
CSc 451, Spring 2003 Unicon, Slide 38
W. H. Mitchell

A simple shell—I/O redirection

UNIX shells allow standard input and standard output to be
redirected with the < and > symbols.

Here is a shell command that runs wc on the class mailing list
mailbox and redirects the output to the file wc.output

% wc < /home/cs451/mail > wc.output

The result:

% cat wc.output
 6257 31501 268989

CSc 451, Spring 2003 Unicon, Slide 39
W. H. Mitchell

IO redirection, continued

For reference:

% wc < /home/cs451/mail > wc.output

A cornerstone of redirection is that the exec() call replaces
the current process with the execution of another program, but
file descriptors are unaffected. For example, standard input
(&input) in the original process is standard input in the
replacement process.

Here is a program (redir1) that takes advantage of this
carryover of file descriptors to mimic the shell command above:

procedure main()

 infile := open("/home/cs451/mail")
 fdup(infile, &input) # like &input := infile

 outfile := open("wc.output", "w")
 fdup(outfile, &output)

 exec("wc", "wc")
end

Execution:

% redir1
% cat wc.output
 6257 31501 268989

The fdup(from, to) function replaces the file descriptor
associated with the file value to with the file descriptor
associated with the file value from.

CSc 451, Spring 2003 Unicon, Slide 40
W. H. Mitchell

ish: A shell in Unicon

Here is ish, a rudimentary shell that provides I/O redirection
and background processes (via &):

procedure main()

 while line := (writes("ish -- "), read()) do {

 if *line = 0 then next

 w := split(line)

 cmd := get(w)

 background := if w[-1] == "&" then { pull(w); 1} else &null

 if fork() = 0 then {

 pgmargs := []

 stdin := stdout := &null

 while arg := get(w) do {

 case arg[1] of {

 "<": stdin := arg[2:0] # assume no space after '<' and '>'

 ">": stdout:= arg[2:0]

 default: put(pgmargs, arg)

 }

 }

 if \stdin then {

 stdin := open(stdin) | stop(stdin, ": Can't open")

 fdup(stdin, &input)

 }

 if \stdout then {

 stdout := open(stdout, "w") | stop(stdin, ": Can't open")

 fdup(stdout, &output)

 }

 exec!([cmd, cmd] ||| pgmargs)

 }

 else {

 if /background then wait()

 }

 }

end

CSc 451, Spring 2003 Unicon, Slide 41
W. H. Mitchell

ish in operation

% ish
ish -- date
Wed Apr 23 23:33:48 MST 2003
ish -- date >out
ish -- cat out
Wed Apr 23 23:33:54 MST 2003
ish -- wc <ish.icn
 38 115 832
ish --
ish -- du /usr >du.out &
ish -- wc du.out
 562 1124 21711 du.out
ish –- who
whm tty1 Apr 6 23:50
whm pts/0 Apr 6 23:52 (:0)
ish -- date
Wed Apr 23 23:42:56 MST 2003
ish -- wc du.out
 1644 3288 64077 du.out
ish –- ^D
%

Some work remains:

ish --
ish -- ls *.icn
ls: *.icn: No such file or directory
ish --
ish -- ls | wc
ls: |: No such file or directory
ls: wc: No such file or directory

CSc 451, Spring 2003 Unicon, Slide 42
W. H. Mitchell

Pipes

A standard feature of UNIX shells is the ability to send the
output from one program into the input of another program.

ls | wc
ls -t | grep -v ".icn$" | head -1

The supporting mechanism for this is called a pipe.

A pipe is an operating system mechanism that arranges for
output written to a file descriptor to be available as input on
another file descriptor.

Reads from a pipe will block until something is written to the
other end. Writes to a pipe will block if a sufficient amount of
already written data is still unread.

Unicon's pipe() function creates a pipe and returns a list of
two file values: the first for reading and the second for writing:

][pipe();
 r := [file(pipe), file(pipe)] (list)

A trivial example:

procedure main(args)
 pipes := pipe()
 write(pipes[2], "Testing...")
 write(reverse(read(pipes[1])))
end

Output:
...gnitseT

CSc 451, Spring 2003 Unicon, Slide 43
W. H. Mitchell

Pipes, continued

In most cases a pipe is used to send data between two processes.

In the following program a child process writes to a parent
process at random intervals.

procedure main()
 pipe_pair := pipe()
 if fork() = 0 then
 every i := 1 to 5 do {
 delay(?5000)
 write(pipe_pair[2], i)
 }

 while line := read(pipe_pair[1]) do
 write("My child wrote to me! (",
 line, " at ", &clock, ")")
end

Output:

My child wrote to me! (1 at 21:14:04)
My child wrote to me! (2 at 21:14:06)
My child wrote to me! (3 at 21:14:08)
My child wrote to me! (4 at 21:14:10)
My child wrote to me! (5 at 21:14:13)

CSc 451, Spring 2003 Unicon, Slide 44
W. H. Mitchell

Pipes, continued

Consider a program that prompts for two commands and uses a
pipe to connect the output of the first to the output of the
second: (blank lines have been added...)

Pipe from? ls
Pipe to? wc
 118 118 917

Pipe from? ls
Pipe to? grep fork
fork
fork.icn
fork0
fork0.icn

Pipe from? who
Pipe to? wc
 71 355 2201

Pipe from? iota 3
Pipe to? cat
1
2
3

Pipe from? iota 3
Pipe to? tac
3
2
1

CSc 451, Spring 2003 Unicon, Slide 45
W. H. Mitchell

Pipes, continued

Here is the from/to piper:

procedure main()
 repeat {
 writes("Pipe from? ")
 from_cmd := split(read())
 writes("Pipe to? ")
 to_cmd := split(read())

 pipe_pair := pipe()
 if fork() = 0 then {
 fdup(pipe_pair[2], &output)
 close(pipe_pair[1])
 exec!([from_cmd[1]]|||from_cmd)
 write("exec failed! (from)")
 }

 if fork() = 0 then {
 fdup(pipe_pair[1], &input)
 close(pipe_pair[2])
 exec!([to_cmd[1]]|||to_cmd)
 write("exec failed! (to)")
 }

 close(pipe_pair[1])
 close(pipe_pair[2])

 wait() # wait for both children to
 wait() # terminate
 }
end

Note that the close()s are needed to make it work.

How could we add piping to ish?

CSc 451, Spring 2003 Unicon, Slide 46
W. H. Mitchell

The select() function

The select() function allows a program to wait on input
from any one of several input sources and, optionally, a delay
time. It looks like this:

select(file1, file2, ..., wait_time)

It returns when input is available on at least one of the files
and/or the wait time (in milliseconds) has elapsed. The return
value is a list of files on which input is available. If the list is
empty, the wait time was exceeded.

In what situations is something like select() necessary?

select() allegedly works on files, network connections,
pipes, and windows. The following example required a patch to
the Unicon runtime system.

CSc 451, Spring 2003 Unicon, Slide 47
W. H. Mitchell

The select() function, continued

In this program a parent process forks three children and then
waits to hear from each via a pipe.

procedure main()
 cpipes :=[] # input side of pipes from children
 every c := !"ABC" do {
 pipe_pair := pipe()
 put(cpipes, pipe_pair[1])
 if fork() = 0 then {
 randomize()
 repeat {
 delay(?15000) # 15 seconds
 write(pipe_pair[2], c)
 }
 }
 }
 while files := select(cpipes[1], cpipes[2],
 cpipes[3], 3500) do { # should use select!...
 if *files ~= 0 then
 every f := !files do {
 line := read(f)
 write(line, " wrote to me at ",
 &clock)
 }
 else
 write("My kids never write...")
 }
end

Output:

C wrote to me at 02:22:58
My kids never write...
B wrote to me at 02:23:04
A wrote to me at 02:23:04
My kids never write...
C wrote to me at 02:23:08

A wrote to me at 02:23:11
My kids never write...
B wrote to me at 02:23:18
C wrote to me at 02:23:19
C wrote to me at 02:23:22

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

