:= 1
 end
 initially
 Rectangle_class := self
 num_rects := 0
end

procedure main()

 every 1 to 20 do
 Rectangle(?100, ?100)

 write(Rectangle_class.created(),
" rectangles created")

end

What are the pros and cons of this approach?

CSc 451, Spring 2003 Unicon, Slide 28
W. H. Mitchell

Behind the scenes in Unicon

Unicon programs are preprocessed, yielding a syntactically valid
Icon program that is then compiled with icont. The resulting
bytecode executable can then be run on the Unicon virtual
machine.

A Unicon method is translated into an Icon procedure that has
the class name prepended and an initial argument of self.

The methods in this Unicon class:

class Rectangle(width, height)
 method area()
 return width * height
 end
 method set_width(w)
 width := w
 end
end

are translated into this Icon code:

procedure Rectangle_area(self)
 return self.width * self.height
end

procedure Rectangle_set_width(self, w)
 self.width := w
end

CSc 451, Spring 2003 Unicon, Slide 29
W. H. Mitchell

Behind the scenes in Unicon, continued

Here is the balance of the generated Icon code for the class:

record Rectangle__state(__s, __m, width, height)

record Rectangle__methods(area, set_width)

global Rectangle__oprec

procedure Rectangle(width,height)
 local self,clone
 initial {
 if /Rectangle__oprec then
 Rectangleinitialize()
 }
 self := Rectangle__state(&null, Rectangle__oprec,
 width, height)
 self.__s := self
 return self
end

procedure Rectangleinitialize()
 initial Rectangle__oprec :=
 Rectangle__methods(Rectangle_area,
 Rectangle_set_width)
end

For r := Rectangle(3,4) here is the picture:

CSc 451, Spring 2003 Unicon, Slide 30
W. H. Mitchell

Behind the scenes in Unicon, continued

For reference:

record Rectangle__state(__s,__m, width, height)

record Rectangle__methods(area, set_width)

Here is a main program. The Unicon preprocessor makes no
changes in it:

procedure main()
 r := Rectangle(3,4)
 r.set_width(7)
 write("Area: ", r.area())
end

Recall that the type of r is Rectangle__state and note that
there is no area field in that record.

What happens is this: When the field operator (binary period)
detects that r has no field named area, it looks to see if the
first field of r is named __s. If so, it then looks in the record
referenced by the second field (__m) for a field named area
and if found, the value of the field is the result of evaluating
r.area.

To see the result of Unicon preprocessing, use the -E flag:

unicon -E myclass.icn

CSc 451, Spring 2003 Unicon, Slide 31
W. H. Mitchell

Access to system services

The object-oriented programming facilities are one aspect of
Unicon. Another is Unicon's access to operating system
services.

One of the services available is the stat() system call, which
produces a variety of information about a file. Unicon's
stat(fname) call returns a record with the following
information (and more) about the file fname:

Field name Description

dev ID of device containing the file

ino Inode number

mode File mode (e.g. protections)

nlink Number of links

uid,
gid

User-id and group-id

size Size of the file in bytes

atime Time of last access

mtime Time of last modification

ctime Time of last inode change

symlink If a symbolic link, the name
linked to.

CSc 451, Spring 2003 Unicon, Slide 32
W. H. Mitchell

Example: List files by size

bysize is a program that uses stat(fname) to produce a
list of files in a named directory sorted by file size in descending
order:

% bysize /home/cs451/a5
 10663 mtimes
 3730 day
 3461 mtimes.1
 3450 mcycle
 701 mcycle.2
 632 mtimes.2
 562 mtimes.ex
 229 tmtimes.sh
 148 mcycle.1
 104 mtimes.3

An ls, for comparison:

% ls -la /home/cs451/a5
total 60
drwxr-sr-x 3 whm cs451 4096 Apr 21 03:15 .
drwxr-sr-x 19 whm cs451 4096 Apr 16 03:40 ..
drwx------ 2 whm cs451 4096 Feb 12 04:45 v1
-r-xr-xr-x 1 whm cs451 3730 Feb 12 22:33 day
-r-xr-xr-x 1 whm cs451 3450 Feb 12 21:54 mcycle
-r--r--r-- 1 whm cs451 148 Feb 12 21:54 mcycle.1
-r--r--r-- 1 whm cs451 701 Feb 12 21:54 mcycle.2
-r-xr-xr-x 1 whm dept 10663 Feb 12 04:42 mtimes
-r-xr-xr-x 1 whm cs451 3461 Feb 12 04:41 mtimes.1
-r-xr-xr-x 1 whm cs451 632 Feb 12 04:41 mtimes.2
-r-xr-xr-x 1 whm cs451 104 Feb 12 04:41 mtimes.3
-r-xr-xr-x 1 whm cs451 562 Feb 12 04:41 mtimes.ex
-r-xr-xr-x 1 whm cs451 229 Feb 12 04:41 tmtimes.sh

Note that bysize does not show the three directories (., ..,
and v1)

CSc 451, Spring 2003 Unicon, Slide 33
W. H. Mitchell

bysize.icn

record file_info(name, size) # name and size of a file

procedure main(args)

 #

 # Change to the directory named on the command line

 chdir(args[1]) |

 stop(args[1], ": Bad directory")

 #

 # A directory can be opened like a file. Reading from a directory

 # produces the entries in the directory.

 dir := open(".")

 files := []

 #

 # Read each directory entry and stat it. If an entry is not a directory,

 # add it to the list.

 #

 while fname := read(dir) do {

 stat_rec := stat(fname)

 #

 # If not a directory, include it.

 #

 if stat_rec.mode[1] ~== "d" then

 put(files, file_info(fname, stat_rec.size))

 }

 #

 # Sort by file size and print.

 #

 files := sortf(files, 2)

 every r := files[*files to 1 by -1] do

 write(right(r.size,9)," ", r.name)

end

CSc 451, Spring 2003 Unicon, Slide 34
W. H. Mitchell

Example: A simple shell

An interesting application of Unicon's system service facilities is
a simple command processor, commonly called a shell, that is
used to invoke programs.

UNIX shells use a "fork and exec" sequence to start programs.

The call fork() creates a child process that is a copy of the
current process. In the parent process, fork() returns the
process id of the child. In the child process, fork() returns
zero.

Example:

procedure main()
 if fork() = 0 then
 write("child process id is ", getpid())
 else
 write("parent process id is ", getpid())

 write("Hello, world!")
end

Output:

parent process id is 7713
Hello, world!
child process id is 7716
Hello, world!

Note that fork creates a process, not a thread—there's no sharing
of memory between the two processes.

CSc 451, Spring 2003 Unicon, Slide 35
W. H. Mitchell

A simple shell, continued

Here is a larger example with fork(). Both the parent and
child process identify themselves and then do three random
sleeps (delay()s), printing the time when they awake.

link random
procedure main()
 if fork() = 0 then who := "child "
 else who := "parent"

 randomize()
 write(who, " process id is ", getpid())
 every 1 to 3 do {
 delay(?10000)
 write(who, " @ ", &clock)
 }

 write(who, " done")
end

Output:

% fork
parent process id is 8730
child process id is 8733
child @ 03:43:46
parent @ 03:43:49
parent @ 03:43:49
child @ 03:43:53
parent @ 03:43:57
parent done
% child @ 03:43:59
child done

Questions:
(1) Why is there a "%" in the middle of the output?
(2) What happens if the randomize() call is omitted?

CSc 451, Spring 2003 Unicon, Slide 36
W. H. Mitchell

A simple shell, continued

The second element for a shell is the exec() call:

exec(fname, arg0, arg1, ..., argN)

This call replaces the current process with an execution of the
program named by fname, supplying the remaining parameters
as arguments to the program.

A simple example: (exec0.icn)

procedure main()
 write("Ready to exec ls...")
 exec("/bin/ls", "ls", "-ld", "/")
 write("Done with exec...")
end

Execution:

% exec0
Ready to exec ls...
drwxr-xr-x 27 root wheel 1024 Apr 13 16:56 /
%

Note that exec()'s arg0 through argN corresponds to, e.g.,
argv[0] through argv[N] in a C program:

void main(int argc, char *argv[])
{
...
}

CSc 451, Spring 2003 Unicon, Slide 37
W. H. Mitchell

A simple shell, continued

As mentioned earlier, UNIX shells use a "fork and exec"
sequence: When the user types a command to run, the shell
forks and then uses an exec() call in the child to overlay the
child process with the command of interest.

A very simple shell:

procedure main()
 while writes("Cmd? ") & cmdline := read() do {
 if (child := fork()) = 0 then {
 #
 # We're the child process. Split up
 # command line and exec it.
 w := split(cmdline)
 cmd := get(w)
 exec!(["/bin/"||cmd, cmd] ||| w)
 }
 else
 #
 # We're the parent. Wait for the child
 # to terminate before prompting again.
 wait(child)
 }
end

Execution:

Cmd? ls -ld /
drwxr-xr-x 27 root wheel 1024 Apr 13 16:56 /
Cmd? date
Mon Apr 21 04:13:29 MST 2003
Cmd? wc /etc/passwd
 1462 3840 98991 /etc/passwd
Cmd? wc </etc/passwd
wc: cannot open </etc/passwd
Cmd? who >out
who: Cannot stat file '>out'

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

