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a b s t r a c t

In Named Data Networking (NDN), packets carry data names instead of source and destination addresses.
This paradigm shift leads to a new network forwarding plane: data consumers send Interest packets to
request desired data, routers forward Interest packets and maintain the state of all pending Interests,
which is then used to guide Data packets back to the consumers. Maintaining the pending Interest state,
together with the two-way Interest and Data exchange, enables NDN routers’ forwarding process to mea-
sure performance of different paths, quickly detect failures and retry alternative paths. In this paper we
describe an initial design of NDN’s forwarding plane and evaluate its data delivery performance under
adverse conditions. Our results show that this stateful forwarding plane can successfully circumvent pre-
fix hijackers, avoid failed links, and utilize multiple paths to mitigate congestion. We also compare NDN’s
performance with that of IP-based solutions to highlight the advantages of a stateful forwarding plane.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

A network’s architecture design determines the shape and form
of its forwarding mechanism. Today’s IP Internet accomplishes
packet delivery in two phases. At the routing plane, routers ex-
change routing updates and select the best routes to construct
the forwarding table (FIB). At the forwarding plane, routers forward
packets strictly following the FIB. Thus, IP routing is stateful and
adaptive, while IP forwarding is stateless and has no adaptability
of its own. This smart routing, dumb forwarding approach places
the responsibility of robust data delivery solely on the routing sys-
tem. Consequently IP’s Routing plane is also referred to as the con-
trol plane, and its forwarding plane the data plane.

As a newly proposed Internet architecture, Named Data Net-
working (NDN) inherits the hourglass shape of the IP architecture,
but replaces IP’s host-to-host data delivery model at the hourglass
thin waist by a data retrieval model [1,2]. NDN packets carry data
names rather than source and destination addresses. Data consum-
ers express Interests in the form of desired data names, without
specifying where the data may be located. Routers satisfy the
Interests by retrieving the data, which are bound to the names by
cryptographic signatures, from router caches, intermediate data
repositories, or original data producers. While routing in an NDN
network serves the same purpose as in an IP network, i.e., computing
routing tables to be used in forwarding NDN’s Interest packets, the
forwarding plane in an NDN network is split into a two-step process:
consumers first send out Interest packets, then Data packets flow
back along the same path in the reverse direction. Routers keep state
of pending Interests to guide Data packets back to requesting
consumers.

Obvious benefits of NDN’s forwarding plane include built-in
network caching and multicast data delivery. A less obvious but
equally important benefit is its adaptive forwarding enabled by
the state maintained at routers. By recording pending Interests
and observing Data packets coming back, each NDN router can
measure packet delivery performance (e.g., round-trip time and
throughput), detect problems that lead to packet losses (e.g., link
failures or congestion), and utilize multiple alternative paths to by-
pass problematic areas. With such an intelligent and adaptive for-
warding plane, the routing plane in an NDN network only needs to
disseminate long-term changes in topology and policy, without
having to deal with short-term churns.

The seminal paper by Jacobson et al. [1] sketched out a blue-
print of the overall NDN architecture, however the operations of
its forwarding plane are not fully explained and the design specif-
ics remain to be filled in. Our main goal in this paper is to explore
the design space and identify critical research issues by sketching
out an initial design of NDN’s forwarding plane and evaluating
its data delivery performance under adverse conditions.

The contributions of this paper are mainly twofold. First, we
propose a concrete design of NDN’s forwarding plane which in-
cludes specific mechanisms for routers to keep track of data deliv-
ery performance, control network load, and retry alternative paths.
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We also introduce a new Interest NACK mechanism to enable NDN
router to perform quick and informed recovery from network
problems. Second, we use simulations to evaluate the performance
of our design in terms of its resiliency against prefix hijacks, link
failures, and network congestion. We compare the performance
of our stateful forwarding plane with that of both IP and an IP-
based multipath forwarding solution, Path Splicing [3], to identify
the fundamental differences between stateless and stateful for-
warding planes.

The rest of the paper is organized as follows. Section 2 presents
an overview of NDN’s forwarding plane. Section 3 describes our de-
sign of NDN’s adaptive forwarding. Section 4 describes the simula-
tion studies and analyze the results. In Section 5 we discuss the
benefits and costs of NDN’s stateful forwarding plane. We summa-
rize related work in Section 6, and conclude the paper in Section 7.
2. Overview of NDN’s Forwarding Plane

In this section we briefly introduce NDN with a focus on its
stateful forwarding plane. NDN is a receiver-driven, data-centric
communication protocol. All communication in NDN is performed
using two distinct types of packets: Interest and Data. Both types of
packets carry a name, which uniquely identifies a piece of data that
can be carried in one Data packet. Data names in NDN are hierar-
chically structured, for example /arizona.edu/cs/chengyi/

papers/forwarding2012.pdf/seg1. Network routing protocols
will distribute name prefixes, such as /arizona.edu/, in a way
similar to distributing IP prefixes in today’s Internet.

To retrieve Data, a consumer puts the name of desired data into
an Interest packet and sends it to the network. Routers use this
name to forward the Interest towards the data producer, and the
Data packet whose name matches the name in the Interest is re-
turned to the consumer. All data packets carry a signature that
binds the name to the data.

Similar to IP packet delivery, an NDN network performs best ef-
fort data retrieval. An Interest or Data packet can be lost, and it is
the end consumer’s responsibility to retransmit the Interest if it
does not receive the desired Data after expected round trip time
(RTT) and it still wants the Data.1 However, unlike IP’s location-cen-
tric approach to data delivery, NDN packets carry data names instead
of addresses. This basic difference in design leads to two profound
differences in data delivery operations. First, although the name in
an Interest packet is used to guide its forwarding, in a way similar
to how a destination address is used to guide the forwarding of an
IP packet, the Interest may cross a copy of the requested Data at
an intermediate router or data repository and bring the Data back,
while an IP packet is always delivered to the destination (if not
dropped along the way). Second, an Interest packet carries neither
address nor name to identify the requesting consumer that can be
used to return the requested Data packet. Instead NDN routers keep
track of incoming interfaces for each forwarded Interest (a pending
Interest) and use this information to bring matched Data packets
back to consumers.

In addition to the data name, each Interest packet also carries a
random nonce generated by the consumer. A router remembers
both the name and nonce of each received Interest, hence it can tell
whether a newly arrived Interest carrying the same name as a pre-
viously received Interest is from a different consumer, or a previ-
ously forwarded Interest looped back (in which case the Interest
is dropped). Therefore Interest packets cannot loop. Because Data
packets follow the reverse path of the corresponding Interest
1 In this paper the term retransmit is used exclusively for end consumers re-
expressing Interests; another term retry is used when intermediate routers explore
alternative paths after network problems are detected.
packets, they do not loop either. This enables routers to freely retry
multiple alternative paths in Interest forwarding. Notice that retry
should be limited in scope and duration because (1) routers are not
ultimately responsible for getting the Data, and (2) if all routers
along the path perform retry, it may potentially lead to Interest
explosion and significant overhead.
2.1. Forwarding Process

Each NDN router maintains three major data structures: a Con-
tent Store for temporary caching of received Data packets, a Pending
Interest Table (PIT), and a forwarding table (FIB) (see Fig. 1). By its
name, each PIT entry records an Interest packet that has been for-
warded, waiting for the Data packet to return. The entry records
the name, the incoming interface (s) of the Interest (s), and the out-
going interface (s) the Interest has been forwarded to. An NDN rou-
ter’s FIB is roughly similar to the FIB in an IP router except that it
contains name prefixes instead of IP address prefixes, and it may
show multiple interfaces for a given name prefix (see Section
3.3). In addition, each NDN router has a strategy module that makes
forwarding decisions for each Interest packet (see Section 3.5).

When a router receives an Interest packet, it first checks
whether there is a matching Data in its Content Store. If a match
is found, the Data is sent back to the incoming interface of the
Interest packet. If not, the Interest name is checked against the en-
tries in the PIT. If the name exists in the PIT already, then it can be
either a duplicate Interest (i.e., its nonce is remembered in PIT en-
try) that should be dropped, an Interest retransmitted by the con-
sumer that may need to be forwarded using a different outgoing
interface, or an Interest from another consumer asking for the
same Data which requires the incoming interface of this Interest
to be added to the existing PIT entry. If the name does not exist
in the PIT, the Interest is added into the PIT and further forwarded
to the interface chosen by the strategy module.

When a Data packet is received, its name is used to look up the
PIT. If a matching PIT entry is found, the router sends the Data
packet to the interface (s) from which the Interest was received, ca-
ches the data in the Content Store, and removes the PIT entry.
Otherwise, the Data packet is unsolicited and discarded. Each
Interest also has an associated lifetime; the PIT entry is removed
when the lifetime expires.
2.2. Datagram State

An NDN router maintains an entry in its PIT for every pending
Interest packet, thus we say the router contains ‘‘datagram state.’’
This state leads to a closed-loop, two-way symmetric packet flow:
Fig. 1. Interest and Data processing in NDN.



Fig. 2. Forwarding State in PIT and FIB.
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over each link, every Interest packet pulls back exactly one Data
packet, maintaining one-on-one flow balance, except in (rare)
cases where packets get lost or matching data does not exist.

It is worth noting that NDN’s datagram state differs in funda-
mental ways from the virtual circuit state for ATM or MPLS. First,
a virtual circuit sets up a single path between an ingress-egress
router pair; when it breaks, the state has to be recovered for the
entire path. Second, a virtual circuit pins down the path to be used
for packet forwarding; if any of the links along the path gets over-
loaded due to traffic dynamics, packets on the same virtual circuit
cannot be diverted to adapt to the load changes. In contrast, NDN’s
datagram state is per-Interest, per-hop. At each hop, the router
makes its own decision on where to forward an Interest. When a
router crashes or a link fails, the failure only affects the Interests
at that specific location; the previous hop routers can quickly de-
tect the failure and get around the problematic area.

3. Adaptive forwarding

In this section we describe an initial design on how to utilize
NDN routers’ datagram state to build an intelligent and adaptive
forwarding plane. The main goals are to retrieve data via the best
performing path (s), and to quickly detect any packet delivery
problem and recover from them.

3.1. Interest NACK

In the original sketch of NDN [1], routers discover failures by
timeout only. More specifically, when a router N forwards an Inter-
est, it starts a timer based on the estimated RTT to the data pro-
ducer. If the corresponding Data packet comes back before the
timer expires, the RTT is updated; otherwise N will try alternative
path if one exists, or otherwise give up. However, this timer-based
problem detection can be relatively slow. Furthermore, when the
router N exhausts its options and gives up, the unsatisfied Interest
(which we call the dangling state) is left on the PIT of those routers
between the consumer and N that the Interest has traveled
through, until the Interest’s lifetime expires. Such dangling state
can potentially block other consumers from getting the same data,
since the intermediate routers believe that they have already for-
warded the Interest and just wait for the Data to return.

We address these issues by introducing Interest NACK. When an
NDN node Nu can neither satisfy nor further forward an Interest, it
sends an Interest NACK back to the downstream node Nd. If Nd has
exhausted all its own forwarding options, it will send a NACK fur-
ther downstream. Note that Interest packets flow from down-
stream node to upstream node, Data packets flow from upstream
node to downstream node, and Interest NACKs are always sent
from upstream to downstream.

An Interest NACK carries the same name and nonce as the ori-
ginal Interest, plus a NACK code explaining why the Interest cannot
be satisfied or forwarded so that proper actions can be taken
accordingly. Below are the NACK codes in our current design; addi-
tional codes may be added as the need arises.

� Duplicate: A pending Interest with identical name and nonce
has been received earlier by the upstream node. This occurs
if the Interest is looped back to the upstream node, or if
some node forwarded multiple copies of the same Interest
that happen to meet at the upstream node.

� Congestion: The upstream node cannot forward the Interest
further or return the Data back due to congestion. See Sec-
tion 3.4 for details.

� No Data: The upstream node (which can be either a router or
the producer) does not have the requested data and has no
path to forward the Interest.
In the absence of packet losses, every pending Interest is con-
sumed by either a returned Data packet or a NACK. Returning NAC-
Ks brings two benefits to the system: it cleans up the pending
Interest state much faster than waiting for timeout, and it allows
the downstream nodes to learn the specific cause of a NACK, so
that they can take informed recovery actions. Note that an Interest
NACK is different from an ICMP message; the former goes to the
previous hop while the latter is sent to the source host, hence their
effects are entirely different.

3.2. PIT

PIT maintains datagram forwarding state (Fig. 2). A PIT entry is
created for each requested name. It contains a list of nonces that
have been seen for that name, a list of incoming interfaces from
which Interests for that name have been received, as well as a list
of outgoing interfaces to which the Interest has been forwarded. In
a PIT entry, each incoming interface records the longest Interest
lifetime it has received; when the lifetime expires the incoming
interface is removed from the PIT entry, and the entire PIT entry
is removed when all its incoming interfaces have been removed.
Each outgoing interface records the time when the Interest is for-
warded via this interface, so that when Data packet returns RTT
can be computed. The RTT measurement is then used to update
the RTT estimate for the corresponding name prefix stored in the
FIB (Section 3.3).

3.3. FIB

NDN FIB differs from IP FIB in two fundamental ways. First, an IP
FIB entry usually contains a single best next-hop, while an NDN FIB
entry contains a ranked list of multiple interfaces. Second, an IP FIB
entry contains nothing but the next-hop information, while an
NDN FIB entry records information from both routing and forward-
ing planes to support adaptive forwarding decisions (see Fig. 2).

3.3.1. Routing plane information
FIB entries are added for all name prefixes announced in rout-

ing. When a name prefix disappears from routing, it is not imme-
diately removed from the FIB, but kept for a stale time period or
longer, if Interests under that prefix continue to be satisfied. This
helps reduce unreachability caused by routing convergence, when
some reachable prefixes may undergo temporary withdrawals.

For each name prefix, its FIB entry lists all interfaces that are al-
lowed by routing policy, together with their associated prefer-
ences. Routing preference reflects routing policy as well as path
cost, typically calculated using static link metrics; it is one of the
inputs that we use to rank the interfaces.
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3.3.2. Forwarding Performance Information
A FIB entry records the working status of each interface with re-

gard to data retrieval. Interface status is per-name-prefix-per-
interface. To search for the best way to represent this status, we
start by experimenting with a simple coloring scheme:

� Green: the interface can bring data back.
� Yellow: it is unknown whether the interface may bring data

back.
� Red: the interface cannot bring data back.

When a new FIB entry is created or a new interface is added to a FIB
entry, the interface’s initial status is Yellow. It turns Green when
Data flows back from that interface. A Green interface turns Yellow
when a pending Interest times out (i.e., no Data comes back within
the expected time),2 after Data ceases flowing for a certain amount
of time, or upon the receipt of a ‘‘No Data’’ or ‘‘Duplicate’’ NACK. An
interface is marked Red when it goes down. A ‘‘Congestion’’ NACK
does not change the color of an interface but reduces the rate Inter-
ests can be sent through that interface (see Section 3.4). Green inter-
faces are always preferred over Yellow ones; Red interfaces are not
used to forward Interests.

A FIB entry also maintains a per interface estimate of the RTT to
retrieve data. It is a moving average of RTT samples taken every
time a Data packet is received over the corresponding interface.
This RTT estimate is used in setting up a retry-timer, which serves
two purposes: (1) before the timer expires, subsequent Interests
carrying a name that already exists in PIT will be suppressed be-
cause the router is waiting for Data to be retrieved by the previ-
ously forwarded Interest; (2) after the timer expires, the router
will stop trying alternative interfaces upon receiving a NACK, to
limit the overhead caused by local retry.3

3.3.3. Interface ranking
Interfaces in a FIB entry are ranked in order to help forwarding

strategy choose the best interface (s) to use. When a router learns a
new name prefix from routing, it ranks the interfaces for this prefix
based on routing preference, since no forwarding performance has
been observed yet. When information about forwarding perfor-
mance becomes available, forwarding policy adjusts the interface
ranking by taking into consideration both types of information.

A wide variety of forwarding policies can be supported in an NDN
network. For example, if the policy is simply ‘‘follow routing’’, the
interface ranking will be solely determined by routing preference;
if the policy is ‘‘the sooner the better’’, an interface with smaller
RTT will be ranked higher. Yet another example is to give higher
preference to the current working path, which helps ensuring per-
formance stability experienced by applications. Note that routing
policies determine which routes to be made available to the forward-
ing plane. In the case of BGP, routing policies are reflected in routing
announcements, which propagate from data producers to consum-
ers. Forwarding policies, on the other hand, determine which routes
actually get used and in which order. They are reflected in Interest
forwarding, which go from the consumers towards producers.4
2 When there is a timeout on the interface, it indicates something may be wrong
with the current path. The interface is marked Yellow, even though the problem may
or may not be due to the local interface. If any other Green interface exists, it will be
used. If no Green interface exists, next incoming Interest will be still forwarded to the
current interface if it is the best option.

3 We are also investigating other solutions to limit the total resources spent on
forwarding each Interest, one option is to add a hop count (TTL) field into each
Interest packet and decrease it at every hop; if the Interest results in a NACK, the
NACK will echo back the remaining TTL value which is then used in the retry.

4 It is conceivable that forwarding policies could also decide whether the outgoing
interfaces for a given name prefix should be, or should not be, limited to those learned
from the routing protocols. An upstream router can easily reject an Interest it deems
violating its policy by sending a NACK. We plan to look into this issue in our future study.
3.4. Rate limiting and congestion control

The one-to-one flow balance between Interest and Data packets
gives NDN an effective way to prevent congestion inside networks.
By pacing Interests sent to the upstream direction (towards pro-
ducer) of a link, one can prevent congestion (caused by Data) on
the downstream direction of the link.

We set a limit on how fast Interest packets can be forwarded
over an interface and experimented with a simple calculation of
the Interest rate limit: Li ¼ a� Ci=Si, where Li is the Interest rate
limit of interface i;Ci is the upstream link capacity of i; Si is an esti-
mate of the size of the Data packets that have been received over i,
and a is a configurable parameter. The ratio Ci=Si is the maximum
data rate that is allowed from upstream measured in packets per
second (pps), which should be the same as the maximum Interest
rate going upstream.5 The coefficient a is used to compensate for er-
rors in the calculations (e.g., imprecise data size estimate, link and
network layer overheads).

Let us assume there two two neighbor nodes, Nu the upstream
and Nd the downstream. Nd computes Li and sends Interests to Nu

no faster than Li, which prevents the link between the two nodes
from being congested. Nu will also respect a similar rate limit when
it forwards Interests further upstream. If Nu’s upstream link has
less capacity than the link between Nd and Nu, it is possible that
Nd sends more than Nu can forward. In this case, Nu will send Con-
gestion NACKs back to Nd. Each node maintains a rate limit, Li;n, for
each outgoing interface i and each name prefix n, stored in the cor-
responding FIB entry (see Fig. 2). Li;n is reduced when a Congestion
ACK is received, and increased when a Data is received. The specific
adjustment algorithm is an area of our current research; one op-
tion is to use an Additive-Increase-Multiplicative-Decrease (AIMD)
algorithm similar to TCP.

There are two other scenarios in which Congestion NACKs may
be sent. Because Li is estimated based on observed Data packet
sizes, it may not accurately predict the actual link bandwidth that
will be consumed by current and future Data packets. Since the
upstream node knows what Data packets are waiting to be sent,
upon receiving an Interest from downstream, it can preventative-
ly return a Congestion NACK if it sees that the link Nu ! Nd

would be congested. Also, when Nu receives a Data packet from
its upstream, but foresees imminent congestion if it sends these
Data packets to Nd, it can send Congestion NACKs instead. As
demonstrated in Early Random Detection (RED) [4], monitoring
average queue length is an effective way to detect imminent con-
gestion. In both case, the downstream node will reduce its Li;n so
that Interests under prefix n will be sent to interface i at a lower
rate.

In summary, we use per interface rate limit Li to avoid con-
gestion on a local outbound interface, and per prefix-interface
rate limit Li;n to control congestion along a path (including a lo-
cal interface) used by Interests under a particular name prefix.
When neither Li nor Li;n is reached, the interface i is said to be
available for forwarding Interests under name prefix n, otherwise
unavailable.

3.5. Forwarding strategy

Given the information stored in PIT and FIB, a router’s strategy
module determines when and which interface to use to forward
an Interest, making forwarding decisions adaptive to network
conditions. Our initial design includes the handling of new Inter-
ests, retransmitted Interests, Interest NACKs, and proactive
5 A slightly more complicated formula can be obtained if we take the sizes of both
Interest and Data packets into consideration.
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probing of interfaces. The overall Interest processing mechanism
is illustrated by Pseudocode 1.

New Interest: When a newly arrived Interest does not find
a match in either Content Store or PIT, a new PIT entry will be
created. The new Interest is then forwarded to the highest-
ranked available Green interface if one exists, otherwise the
highest-ranked available Yellow interface will be used (see
Pseudocode 2). If there is no available interface, the forward-
ing strategy returns a NACK with the code ‘‘Congestion.’’
When the router forwards the Interest, it starts a retry-timer,
which is set to a small value at the time scale of RTT plus var-
iance. If the router receives an Interest NACK before the retry-
timer expires, it will try alternative interfaces to retrieve the
Data.

Subsequent Interest: If an Interest matches an existing PIT en-
try, and its nonce does not exist in the nonce list, this Interest is
considered a subsequent Interest. A subsequent Interest can be a
retransmission from the same consumer, or originated from a dif-
ferent consumer requesting the same piece of Data. When a subse-
quent Interest is received before the retry-timer expires, it will not
be forwarded because the router is still waiting for Data to be
brought back by a previously forwarded Interest. Otherwise, this
subsequent Interest will trigger the router to retry the Interest
and start the retry-timer.

Interest NACK: When an Interest for data name N is returned
in the form of a NACK, if the retry-timer is still running, a router
will send an Interest with the same name and nonce to the next
highest-ranked available interface (see Pseudocode 3). Ideally,
we want routers to try a few alternatives but not for too long
(the application may have moved on without the Data) nor con-
suming too much network resource. After the retry-timer expires,
the PIT entry for N is kept until the Interest’s life time expires, dur-
ing this time retry can be triggered by a subsequent Interest of the
same name.

In all the above situations, if a router needs to forward an
Interest but it has no available Green or Yellow interface left
that has not been tried, it will give up, delete the PIT entry
and send a ‘‘Congestion’’ or ‘‘No Data’’ NACK back to the down-
stream router (s). Routers perform best effort to get around for-
warding problems through local retries, however consumers are
ultimately responsible for re-express the Interest if they still
want the data.

Pseudocode 1 Interest processing

1: function Process (Interest)
2: Name  Interest.Name
3: if Data  ContentStore.Find (Name) then
4; Return (Data)
5: else if PitEntry  PIT.Find (Name) then
6: if Interest.Nonce 2 PitEntry.NonceList then
7: Return Interest NACK (Duplicate)
8: Stop processing
9: end if
10: if PitEntry.RetryTimer is expired then
11: Forward (Interest, PitEntry)
12: Stop processing
13: end if
14: Add Interest.Interface to PitEntry.Incoming
15: else
16: PitEntry  PIT.Create (Interest)
17: PitEntry.Incoming  Interest.Interface
18: Forward (Interest, PitEntry)
19: end if
20: end function
Forwarding strategy

1: function Forward (Interest, PitEntry)
2: if FibEntry  FIB.Find (Interest.Name) then
3: for each interface in FibEntry by rank do
4: if interface R PitEntry.Outgoing and
5: interface R PitEntry.Incoming then
6: if interface.Avaialble then
7: Set PitEntry.RetryTimer
8: Transmit (interface, Interest)
9: Add interface to PitEntry.Outgoing
10: if ProbingDue (FibEntry) then
11: Probe (Interest, PitEntry)
12: end if
13: Stop processing
14: end if
15: end if
16: end for
17: Return Interest NACK (Congestion)
18: GiveUp (Interest)
19: else
20: Return Interest NACK (No Data)
21: GiveUp (Interest)
22: end if
23: end function

Interest NACK processing (retry)

1: function Process (NACK)
2: PitEntry  PIT.Find (NACK.Name)
3: if PitEntry �£ or
4: PitEntry.RetryTimer expired or
5: NACK.Nonce R PitEntry.NonceList
6: then
7: Stop processing
8: end if
9: Forward (NACK.Interest, PitEntry)
10: end function

Interface probing: By default the forwarding strategy prefers
currently working (Green) interfaces. It also performs periodic
probing through Yellow faces in order to discover alternative avail-
able paths or paths with better performance that may appear after a
link failure recovery, or if there is a cache closer than the producer.

A router checks whether probing is due every time when it suc-
cessfully forwards an Interest in any of the three aforementioned
situations. When probing is due, it will pick an available Yellow
interface that has not been tried before, and forward a copy of
the Interest. Note that the router will not do anything if there is
no interface left for probing.

Interface probing helps discover availability and performance
information for alternative paths, but also results in duplicate Data
packet returns. One can control this overhead by limiting the prob-
ing frequency, sending a probing Interest after either a certain
amount of time has passed or a certain number of packets have
been forwarded. We are still working on the exact design and anal-
ysis of the probing frequency.

4. Simulation study

In this section we use simulations to evaluate how well NDN’s
adaptive forwarding plane works and whether it achieves robust



6 We skip the simulation results for Path Splicing under congestion because it only
utilizes one path, thus the performance is no better than that of IP.

7 We also evaluated NDN performance using much larger topologies and the results
are similar to those reported in this paper.

8 In an NDN network, a hijacker may return bogus Data instead of silently dropping
Interest packets. How to handle bogus data attacks is an ongoing effort which is
beyond the scope of this paper; we briefly discuss the solution space in Section 5.3.3.
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packet delivery under adverse conditions. We contrast with the
behavior of IP to illustrate the difference between NDN’s stateful
forwarding plane and the traditional IP’s stateless forwarding plane.
We also include in the comparison with Path Splicing [3], an adap-
tive multipath enhancement to IP, to observe the differences in the
performance between NDN and Path Splicing and to understand
the underlying causes of these differences.

We implemented a basic NDN forwarding plane and forwarding
scheme in the newly developed ndnSIM, a NS-3 based NDN simu-
lator [5,6]. We also implemented Path Splicing in NS-3 according to
[3]. In the rest of this section, we first present a brief description of
Path Splicing, then three network fault scenarios used in the simu-
lation, followed by our simulation results.

4.1. Path splicing

Path Splicing enhances enables source hosts to utilize multiple
paths in IP packet delivery. In Path Splicing, each router maintains
multiple routing tables, called slices. All the routers in a network
are preconfigured with the same number of slices. A router com-
putes its first routing table (the original slice) by using the stan-
dard routing protocol metrics, it then computes the rest of the
slices by using the same topology and the same shortest-path algo-
rithm but different sets of link weights, which are generated by
randomly perturbing the original set of link weights learned from
the routing protocol.

When a host sends a packet, it adds an ordered list of tags to the
packet header. Each tag is an index to the slice to be used at each
hop, and routers forward the packets according to the tags. A tag is
removed from the list after it is used; when a packet’s tag list be-
comes empty, routers will use the original slice to forward the
packet. End-hosts can choose a different path for a packet by tag-
ging it differently, although the hosts do not know the exact path
the packet may take.

When a host detects a network fault, e.g. a packet loss, it
retransmits the packet by using a different tag list. The recom-
mended operation is for the end-host to examine the current list
of tags and change each tag with a probability of 0.5. If a tag is
to be changed, the new tag will be randomly chosen from the avail-
able slice numbers. For a client/server application to successfully
retrieve a data packet, the tags on request and reply packets must
both identify a working path. In simulating Path Splicing, unless
otherwise specified, we use 10 slices by default and allow up to
20 retransmissions.

On the surface, Path Splicing seems similar to NDN forwarding
in that, once hosts detect network delivery problems, they attempt
to get around the problems by trying different paths. The addi-
tional state, i.e., multiple slices installed at each Path Splicing rou-
ters, enables the path adjustments by end hosts. However, there
exist two fundamental differences between the two. First, the
adaptability in Path Splicing can only be done by end-hosts, as op-
posed to by any nodes in an NDN network. Second, given the end
hosts know neither the network topology nor the problem location,
they adjust the path by random selections, as opposed to the in-
formed decision by NDN nodes based on their observed perfor-
mance and feedbacks. These functional differences lead to
significant performance differences in the simulation results as
we present below.

4.2. Simulation scenarios and setup

We examine a network’s packet delivery performance under
three fault scenarios: (1) prefix hijack, in which an attacker an-
nounces the victim’s prefix and drops the traffic; (2) link failure,
in which links randomly fail by certain probability; and (3) conges-
tion, in which some links do not have enough bandwidth to carry
the offered traffic. We evaluated the performance of NDN and IP
under all the three scenarios, and evaluate Path Splicing in prefix
hijack and link failure scenarios.6 Since we focus our evaluation
on the effectiveness of stageful adaptive forwarding, we disabled
NDN’s in-network caching in the simulation.

Except for a simple 6-node topology used in one congestion
simulation, all other simulations are done using the Sprint PoP le-
vel topology [7],7 the same topology used in [3] to show the
improvement of Path Splicing over native IP. This topology has 52
nodes and 84 links. It should be noted that this topology contains
19 single-homed nodes. When their links fail, these single-homed
nodes lose connectivity, making them vulnerable to failures as one
can see from the simulation results.

In all simulations we assume that each IP (NDN) router an-
nounces one IP (name) prefix, and we precompute the best paths
and install in each router’s FIB. For IP, a single shortest path is in-
stalled for each IP prefix at a router. For Path Splicing, a number
(default is 10) of slices are installed per IP prefix. For NDN, each
router maintains a list of all outgoing interfaces ranked by the
routing path length for each name prefix in the FIB. In prefix hijack-
ing and congestion simulations, routing protocol do not react. In
link failure simulations, we measure packet delivery performance
before the routing protocol adapts to the failure, as is done in [3].
Our goal is to measure how well, or poorly, the forwarding plane
can perform before routing converges.

In each simulation run, we create fault scenarios shortly after
the simulation starts and observe the behavior of each scheme.
Since NDN clients retrieve data by sending an Interest packet first,
for fair comparison we use the same traffic pattern in IP and Path
Splicing simulations, i.e., we run client/server applications where
a client first sends a request to the server, which then sends a reply
data packet back to the client. These request/reply packets have
the same sizes as Interest/Data packets in NDN.
4.3. Prefix hijack

In prefix hijack simulations, an attacker announces the victim’s
prefix and silently drops all data traffic it receives, creating a
‘‘blackhole’’ of victim’s traffic as what happened during the well
publicized incident of YouTube’s prefix hijack.8

End-hosts can detect the problem when they do not receive the
content they are requesting. Traffic is said to be affected if it is for-
warded towards the attacker, or unaffected if it is still forwarded to
the true destination. If affected end-hosts have means to try other
paths, they may find an alternative path to reach the true destina-
tion [8], in which case we say they have recovered from the hijack.

To simulate ‘‘blackhole’’ hijacks, in each simulation run we
choose one node as the producer, one as the attacker, and the rest
of the nodes as data consumers. The attacker announces to the
routing system the IP prefix (for IP and Path Splicing) or the name
prefix (for NDN) of the producer. We exhaust all combinations of
(consumer, producer, attacker) tuples in the topology. We run
NDN, IP, and Path Splicing to see whether the traffic will be af-
fected and whether affected traffic can recover. The results are
summarized in Fig. 3.

Let us consider the result for running IP simulation first as it is
easier to understand. In an IP network, traffic will be affected if (1)
the attacker is on the best path from the source to the destination,



Fig. 4. A prefix hijack example.
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or (2) the attacker is closer to the source than the true destination.
For the given topology, in less than 6% of the cases, the attacker is
on the best path from the consumer to the producer and simply
drops all requests, thus no consumer gets data back. In another
44% of the cases the attacker is closer to the consumer than the
producer, thus traffic is affected as well. Note that in total 50% of
all the cases traffic is affected and in the other 50% it is not. This
is because the traffic that is affected under one producer/attacker
pair will become unaffected when the producer and attacker
switch roles. Since IP routers strictly follow the paths given by
routing protocols, none of the affected traffic is recoverable. The
end-hosts, although being able to detect the problem, cannot
change the paths their packets take.

For NDN, in the less than 6% of cases where the attacker is on
the original best path from the consumer to the producer, all traffic
is recoverable except the cases where the consumer or producer is
single-homed to the attacker. For the remaining over 94% of the
cases, consumer-producer communications are not affected by
the hijack. We use a simple topology shown in Fig. 4 to explain
NDN’s resilience to blackhole hijacks.

In this figure, A is the attacker, P is the producer, and other
nodes are good routers. We first consider the routers who do not
have the attacker on their shortest path to reach the producer,
e.g., R3. When A announces P’s name prefix, the routing system
would rank the attacker path (R3-A) higher than the producer path
(R3–R4-P). With NDN’s intelligent forwarding plane, since the
existing interface (R3–R4) to the producer has been bringing data
back, it is colored Green. A’s false routing announcement makes
the interface to the attacker (R3-A) ranked higher by routing, but
when R3 tries its out by sending an Interest to it now and then,
it does not return a Data packet, thus it remains Yellow. Unlike
IP routers, NDN routers do not direct traffic to a higher ranked path
until it is observed to perform well.

Let us now consider the routers who have the attacker on their
shortest path to the producer, e.g., R2. R2’s Interest packets will be
blackholed by the attacker, thus R2’s retry-timer expires without
getting data packets back, and interface (R2-A) will be marked Yel-
low; R2 does not automatically retry alternative interfaces because
there is no Interest NACK or any feedback. End consumers will
timeout and retransmit the Interests. Upon receiving a retransmit-
ted Interest, if R2’s retry-timer has expired, R2 will retry a different
interface than the previously failed one. When the retransmitted
Interest, following a different path, arrives at the producer and
brings back the requested Data packet, R2 will mark the working
interface (R2-R3) Green and keep using the working interface.

In simulating Path Splicing under the same hijack attacks, the
results show the same 50% of affected traffic as in the IP case. How-
ever different from IP, when a client sends out a request packet and
times out after RTT, it will retransmit the request with a different
tag list, thus the packet will be routed along a different path. If the
data packet comes back, the client knows the previous tags have
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Fig. 7. Data retrieval time under different link failure probability.
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worked and will keep using the same tags. Thus, Path Splicing en-
ables end-hosts to influence path selection in an attempt to escape
routing hijack. This capability, however, is rather limited because
the available options are bounded by the number of precomputed
slices, and hosts perform random selections of tags because they
have no knowledge about the network internals. Thus the recov-
ered traffic is only 6% out of 50% of affected cases, and the random
trials can take substantially long time. Fig. 5 shows the number of
retransmissions needed to find a working path with each router
keeping 10 slices. In most cases consumers in Path Splicing need
many retransmissions, while NDN consumers only need a few.

NDN is both faster and more effective in finding working paths
because every NDN router is able to make its own informed deci-
sions on which alternative paths to try. These decisions are based
on the observation from previously forwarded Interest packets,
which is made available by maintaining per-datagram state at each
router. In addition, the ability to retry alternative paths by every
router whenever a problem is noticed speeds up recovery and does
not require any precomputed tables.
10 In Fig. 7 and 8 we only consider packet exchanges that are affected by failures but
4.4. Link failure

Robust packet delivery in the presence of link failures9 is the
classic measure used in Baran’s early work to evaluate the resilience
of packet switched networks [9]. We simulate link failures as fol-
lows. After the initial simulation warm-up, we associate each link
with a uniform failure probability and fail links randomly according
to this probability, producing one failure scenario. All packets sent
over a failed link are dropped. If the original best path from A to B
contains at least one failed link, the traffic flow between A and B is
considered affected; if the network is able to switch packets from
A to B to an alternative working path, we say this traffic flow can re-
cover from the failure. We run NDN, IP, and Path Splicing respec-
tively to see how many flows (i.e., consumer-producer pairs) can
recover from given failures. We run each experiment 1000 times
(i.e. running each of NDN, IP, and Path Splicing over 1000 randomly
generated failure scenarios for each link failure probability) and our
results are presented below.

Fig. 6 shows the percentage of host pairs that cannot recover,
averaged over 1000 failure scenarios for each link failure probabil-
ity. The ‘‘best possible’’ curve is the percentage of host pairs that
are physically disconnected by the failed links, thus no solution
9 A node failure is equivalent to a simultaneous failure of multiple links. Thus, in
this paper we do not treat node failures separately.
can achieve disconnection ratio below this curve. The NDN curve
overlaps with the best possible one, meaning that a consumer is
able to retrieve data from a producer as long as any working path
exists in between. Not only can NDN recover from link failures, it
also finds alternative paths quickly. Fig. 7 shows the CDF of data re-
trieval time from 1000 failure scenarios,10 which is from the first
transmission of a request/Interest by the consumer to the arrival
of the requested Data. It includes the time of possible retransmis-
sions by the consumer in Path Splicing and NDN, and router retries
in NDN. With 1% link failure probability, the median data retrieval
time in NDN is 85 ms, and the 90th-percentile 198 ms; when the link
failure probability is 10%, the median is not changed while the 90th-
percentile increases slightly to 203 ms. The alternative paths that
NDN finds are also of good quality. Fig. 8 shows the CDF of path
stretch, which is the path length ratio of the selected path over the
shortest path after failures. Under either 1% or 10% link failures,
about 60% of paths in the NDN network have stretch of 1, which
means that the adaptive forwarding plane found the shortest paths;
the 90-percentile of path stretch increases marginally from 1.21 to
1.22 when failure probability increases from 1% to 10%.

NDN’s resiliency to failures is due to its fast local recovery.
When a link fails, the NDN router will mark this interface Red
and try other interfaces following its forwarding strategy. If the
router has tried and failed all possible interfaces, it returns a NACK
to downstream node, which will then explore its own alternatives.
When the Interest brings back Data via a working interface, this
interface will be labelled Green and used to forward future Inter-
ests. Therefore, network retry starts from where the failure hap-
pens and pushes back towards the consumer until a working
path is found, if one exists. Since a FIB entry’s outgoing interfaces
are ordered not only based on routing preference but also observed
working status, a router tries most promising interfaces first,
which leads to finding working paths sooner and finding good
working paths.

In contrast, since IP’s forwarding plane has no adaptability of its
own, its percentage of disconnected pairs in Fig. 6 reflects the num-
ber of host pairs whose shortest paths contain at least one failed
link. An IP network relies on routing protocols to handle link fail-
ures. Once a policy-compliant working path is found, routing will
recoverable (i.e., the failed link is on the original best path, but at least one alternative
working path exists after the failure). These figures do not consider IP because
although end hosts in an IP network may also retransmit, the packet will still be
forwarded along the failed path, thus all affected pairs fail.
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Fig. 9. Link utilization under congestion.
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converge and packets will be delivered along the new path. How-
ever the convergence process, which includes failure detection,
route propagation, route computation, and FIB update, can take
time to complete. Measurements have shown that routing conver-
gence may take tens of seconds to minutes, during which applica-
tions suffer from packet losses and long delays. Therefore, many
efforts, including Path Splicing, have gone to improving packet
delivery during the transient period after failures. The essence of
these IP-based solutions is to find a loop-free path, either precom-
puted or computed on-the-fly, without relying on routing.

Path Splicing improves packet delivery under link failures over
IP.11 When links fail and packets are dropped, the consumer host will
time out the request after RTT and retransmit using different tags.
Fig. 7 and 8 show data retrieval time and path stretch of Path Splic-
ing under different link failure probability. Among all the affected
but recoverable host pairs, 66% and 49% of them succeed in data re-
trieval when the link failure probability is 1% and 10%, respectively.12

The performance of Path Splicing depends on the number of
slices and the number of retransmissions allowed. The former
11 The result in Fig. 6 appears to be worse than that in Fig. 6 of [3], because the result
in [3] is for one-way traffic, and our result here is for two-way traffic, which requires
working tags for paths in both directions. When we run simulations for one-way
traffic only, the result is similar to that in [3].

12 Fig. 6 shows that, with link failure probability of 10%, 31% of all host pairs are
affected (i.e. the failure percentage of IP traffic), 9.2% are unrecoverable, hence 21.8%
of host pairs are affected but recoverable. NDN can recover all the 21.8%, while Path
Splicing can only recover 10.6% of them. Hence only about 49% of recoverable pairs
succeed in Path Splicing as shown in Fig. 7b) and Fig. 8(b).
represents the number of choices for alternative paths, the latter
represents how many attempts are allowed to find a working path
among the choices. We experimented with different settings to
understand the impacts of these two tuning knobs. If the maxi-
mum number of retransmissions allowed is increased from 5 to
20 while the number of slices is kept at 5, the number of discon-
nected pairs of Path Splicing reduces significantly as shown in
Fig. 6. But increasing the number of slices from 5 to 10 only makes
a small improvement. This observation suggests that, for the spe-
cific topology used in this simulation, a small number of slices
can provide adequate path diversity to get around the link failures,
however end-hosts may do many random trials before they suc-
ceed. Figs. 7 & 8 show that for those flows which succeed in recov-
ery by Path Splicing, they takes much longer time to retrieve data
than NDN and in general the found paths are longer. This is be-
cause end-hosts randomly pick different tags, without knowing
where the failures are to make an informed selection. Furthermore,
such recovery attempts are initiated by end hosts after timeout,
which necessarily takes much longer time compared to NDN rou-
ters performing local recovery.

4.5. Congestion

Today’s Internet routing does not react to congestion due to
concerns of routing oscillation and frequent routing updates. When
a link is congested, the routing plane at each of the two incident
routers either does not see the problem at all if routing protocols
have their keep-alive messages pass through, or considers the link
failed if enough keep-alive messages are lost. The responsibility of
congestion control is solely on end-hosts, which run TCP to detect
congestions and adjust sending rate reactively. In NDN, on the
other hand, the forwarding state enables routers in the network
to prevent, detect, and react to congestion by utilizing multiple
paths when needed, resulting in effective and efficient congestion
control.

Let us first use a simple 6-node topology to shed the light on the
basic differences between NDN and TCP NewReno in their reac-
tions to congestion (Fig. 9). The server and client each has a
10 Mbps link connecting to a router. Each router has buffer size
of 20 packets and all the links between routers have 1 Mbps band-
width. The lower path has an RTT of 130 ms, while the upper path’s
is 134 ms. Data packet size in both NDN and TCP is 1040 bytes, and
both Interest size in NDN and TCP ACK size is 40 bytes. The client
downloads content from the server and the figures show the link
utilization achieved by NDN and TCP respectively. We can make
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two observations from the results. First, while TCP/IP uses the
shorter path only and saturates the bottleneck link, NDN is able
to use both paths. In NDN, R1 first uses only the lower path because
it is the most preferred, but when the rate-limit of the lower path is
reached, R1 starts using the upper path too. Second, over each path,
NDN is able to grab available bandwidth more quickly than TCP,
which takes longer time to settle at a stable rate. Consequently
TCP takes more than twice as long to download the same amount
of data.

NDN has a number of means to prevent, control, and alleviate
congestion. First, a downstream node Nd controls the rate of Inter-
est forwarding based on its estimate of the bandwidth needed to
carry the returning Data traffic. This prevents excessive Data from
being pulled into the network, and is enabled by the symmetric
two-way flow of Interest/Data packets. The estimate of needed
bandwidth, though, can be off due to packet size variations, and
the errors may lead Nd to send more Interests than it should. When
that happens, the upstream node Nu can reject new Interests by
sending a Congestion NACK downstream; or even when an exces-
sive Data packet is retrieved but the downstream link cannot han-
dle, Nu can simply cache the Data and send back an Interest NACK.
In TCP/IP, on the other hand, because data is pushed from the sen-
der to the receiver, when a data packet arrives at a link where it
cannot be forwarded further, the router simply drops it, after the
the packet has already consumed considerable bandwidth along
the way from the sender to the congested link. While TCP conges-
tion control also aims to achieve flow balance as an NDN network
does, it sends data packets to probe the network’s available band-
width and takes much longer time to detect congestion (end-to-
end vs hop-by-hop); meanwhile additional excessive packets
may have been pumped into the network, which eventually get
dropped.

Second, Interest NACKs allow NDN routers to adapt to conges-
tion hop-by-hop. A Congestion NACK is generated if the Interest
cannot be forwarded upstream due to congestion. The downstream
node will try its other interfaces for this Interest. This hop-by-hop
retry inside the network reacts much faster than the end-to-end
solutions for stateless IP networks, leading to quick local work-
around as we have seen in the case of link failure recovery. Upon
receiving a Congestion NACK the router also adjusts its forwarding
rate for the specific [Li;n] pair, where i is the interface and n is the
name prefix. Further excess Interests will be diverted to other
interfaces. When the network cannot satisfy the demand, Interest
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Fig. 10. Flow finish time under congestion.
NACKs will eventually be pushed back to inform the consumer to
adjust its Interest sending rate properly. This is in contrast to
TCP, which can only guess whether congestion occurred in the net-
work, and can only use AIMD window adjustment to tune towards
the right sending rate.

Third, NDN can use multiple paths simultaneously to retrieve
data whenever needed. As illustrated in the cases of hijack and link
failure, NDN can find loop-free alternative paths quickly. When
traffic is below the rate limit of a single upstream link, all will be
forwarded along the best path. When traffic is over a single path’s
capacity, NDN can divert excess Interests to one or more alterna-
tive working paths. This capability of on-demand multipath for-
warding enables efficient use of all available network resources.

Fourth, even though we did not simulate caching in this study,
in a real NDN network, caching can further help speed up recovery
from faults including congestion. When a Data packet arrives at a
congested or failed link, it cannot be forwarded further but can
be cached along the way. When downstream routers send another
Interest, in response to either a NACK or end-host retransmission,
via a different interface, this subsequent Interest will bring the re-
quested data back as soon as it hits a cached copy of the data. With
caching, recovery from packet losses can be much faster and more
efficient in network resource usage than the end-to-end retrans-
mission in IP-based solutions.

We run a larger-scale simulation using the Sprint topology and
generate a number of flows that lead to cross traffic at multiple
locations in the network. All routers have 20 packets buffer each,
and all links are assigned 1 Mbps bandwidth but different propaga-
tion delays according to the topology file. In each run, 20 client/ser-
ver pairs are randomly selected and each client downloads the
same amount of data from its server.13 The clients start in a random
order with 1 s apart. Packet size is the same as in the previous sim-
ulation. Fig. 10 shows the results from 100 runs, where each dot rep-
resents the finish time of the flow that finishes last. As the figure
shows, NDN finishes sooner than TCP in all but 7 runs (including
one run in which they finish almost the same time), demonstrating
that NDN can utilize network resources more efficiently and handle
congestion better.

We can explain the 6 cases where NDN took slightly longer time
than TCP to finish as follows. In NDN, because all consumers try to
retrieve data as fast as possible, and all routers explore multiple
paths to satisfy consumers demand, consequently those pairs of
nodes that have multiple parallel paths in between can capture
more bandwidth and finish fast. However a number of flows in
the simulation have only one single path between client Ci and ser-
ver Si, i.e. they must go through at least one specific link LB to reach
each other. If LB is not shared with other traffic, Ci can finish data
retrieval from Si as soon as possible. But if LB is shared by other
traffic flows, which is more likely to be the case in NDN than in
TCP/IP, Ci will take longer to finish.

The above observation suggests that multipath forwarding
deployment should be accompanied by support for fair share of
network resources. This fair share support can be added into the
decision process when a node needs to return Congestion NACKs.
The node has the discretion on which Interest to send a Congestion
NACK back. Through the decision criteria one can achieve fair share
goals, enforce bandwidth limit to downstream, maintain QoS tar-
gets, and even push back excessive Interests in the case of DDoS.
Although the exact design and evaluation are still work-in-pro-
gress, we believe that the forwarding state in NDN routers make
it easier and more effective to achieve these goals in an NDN net-
work than in an IP network.
13 We place clients/servers randomly and run the experiment multiple times in
order to evaluate NDN and TCP in general situations.
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In summary, our simulation results illustrate that maintaining
datagram state at every router allows NDN to detect and react to
packet delivery problems quickly and effectively. Since Data is ex-
pected to come back within an RTT period along the same path,
forwarding plane problems can be detected at the time scale of
an RTT. Interest NACKs allow a node to retry alternative paths
quickly, enabling fast local recovery inside the network. The overall
result is that NDN’s forwarding resilience is significantly better
than IP and Path Splicing across all fault scenarios we have
examined.
5. Discussion

In this section, we first review and analyze the benefits brought
by NDN’s stateful forwarding plane and then identify a few key
open issues for future research.
5.1. Benefits of Stateful Forwarding Plane in NDN

Datagram is the most basic unit in packet switched networks.
Therefore, controlling traffic using per-datagram, per-hop state
gives a network the most flexibility to support a wide variety of
functions. While semantics of datagram state can be different
(i.e., what information is remembered and how this information
is used), it is the granularity of the state that allows (1) loop-free,
multipath data retrieval, (2) native support of synchronous and
asynchronous multicast (i.e., servicing requests from multiple con-
sumers that are sent either at the same or different time), (3) effi-
cient recovery from packet losses, (4) effective flow balancing (i.e.,
congestion avoidance), (5) robust recovery from network prob-
lems, such as link failures and hijacks, as illustrated in Section 4,
and other important network functions.

The loop-free, multipath data retrieval in NDN contains two
tasks that rely heavily on per-datagram state: loop-free forwarding
of Interests and loop-free Data return. The first task is accom-
plished by remembering names and nonces for each forwarded
Interest, thus looped (duplicated) Interests can be easily detected
and discarded. It is this loop-free property that allows NDN routers
to freely try multiple alternative paths in Interest forwarding.
Delivery of a Data packet follows the per-Interest hop-by-hop state
created at each router along the path. Therefore, if an Interest path
is loop-free (and it is), then a Data path is by definition also loop-
free.

Native support of synchronous and asynchronous multicast
comes from two per-datagram pieces of NDN design: suppression
of Interests for the same name and per-datagram in-network data
storage (Content Store). If more than one consumer expresses
Interests for the same Data around the same time, when these
Interests’ paths merge in the network, only the first Interest will
be forwarded towards the producer; other Interests will only add
additional incoming interfaces in the PIT entry, forming a multicast
tree for Data to return. On the other hand, if the Data has been pre-
viously requested by someone else, it will be cached in a router’s
Content Store, from which any later request can retrieve Data
without going all the way to the original producer.

The per-datagram in-network data storage also facilitates effi-
cient recovery from packet loss. That is, if a Data packet is lost
and the consumer retransmits the Interest, it will be satisfied when
it hits the router on the producer side of the lossy link and bring
the Data back, as opposed to pulling the Data from the original pro-
ducer again like in the current Internet.

NDN’s ability of effective flow balancing and congestion
control comes from the combined effect of symmetric paths (of
Interests and Data) and packet conservation: one Interest brings
at most one Data back over each link. Therefore one can effectively
regulate incoming Data rate by controlling outgoing Interest rate,
which can be done on a per-interface basis, as well as per-
prefix-per-interface basis. The simulation experiments reported
in this paper used per-interface rate limiting, and we plan to ex-
plore the latter in our ongoing effort. The per-hop nature of data-
gram state, together with the feedback loop formed by Interests
and Data, allows routers to divert traffic to alternative paths at
any point in the network, without pre-coordination (e.g., flow set
up).

Finally, the same datagram state that ensures path symmetry
enables routers to measure forwarding plane performance (e.g.,
RTT) of each path. This information can then be used to retrieve
data along best available paths, and to robustly detect and re-
cover from forwarding problems, that may be caused by either
physical failures or malicious attacks.

What we have explored so far is only a small subset of the ben-
efits provided by NDN’s datagram state. We believe that adaptive
forwarding based on datagram state can be used to solve a number
of other network control and security problems in the future, with-
out requiring major changes to the basic mechanism.

5.2. State granularity and solution elasticity

Many efforts have been made over the years to add each of the
above mentioned functions into IP networks, with each solution
installing its own state into the network that cannot be used to
solve other problems. For example, one may set up state of coarser
granularity, e.g., per-connection state, for control purposes in IP or
some other network architectures. However such state cannot be
used to support IP multicast which requires per source-multicast
group state.

When a coarser (than datagram) granularity of state is used for
control purposes, it can be adequate to support a specific function,
but is unlikely to be able to support other uses, simply because dif-
ferent control purposes require certain state information that is
incompatible with the chosen granularity. For example, IP multi-
cast requires state information associated with {host, multicast
group} pair, which is incompatible with the state information
needed by XCP [10] to control congestion. Similarly, the state infor-
mation needed by XCP is different from that needed by PushBack
[11] to mitigate DDoS attacks. Other piecemeal solutions include
Pretty Good BGP [12] to mitigate route hijacks, Failure-Carrying
Packets [13] to deliver packets under failures, etc. In contrast to
NDN’s per-hop datagram state that support all the above functions,
each of these named solutions solves one problem by adding its
own state or mechanisms tailored to the specific function; a net-
work architecture with all of these functions and added state
would become incoherent and cumbersome.

In choosing state granularity, there exist a tradeoff between the
functionality to be supported versus the amount of resource it con-
sumes. The downside of datagram state is the amount of state it in-
curs, which is perceived by many as infeasible based on today’s
technologies. For example, today’s router hardware may not be
able to hold a PIT or operate NDN at wire speed. Given where
the technology is as of today, we admit that maintaining datagram
state at routers represents formidable challenges. We consider
these challenges as part of the research issues in realizing NDN,
as we discuss next.

5.3. Research issues

In previous sections we have argued that adaptive forwarding
with datagram state can achieve robust packet delivery as well
as simplified routing. Below we briefly discuss a few important
design choices and research challenges. Our short list is necessarily
incomplete.
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5.3.1. Forwarding state
NDN’s datagram state brings with it a significant cost, both in

router storage and in packet processing. More specifically, since
an Interest stays in the PIT until the corresponding Data packet re-
turns, the number of PIT entries (associated with each outgoing
interface) is roughly on the order of Bandwidth� RTT=P, where P
is the average size of Data packets. For a path that can sustain 10
Gbps throughput, we need 100 K PIT entries assuming RTT =
100 ms and P = 1000 bytes. If a router has 10 such interfaces, then
its PIT needs to hold 1 million entries. Although today’s core rou-
ters can handle more than 1 M entries in IP routing tables, a PIT en-
try is larger in size than an IP routing entry due to variable-length
names and other information, and PIT’s memory cost is in addition
to that of the NDN routing table. As routers get more interfaces and
networks go faster over time, the PIT table will also grow propor-
tionally. However PIT usage represents an even bigger challenge.
IP routers perform lookups over FIB only, but NDN routers perform
both read from (lookup), and write into, the PIT. For example, when
a new Interest arrives, a PIT entry needs to be inserted; when a
matching Data returns, a PIT entry needs to be removed. These
are more expensive operations that require fast and scalable solu-
tions. We need both novel data structures to store PIT efficiently
and novel algorithms to operate on PIT at wire speed. There are al-
ready research efforts underway to tackle these issues (e.g.,
[14,15]).

5.3.2. Forwarding strategies
Forwarding strategy is a unique feature enabled by the NDN

architecture. In this paper we have presented a simple strategy
that works reasonably well in handling prefix hijack, link failure
and congestion. However, it is clear that many possibilities exist
in forwarding strategy designs to suite different network environ-
ment and problems. For example, different strategies may be used
at core routers vs. edge routers. Exploring different design choices
of forwarding strategy is one of our main goals in future work. Be-
low we list three design questions we have encountered.

How to discover working paths quickly and efficiently? There is a
spectrum of choices between trying a single interface at a time
(our current approach) and flooding an Interest to all interfaces
at the same time, with the tradeoff between the overhead and de-
lay to retrieve data. Flooding explores all possible paths at once,
but it incurs most overhead in terms of redundant packets and net-
work state. The number of interfaces to try at one time can be ad-
justed depending on the situation. For example, the first
transmission of an Interest is forwarded to only a single interface,
but if Data does not return in time and the consumer retransmits
the Interest, this copy can be forwarded to multiple other inter-
faces in order to discover a working path quickly. The tradeoff be-
tween quickly retrieving data and minimizing overhead depends
on the problem context. For example, flooding may be acceptable
in home networks but not suitable in the core Internet.

How to utilize multiple paths? Our current design uses a single
best path towards each name prefix as long as it is able to meet
the consumer demands. Only after a problem occurs to that path,
such as congestion, will a router divert excess traffic to other paths.
In other words multiple paths are used on demand. A different ap-
proach is to proactively split traffic along multiple paths. This way,
a router continuously receives feedback on forwarding plane per-
formance from multiple paths, and a failure may only affect a smal-
ler portion of the traffic. There can also be a hybrid approach which
uses a couple of paths proactively but use more when existing
paths encounter problems. Further research is needed to investi-
gate how to best utilize NDN’s multipath capability.

How to probe unused interfaces? In our current design, routers
periodically send Interests to previously failed or unused paths to
measure their performance. The questions are when to probe and
which interfaces to probe. A simple design is trigger probing every
N seconds or every M packets. The exact numbers of N and M, how-
ever, depend on the effectiveness of probing and the overhead it in-
curs. As to which interface to probe, one way is to probe all unused
interfaces with equal probability, another is to probe higher-
ranked interfaces with a higher probability since they might lead
to better paths.

5.3.3. Bogus data packets
Malicious attackers in an NDN network may launch an attack by

injecting bogus Data packets. The bogus Data packets can be either
unrequested, or injected as responses to valid Interests in a hijack
attack. In the former case, since those packets are not requested by
anyone, they have no corresponding PIT entries at routers and will
be discarded. Therefore NDN is able to dispel the brute force DoS
attacks that happens everyday in today’s IP networks. In the latter
case, there exists a wide spectrum of possible solutions, ranging
from router signature verification to end consumer feedback.

Since every Data packet carries a signature, one easily detects
bogus data packets through signature verification. However, veri-
fying the signature for every Data packet can be too expensive to
perform by routers. Instead routers may perform signature check-
ing over sample packets, which could be done by an auxiliary pro-
cessor. We are also looking into hardware-assisted signature
verification at routers. A more promising direction is to utilize
end consumer feedback. Once end consumers identify bogus Data
through signature verification, they can notify first hop routers to
take proper actions. The routers may start sampling signature ver-
ifications as well as trying alternative paths to fetch data. Inter-
ested readers please refer to [16] for a more comprehensive
discussion.

6. Related work

Today’s IP architecture takes the ‘‘smart routing, dummy for-
warding’’ approach. Due to its stateless nature, the forwarding
plane strictly follows the routing state. Recent research efforts
have recognized that introducing adaptability to forwarding plane
is a promising approach. Wendlandt et al. [8] and Caesar et al. [17]
argue that networks should provide end-hosts with multiple path
choices, and end-hosts should be responsible for choosing different
paths based on their observed forwarding plane performance.
Works such as Pathlet routing [18], routing deflections [19] and
Path Splicing [3] are specific designs along this direction. The basic
difference among them is in the specifics of how alternative paths
are obtained.

Multipath TCP [20] utilizes multiple interfaces/IP addresses of
multihomed hosts to set up multiple sub-TCP connections between
the two ends. Assumed that each source/destination IP address
pair represents a different physical path, one can split traffic over
the multiple end-to-end paths. TeXCP [21] adds adaptability to
edge routers to handle network congestion. In TeXCP, multiple
MPLS tunnels are precomputed between each pair of ingress-
egress routers, and ingress routers split traffic over multiple tun-
nels based on congestion feedback from internal routers. All these
efforts introduce some adaptability to the forwarding plane, but
the adaptability is limited to end-hosts or edge routers only. In
an NDN network, all hosts and routers are able to select alternative
paths.

Although NDN is considered as one of the Information-Centric
Networking (ICN) architectures, NDN’s forwarding plane design is
drastically different from that of other ICN architecture proposals.
For example, PURSUIT [22] is a publish/subscribe architecture.
PURSUIT employes source routing for packet forwarding. Its
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forwarding path is encoded in a bloom filter carried in the packet
header; routers forward packets strictly according to the path
information carried in the bloom filter [23]. In case of failures, PUR-
SUIT relies on preset backup paths to get packets delivered, there-
fore the network’s adaptability is limited. Since each packet carries
its own path in a PURSUIT network, PURSUIT routers do not main-
tain packet state as NDN routers do. At the same time, individual
PURSUIT routers also cannot measure the forwarding plane
performance nor collect feedback to adapt to failures as NDN rou-
ters do.
7. Conclusion

NDN’s communication model of retrieving data by names leads
to a forwarding plane design that keeps datagram state at every
router. Because datagram is the basic unit in packet switched net-
works, this per-hop datagram state provides the flexibility to solve
a host of existing problems that have resisted effective solutions up
to now. In this paper we described a specific design on how to uti-
lize this datagram state to provide high performance and resilience
in an NDN network. We also quantitatively evaluate the data deliv-
ery performance of NDN under adverse conditions. Our results
show that NDN’s adaptive forwarding mechanism can provide
excellent performance in handling blackhole hijacks, link failures
and network congestion.

At the same time, we are fully aware that installing datagram
forwarding state at routers brings largely open issues in terms of
both technical feasibility and economical viability. The history of
IP development shows, however, when a new architecture solution
provides significant functional advantages as well as new applica-
tion opportunities, even though its overhead may seem higher and
its initial implementation offers inferior performance compared to
the highly engineered implementation of the incumbent architec-
ture, research and technology advancements would eventually
catch up to close the gap and even go further. Thus we remain
modestly optimistic about the future of NDN and its stateful for-
warding plane. This paper serves as our invitation to the research
community to further examine this new direction for building
resilient networks and tackle the open research issues.
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