CSC 473 Automata, Grammars & Languages

8/15/10

Automata, Grammars and Languages

Discourse 01

Introduction

C SC 473 Automata, Grammars & Languages

Fundamental Questions

questions about computing
+ What is computation?
= Ancient activity back as far as Babylonians, Egyptians
= Not precisely settled until circa 1936

+ What can be computed?

“effectively computable” functions from input to output?
+ What cannot be computed?
= Not \/E but can get arbitrarily close

Theory of Computation seeks to answer fundamental

= Different ways of computing (C, Lisp, ...) result in the same

= Are there precisely defined tasks (“problems”) that cannot be
carried out? Yes/No decisions that cannot be computed?

Complexity)

C SC 473 Automata, Grammars & Languages

+ What can be computed efficiently? (Computational

= Are there inherently difficult although computable problems?

« Ex: L={T4A4,TGA, TAG,...}, DNA codons
$={4,G,C,T}

language L b
= Ex:

a a b

specify (derive) strings of a language

= Ex:
X §—+88 Context-Free Grammar
S—x (CFG)

C SC 473 Automata, Grammars & Languages

Basic Concepts: Automata, Grammars & Languages

+ Language: a set of strings over some finite alphabet =

+ Automaton (Machine): abstract (=simplified) model of a

computing device. Used to “recognize” strings of a

Finite Automaton

.‘-(Q' (Finite State Machine)

+ Grammar: finite set of string rewriting rules. Used to

CSC 473 Automata, Grammars & Languages

Languages

L ={aa,ab,ba,bb} X ={a,b}

L, ={¢,a,aa,aaa,aaaa,..} X ={a}

L, ={e: e isa well-formed arithmetic expression in C}
S={0-9,2-2,A=Z,4,=,%,/1(,) ve 16}

L, ={p: p is awell-formed C program} X = {ASCII}

Ly ={p: pisaw.f. C program that halts for all inputs}

L6 = {(x, y) . X is a decimal integer and) is its binary representation}

C SC 473 Automata, Grammars & Languages

8/15/10

Types of Machines

« Logic circuit
= memoryless; values combined using gates
c s

Circuit size = 5

Circuit depth =3

C SC 473 Automata, Grammars & Languages

Types of Machines (cont.)

- Finite-state automaton (FSA)
= bounded number of memory states
= step: input, current state determines next state & output

a Mod 3 counter
a@ @ state/ouput (Moore) machine
5(‘11’ a)= (q2= 2)
a

- models programs with a finite number of bounded registers
*reducible to 0 registers

.

<«b—

C SC 473 Automata, Grammars & Languages

CSC 473 Automata, Grammars & Languages

Types of Machines (cont.)

Pushdown Automaton (PDA)

« finite control and a single 5(112,11,8) = (‘ba A)
unbounded stack ae >A bA e
L={a"b"#:n>1} &E 8

b,A > #%—>¢
models finite program + one unbounded stack of bounded registers

B/” -

<«b—

C SC 473 Automata, Grammars & Languages

8/15/10

Types of Machines (cont.)

+ Random access machine (RAM)
= finite program and an unbounded, addressable
random access memory of registers”
= models general programs
+ unbounded # of bounded registers
+ Simple 1-addr instructions

Example: R, <R, +R, .
L,:JMPZ R, L, UDI:D% > .
INC R, 3
DECR, 2
JMP L, 0
L, : CONTINUE +«b—
C SC 473 Automata, Grammars & Languages 8

Types of Machines (cont.)

+ Turing Machine (TM)

finite control & tape of bounded cells unbounded in # to R

Input left adjusted on tape at start with blank cell terminating
current state, cell scanned determine next state & overprint symbol
control writes over symbol in cell and moves head 1 cell L or R
models simple **sequential” memory; no addressability

fixed amount of information (b bits) per cell

Lol []e--

Finite-
B» state 8(¢. X)=(p,Y,R)
control

C SC 473 Automata, Grammars & Languages 9

CSC 473 Automata, Grammars & Languages

Theory of Computation

computation that is finite in space and time

+ Grammar Theory
Context-free grammars
Right-linear grammars
Unrestricted grammars
Capabilities and limitations
Application: programming language specification
+ Automata Theory
= FA
= PDA
= Turing Machines
= Capabilities and limitations
= Characterizing “what is computable?”
= Application: parsing algorithms

C SC 473 Automata, Grammars & Languages

Study of languages and functions that can be described by

8/15/10

Theory of Computation (cont’'d)

+ Computational Complexity Theory
= Inherent difficulty of “problems”
Time/space resources needed for computation
“Intractable” problems
Ranking of problems by difficulty (hierarchies)

C SC 473 Automata, Grammars & Languages

Application: algorithm design, algorithm improvement, analysis

= State diagram (labeled digraph)

o

A

= Regular Expression

C SC 473 Automata, Grammars & Languages

- Deterministic FA A={a,...,z,A....Z, _} A={0,...,9}

(tat+t..+tA+.) - (tat..+A+..+0+ ..
._Right-LinearGrammar -
S —=>arl|..|zT T — aTl | ...| zT
| AT | ... | 2T | AT | ... | 2T
| _T [OT | ... 19T | _T

FSA Ex: Specifying/Recognizing C Identifiers

CSC 473 Automata, Grammars & Languages 8/15/10

FSA Ex: ¢ Floating Constants

+ "A floating constant consists of an integer part, a decimal
point, a fraction part, an e or E, an optionally signed
integer exponent (and an optional type suffix ...). The
integer and fraction parts both consist of a sequence of
digits. Either the integer part or the fraction part (not both)
may be missing; either the decimal point or the e and the
exponent (not both) may be missing. ..."

= --B. W. Kernighan and D.M. Ritchie, The C Programming
Language, Prentice-Hall, 1978

= (The type is determined by the suffix; F or f makes it a float, L or |
makes it a long double; otherwise it is double.)

C SC 473 Automata, Grammars & Languages

FSA Ex: ¢ Floats (cont’d)

d=01]11]..9

Note: type suffixes
f,F,1,L omitted

“Either the integer part or the fraction part (not both) may be missing;
either the decimal point or the e and the exponent (not both) may be missing”

C SC 473 Automata, Grammars & Languages 14

CFG Ex: A Calculator Language

+ Syntactic Classes 50°30-1=
= Numerals 3 40
. Digits 0 1 © (7] (8] [8][]
= Expressions 3*9 40-3*3 @E
= Commands 3*9= 40-3*3=
+ Context-Free Grammar o =]
C —SE= Note: no division &
E 5N no decimal point
—E+N terminals ¥ = {=+—,%,0,..,9}
BN pyles
SERN B variables V = {N,D,E,C}
N —ND
N =D start variable = C
D —0...
-9 grammar G = (V, X, R, C)

C SC 473 Automata, Grammars & Languages

CSC 473 Automata, Grammars & Languages 8/15/10

Calculator Language (cont’d)
- Syntax Trees—exhibit “phrase structure” N
N N D
* Numerals N N o~ /\ |
| N]? N D 5
D 5 0 I
) | | D 6
- Expressions E 3 4 |
- Commands C c 3
c ZaN
/\ E =
ES T
- E *
ﬂ\ — T
E % N ‘ N
, : N 3 Is this the parse
N 9 you expected?
. 4
3 379= 40-3%3=
C SC 473 Automata, Grammars & Languages 16

TM Ex: An “Algorithmically Unsolvable” Problem

+ Q: Is there an algorithm for deciding if a given program p
halts on a given input x?

E_' Halting |_ 1if P(x)
Decider 0 if P(x) T

+ A:No. There is no program that works correctly for all
P,x

+ For the proof, we will need a simple programming
languaget: MNatC—a simplified C
= One datatype: nat = {0,1,2,...}. All variables of type nat
= All programs have one nat input and one nat output

$We will later on use Turing Machines to model a “simple
programming language”. Nat(C is simpler to describe.

C SC 473 Automata, Grammars & Languages 7

Unsolvable Problem (cont’d)

Observations:

= A standard C compiler can be modified to accept only watC programs as
“legal”

= Every Nat(program P computes a function from natural numbers to
natural numbers. f, : nat — nat
= Note: fF may not be defined for some inputs, i.e., it is a partial

function
nat P(nat x) Ex: P does not halt for
{ some inputs

if (x=3)

return(6);
else {

while (x=x) do x=x+1;

return x;
}

&'SC 473 Automata, Grammars & Languages 18

CSC 473 Automata, Grammars & Languages

Unsolvable Problem (cont’d)

+ Enumeration
= A systematic list of all NatC programs E,, B, P, ...
= Forprogram P, i is called the program’s index
= program—index: write out program as bit sequence in ASCII;
interpret the bit sequence as a binary integer—its index
+ A program is just a string of characters!!!
= index—program: giveni > 0, convertto binary. Divide into 8-
bit blocks. If such division is impossible (e.g., 3 bits) or if some
block is not an ASCII code, or if the string is not a legal program,
f will be the default “junk” program {nat x; read(x);
while (x=x) do x=x+1;write (x)} Wwhich is undefined
(“diverges” T) for every legal input.
Conclusions about enumeration F,, P, P,, ...
+ Given n can compute B, with avatc program
«+ Given P can compute index n suchthat P = P with NVatC.

C SC 473 Automata, Grammars & Languages 15

8/15/10

Unsolvable Problem (cont’d)

+ Unsolvability Result: Does B, haltoninputn ?
Question cannot be settled by an algorithm.

« Theorem: Define the function h: nat — nat by
» h (x) =if P, haltsoninput x then 1 else 0
Then h is not computable by any watc program.

Proof: Proof by contradiction. Suppose (contrary to what
is to be proved) that / is computable by a program

called halt. halt has input variable x, and output
variable y .

By assumption (i.e., that it exists) it has the following
behavior:

[ha1e (x) =if P, halts on input x then 1 else 0

p
C SC 473 Automata, Grammars & Languages 20

Unsolvable Problem (cont’d)

Modify halt toa watC functionnat halt (nat x)
Construct the following ~atC program:
nat diagonal (nat n)
{ nat y;
if halt(n)=0
y:=l;
else {
y:=l;
while (y!=0) do
y:=y+l;}
return y;
Consequences }
= Ifhalt is alegal program, so is “diagonal”
= Therefore, diagonal has some index e in the enumeration:

+P_ = diagonal

C SC 473 Automata, Grammars & Languages

CSC 473 Automata, Grammars & Languages 8/15/10

Unsolvable Problem (cont’d)

How does diagonal behave on jts ownindexe ?

* faiagona1 (8)=1 © fi... (e)= 0 & P, doesnothaltone &
diagonal does nothaltone

* faiagona1 (€) =undefined & f,... ()= 1 & P_ haltsone <
diagonal haltsone

+ s diagonal haltsone < diagonal does not halt on
e

+ Contradiction!!!

+ - program diagonal cannotexist Q.E.D.

« The “Halting Problem” is unsolvable

= Undecidable, recursively undecidable, algorithmically undecidable,
unsolvable—all synonyms

C SC 473 Automata, Grammars & Languages

