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Abstract—Distributed Denial of Service (DDoS) attacks are an
ongoing problem in today’s Internet, where packets from a large
number of compromised hosts thwart the paths to the victim
site and/or overload the victim machines. In a newly proposed
future Internet architecture, Named Data Networking (NDN),
end users request desired data by sending Interest packets, and
the network delivers Data packets upon request only, effectively
eliminating many existing DDoS attacks. However, an NDN
network can be subject to a new type of DDoS attack, namely
Interest packet flooding. In this paper we investigate effective
solutions to mitigate Interest flooding. We show that NDN’s
inherent properties of storing per packet state on each router
and maintaining flow balance (i.e., one Interest packet retrieves
at most one Data packet) provides the basis for effective DDoS
mitigation algorithms. Our evaluation through simulations shows
that the solution can quickly and effectively respond and mitigate
Interest flooding.

Index Terms—Information-centric networks, named-data net-
working, denial-of-service

I. INTRODUCTION

Named Data Networking (NDN) [1], [2] is an ongoing
research effort that aims to move the Internet into the future
with a content-centric design that is capable of efficient content
distribution and seamless mobility support. In contrast to
today’s Internet, a key goal of the NDN project is “security
by design.” In fact, it goes a long way by guaranteeing the
integrity and provenance of every Data packet with digital sig-
natures and protecting user-privacy with no source addresses
carried in the packets. However, one big question that is yet
to be answered is: how does the NDN architecture fare in
terms of its resilience against DDoS attacks? Especially since
various forms of DDoS attacks pose a significant threat to the
existing Internet infrastructure [3], it is crucial to ensure that
the new design is free of similar vulnerabilities.

NDN eliminates host-based addressing and makes data the
first-class network entity. Instead of sending packets to a
given IP address, NDN nodes request desired data by sending
Interest packets carrying application-level data names, and
the network returns the requested Data packets following the
path of Interests. Such a shift automatically eliminates several
long-standing DDoS attacks, including direct flooding and
reflector attacks through source address spoofing [4]. However,
malicious users can attack the network by sending an excessive
number of Interests. Since each Interest consumes resources
at intermediate routers as it is routed through the network, an

excessive number of Interests can congest the network and
exhaust a router’s memory. We coin the term Interest flooding
to refer to such attack and this paper exclusively investigates
the problem and the solution space for it.

Our effort is an important first step towards a complete
investigation of DDoS attacks in NDN. We experiment with
three algorithms that allow routers to exploit their state infor-
mation to thwart these attacks. Through extensive simulations,
we show how one of our mitigation methodologies effectively
shuts down malicious users while preventing legitimate users
from service degradation. The rest of the paper is organized
as follows. We provide an overview of NDN architecture in
Section II and describe Interest flooding attacks in Section III.
In Sections IV and V we introduce techniques to mitigate
these attacks, evaluate their effectiveness, and discuss their
limitations. We summarize related work in Section VI. We
discuss future work and conclude in Section VII.

II. NDN OVERVIEW

In this section we briefly introduce NDN with a focus on
its stateful forwarding plane (refer to [1], [2], [5], [6] for more
details). NDN is a receiver-driven, data-centric communication
protocol. All communications in NDN are performed using
two distinct types of packets: Interest and Data. Both types
of packets carry a name, which uniquely identifies a piece of
content that can be carried in one Data packet. Data names
in NDN are hierarchically structured and an example name
for the first segment of a youtube video would look like:
“/youtube/videos/0F8YdlkKO9A/0”.

To retrieve data, a consumer requests it by sending an
Interest packet with the name of the desired content in it.
Routers use this name to route the Interest towards data
sources, and a Data packet whose name matches the name
in the Interest is returned to the consumer by following the
reverse path of the Interest. Similar to IP, Interest forwarding is
based on longest name prefix match, but, unlike IP, an Interest
packet and its matching Data packet always take symmetric
paths.

Each NDN router maintains three major data structures:
Pending Interest Table (PIT) holds all “not yet satisfied”
Interests that have been sent upstream towards potential
data sources. Each PIT entry contains one or multi-
ple incoming and outgoing physical interfaces; multiple
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Fig. 1. Example of Interest flooding attack

incoming interfaces indicate the same data is requested
from multiple downstream users; multiple outgoing in-
terfaces indicate the same Interest is forwarded along
multiple paths.
Forwarding Interest Base (FIB) maps name prefixes to
one or multiple physical network interfaces, specifying
directions where Interests can be forwarded.
Content Store (CS) temporarily buffers Data packets that
pass through this router, allowing efficient data retrieval
by different consumers.

When a router receives an Interest packet, it first checks
whether there is a matching data in its CS. If a match is found,
the Data packet is sent back to the incoming interface of the
Interest packet. If not, the Interest name is checked against
the entries in the PIT. If the name already exists in the PIT,
then it can be a duplicate Interest (identified by a random
number each Interest carries) that should be dropped, or an
Interest from another consumer asking for the same Data,
which requires the incoming interface of this Interest to be
added to the existing PIT entry. If the name does not exist
in the PIT, the Interest is added into the PIT and forwarded
along the interface chosen by the strategy module, which uses
FIB as input for its decisions.

When a Data packet is received, its name is used to look
up the PIT. If a matching PIT entry is found, the router sends
the Data packet to the interface(s) from which the Interest
was received, caches the data in the CS, and removes the PIT
entry. Otherwise, the Data packet is deemed unsolicited and is
discarded. Each Interest also has an associated lifetime; the
PIT entry is removed when the lifetime expires. Although
the maximum lifetime is specified by users, it is ultimately
a router’s decision on how long it is willing to keep a PIT
entry. For simplicity, we assume routers keep Interests in PIT
for one second in our simulations.

III. INTEREST FLOODING ATTACKS IN NDN

As we explained earlier, Interest packets in NDN are routed
through the network based on content name prefixes and con-
sume memory resources at intermediate routers. This makes
them a potential tool to launch DDoS attacks in NDN. An
attacker or a set of distributed attackers can inject excessive
number of Interests in an attempt to overload the network and
cause service disruptions for legitimate users (Fig. 1).

Since an NDN network fetches data by its name, an
adversary cannot easily target specific routers or end-hosts.
However, an adversary can target a specific namespace. For
example in Fig. 1, if the data producer is the exclusive owner

of “/foo/bar” namespace, both router B and the data producer
would receive all Interests for “/foo/bar/...” that cannot be
otherwise satisfied from in-network caches.1 A large volume
of such malicious Interests can disrupt service quality in NDN
network in two ways: create network congestion and exhaust
resources on routers.

Similar to packets in traditional networks, Interest packets
in NDN consume a portion of network capacity. A large
number of Interest packets might cause congestion and lead
to legitimate packets being dropped in the network. In par-
ticular, a coordinated DDoS attack could target one specific
namespace and concentrate attack traffic in certain segments
of the network, as routing in NDN is based on name prefixes.

As NDN routers maintain per-packet states for each for-
warded Interest (i.e., an entry in its PIT), an excessive amount
of malicious Interests can lead to exhaustion of a router’s
memory, making the router unable to create new PIT entries
for incoming Interests and disrupting service for legitimate
users.

Nevertheless, creating an effective Interest flooding attack
in NDN is non-trivial. To efficaciously target a specific name-
space (e.g., “/newyorktimes/”), an adversary needs to make
sure that (1) the expressed Interests are routed towards and as
close to the data producer/provider as possible, and (2) new
corresponding PIT entries are created for those interests and
are stored at intermediate NDN routers for as long as possible.
The former is achieved when Interests share the same name
prefix (e.g., “/newyorktimes/”) and as long as they are not
served from caches of intermediate routers—an Interest is not
forwarded upstream if a router can satisfy it from its content
store. The latter requires every single malicious Interest to ask
for unique content—all Interests requesting the same content
are combined into one PIT entry in routers. Thus, an adversary
has to request either an unpopular (i.e., not cached in routers)
or non-existing unique content with each Interest. Of the two
options available to an adversary, the first one is challenging
due to the difficulties around indexing content names in a
particular namespace, coordinating a large number of bots
to send unique Interests, and sustaining the attack while the
network is continuously caching the requested content objects.
However, the second option—requesting a unique non-existing
content with each Interest—is easy to achieve and sustain.
For example, an adversary can construct such Interests by
concatenating a variable-length random name component to
the victim namespace (e.g., “/newyorktimes/3rf3...”). In
this paper, we exclusively focus on this particular attack
strategy as it not only maximizes the damage from each
malicious Interest, but also is the one that is easy to launch
and widely applicable to all namespaces (small or large).

In the rest of this paper, we use the general term Interest

1This example assumes that the adversary floods the network with unique
data names carrying “/foo/bar” prefix to make them effective. It also assumes
the producer is single-homed and the data is not replicated elsewhere. With
multi-homed producers or replicated data, NDN would likely to cope better
with DDoS attacks due its native multipath and adaptive forwarding [5], [6]
support.
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flooding attack to refer to the above described attack and
assume an attacker is limited to controlling a botnet of end-
hosts only, i.e., we assume the routers in the network and the
computers in the victim domain are not compromised.

IV. INTEREST FLOODING MITIGATION METHODS

In this section we present several algorithms to mitigate
Interest flooding attacks in NDN. Our mitigation strategies
feature varying degrees of implementation complexity and
effectiveness—the higher the implementation complexity, the
more effective is the algorithm against Interest flooding at-
tacks. We start by describing our simple strategies and use the
insights and lessons learned from the deployment of these to
inform and design more effective mitigation techniques that
work well in various topologies.

An obvious and naı̈ve solution to defend against Interest
flooding attacks is to restrict the number of Interests forwarded
through the network. To this end, we exploit a fundamental
principle of NDN architecture—flow balance between Interest
and Data packets. Flow balance refers to the fact that one
Interest can be satisfied by at most one Data packet. This
principle allows intermediate routers to control the inbound
data traffic by controlling the number of outstanding Interests
in the network. One simple implementation technique is for
an NDN router to limit the number of forwarded Interests
out of each interface based on the physical capacity of the
corresponding interface. This technique is a slight modification
of the well-known Token Bucket algorithm that is currently
widely used in packet-switched networks. Analogous to the
Token Bucket algorithm, NDN routers can keep track of the
amount of data requested that can fully utilize the downstream
link (estimated from the number of forwarded Interests) and
once the link capacity limit has been reached, they no longer
forward new incoming Interests. Ideally, the number of tokens
(the pending Interest Limit) for each link will be proportional
to the link’s bandwidth-delay product (BDP) [7]. We can
formalize this value as follows:

Interest Limit = Delay [s] · Bandwidth [Bytes/s]

Data packet size [Bytes]
(1)

In the above equation, Delay is the expected time for the
Interest to be satisfied and Data packet size is the size of
the returning Data packet. Although both these values are not
known a priori, it is not really necessary to use their exact
values. One can simply set the pending Interest limit based
on the average values of round trip time and observed Data
packet size, as network buffers can smooth out most of the
network fluctuations.

This Token Bucket approach might be exceptionally restric-
tive in forwarding Interests—not all Interests will result in
a Data packet—and might result in underutilization of the
network. However, the biggest drawback of this algorithm
is the fact that it can nourish DDoS attacks. If a router has
utilized all its tokens to forward malicious Interests, it can no
longer forward incoming Interests from legitimate users till
the pending malicious Interests start to expire. One way to

Pending Interests Table (PIT)
Interest name In Out Status

/evil/1 eth0 eth2 forwarded
/evil/2 eth0 eth2 forwarded
/evil/3 eth0 eth2 in queue
/evil/4 eth0 eth2 in queue
/evil/5 eth0 eth2 in queue
/good/5 eth1 eth2 in queue
/good/5 eth1 eth2 in queue

PIT extension

Forwarding 
queue for eth2

eth0 eth1

Sub-queues for each 
incoming interface

Round-robin 
selector

Fig. 2. Interest queuing: if tokens are unavailable, the router creates a PIT
entry, but instead of forwarding, it enqueues the Interest

get around this issue is to impose a per interface fairness, so
that malicious Interests are not allowed to entirely consume
the limits of a specific interface. We describe this technique
in greater detail below.

1) Token bucket with per interface fairness: To address
the lack of fairness associated with the naı̈ve Token Bucket
approach, we modify it to ensure that the Interests forwarded
by a router on each interface represent a fair mix of Interests
received from neighboring nodes. For example, in Fig. 1 router
A can ensure that the tokens associated with Interests sent
out on interface eth2 are fairly distributed across incoming
interfaces eth0 and eth1. In order to achieve our goal of
ensuring “fair” mixing of Interests from all neighboring nodes,
we extend the Pending Interest Table to support flagging of
Interests that cannot be immediately forwarded and implement
hierarchical queues for each interface (see Fig. 2). This mech-
anism is essentially a class based queuing [8], with classes
for each outgoing and incoming interface. We note that unlike
normal queuing, Interest queues do not actually store a packet,
but merely a bi-directional pointer to the existing PIT entry.
Thus, a PIT entry can be quickly updated when the Interest
is actually forwarded, and the element can be easily removed
from the queue when the Interest expires.

We present a formalized description of this algorithm in
Pseudocode 1. By setting appropriate queue sizes, we can
control the amount of physical resources utilized at a router.
It is also important to set a sensible value for how long an
Interest can be enqueued. If an Interest is enqueued for a long
time, by the time it is dequeued and forwarded, the retrieved
Data packet might be dropped at the downstream routers if
their corresponding state expired. For our evaluations, we
empirically chose to enqueue Interests up to 10% of their
original lifetime (100 ms).

As we show in Section V, this algorithm provides a partial
relief from Interest flooding attacks, allowing legitimate users
to successfully fetch Data for 15–20% of their expressed In-
terests. We note that while this algorithm might be reasonable
for ensuring limited fairness in an NDN network, it is largely
ineffective in protecting legitimate users from malicious ones.
Attackers are able to successfully thwart access to content
for legitimate users by sending a relatively modest volume
of malicious Interests.

The key drawback of the Token bucket with per interface
fairness algorithm is that it still admits a relatively large
number of Interests from malicious users. A considerable

3
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Pseudocode 1 Token bucket with per interface fairness
1: for each interface if do
2: Lif ← Interest Limit according to (1)
3: Oif ← 0 ◃ Outstanding Interests on interface if

4: function OUTINTEREST(Interest i, InInterface in, OutInterface out)
5: if Lout −Oout > 0 then ◃ out is under limit cap
6: Oout ← Oout + 1 ◃ “borrow” a token from the bucket
7: add out to PIT entry and forward i to out
8: else
9: Queue q ← out.GetSubQueue(in)

10: if Size(q) < Lout then
11: q.PushInterest(i)
12: add out to PIT entry, and link PIT entry with the queue
13: else
14: drop Interest

15: ◃ Whenever Lout −Oout becomes larger than zero
16: function TOKENBECOMESAVAILABLE
17: Queue q ← out.GetRoundRobinSubQueue
18: Interest i ← q.PopInterest
19: update PIT entry and Forward(i, out)

20: function INDATA(Data d)
21: lookup PIT entry p for data d
22: for each outgoing interface out in p do
23: Oout ← Oout − 1 ◃ “return” token

24: function TIMEOUT(PIT entry p)
25: for each outgoing interface out in p do
26: Oout ← Oout − 1 ◃ “return” token

percentage of these malicious Interests are forwarded all the
way to content producers, thereby reducing resources available
to serve legitimate users. This algorithm attempts to ensure
that each interface does not forward more than its fair share
of Interests, but in doing so, it drops both legitimate and ma-
licious Interests. For any strategy to be effective in defending
against Interest flooding attacks, it must be able to detect and
differentiate to some extent malicious requests from legitimate
ones. Thus, the key question is how can we devise mitigation
algorithms that allow a router to distinguish between ‘good’
and ‘bad’ Interests?

A. Intelligent attack mitigation
In order to distinguish between legitimate and mali-

cious Interests, we leverage another unique feature of NDN
architecture—guaranteed symmetric flow of Interest and Data
packets. Since a Data packet takes the reverse path of the
corresponding Interest packet, a router is guaranteed to see if
an Interest it forwarded resulted in a matching Data packet
or timed out. Since malicious Interests are not likely to bring
data back (as discussed in Section III), this information can
be utilized by routers in differentiating attack and legitimate
traffic.

This timeout-based differentiation method is reactive in
nature: one cannot determine in advance if an Interest will
result in a timeout or Data being retrieved. However, routers
can proactively maintain up-to-date statistics of Interest satis-
faction ratios (number of forwarded versus number of satisfied
Interests), and use these statistics to determine whether an
incoming Interest should be forwarded or dropped. For exam-
ple, maintaining Interest satisfaction ratio statistics for each
incoming interface is sufficient to reasonably predict whether

Pseudocode 2 Interest satisfaction statistics
1: for each interface if do
2: Fif ← 0 ◃ forwarded Interests from interface if
3: F̂if ← 0 ◃ averaged value of Fif
4: Uif ← 0 ◃ unsatisfied Interests from interface if
5: Ûif ← 0 ◃ averaged value of Uif

6: function OUTINTEREST(Interest i, InInterface in)
7: Fin ← Fin + 1
8: record in in the list of incoming interfaces for i

9: function INTERESTTIMEOUT(Interest i)
10: lookup the list of incoming interfaces for i
11: for each interface if in the list do
12: Uif ← Uif + 1

13: ◃ Exponentially weighted moving average smoothing
14: function EWMA ◃ Every second
15: α ← e−1.0/30.0

16: for each interface if do
17: Ûif ← α · Ûif + (1− α) · Uif
18: Uif ← 0
19: if Fif > 0 then ◃ To ensure decaying of ratio Uif/Fif

20: F̂if ← α · F̂if + (1− α) · Iif
21: Fif ← 0 ◃ Reset counters

an Interest received from a neighbor connected to this interface
will result in a Data packet or a timeout if forwarded. Statistics
can also be kept at finer granularities such as per outgoing
interface, per name prefix, etc. that can further improve the
estimates. A router’s goal should be to prioritize Interests that
bring Data back while quickly penalizing those that occupy
resources but do not result in a returning Data packet. In
order to allow negative statistics to build up fast and positive
statistics to deteriorate quickly, we use the standard exponen-
tially weighted moving average, performed once a second with
α coefficient e−1/30, approximately corresponding to a 30-
second averaging window.

Pseudocode 2 formally defines how statistics can be gener-
ated for each incoming interface. Note that in order to ensure
decaying of relative statistics (e.g., ratio between the number
of unsatisfied and forwarded Interests), only unsatisfied statis-
tics needs to be exponentially smoothed (lines 19–21).

Fig. 3 illustrates the resulting dynamics of the statistics
during and after an Interest flooding attack. The attack duration
is from 10 to 70 seconds. Prior to start of the attack, the
percentage of unsatisfied Interests is zero. The statistics build
up rapidly as soon as Interests start to time out, which happens
approximately one second after the start of the attack. For
the duration of the attack (10–70 seconds), the percentage
of unsatisfied Interests is close to 100%: when the ratio is
close to 100%, routers drop all incoming Interests, resulting in
decaying of the statistics until a new Interest is admitted, which
eventually brings statistics back near 100% point. Finally, the
ratio exponentially decays after the attack ceases.

1) Satisfaction-based Interest acceptance: Having suc-
cessfully implemented a technique to gather statistics on Inter-
est satisfaction ratios, our next challenge is in using these ratios
to penalize malicious Interests. A straightforward method to
achieve this enforcement is to use the Interest satisfaction ratio
as a direct probability for accepting (forwarding) or rejecting
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Fig. 3. Dynamics of unsatisfied Interests statistics on a gateway’s interface
towards the attacker

Pseudocode 3 Satisfaction-based Interest acceptance
1: ◃ Same init, InData and Timeout functions as in Pseudocode 1
2: function OUTINTEREST(Interest i, InInterface in, OutInterface out)
3: ◃ Use uniform probability distribution model P (X)
4: ◃ P (X) : ∀x ∈ [0, 1] ⇒ P (x) = x
5: if Fin > θ then ◃ At least some Interests were forwarded before
6: s ← (1− Uin/Fin)
7: Drop interest with probability P (s)

8: forward the Interest, subjecting to token bucket limits

an incoming Interest (see Pseudocode 3).
Parameter θ on line 5 of Pseudocode 3 ensures that the

probabilistic model is not enforced when the volume of
Interests arriving at a particular interface is small. This step is
critical to provide an opportunity for legitimate users to regain
their share of resources after temporary Data delivery failures.

A drawback of the satisfaction-based Interest acceptance
method is that each router on the path makes an independent
decision on whether to forward or drop an Interest. As a result
of these independent decisions, the probability of legitimate
Interests being forwarded decreases rapidly as the number
of hops between the content requester and producer grows;
worsening the Interest satisfaction statistics and resulting in
further drops. In our example in Fig. 1, the router A observes
50% satisfaction rate for eth1 and 0% rate for eth0. At the
same time, router B observes a 30% satisfaction rate for its
eth0 interface. Next time a legitimate Interest arrives at router
A, it has a 50% chance of being forwarded further, and if
forwarded, it has only a 50% × 30% = 15% probability
of being forwarded further towards the data producer. With
each increasing hop in the network, the probability of being
forwarded to the next hop decreases significantly. One way to
prevent this overreaction and unfair penalization is to ensure
that the decision taken at each router on whether to forward
or drop the Interest is not independent of the decision taken
at preceding routers. An explicit notification such as a gossip
protocol between neighboring NDN routers might alleviate the
problem, but we leave the design and evaluation of it to future
work.

2) Satisfaction-based pushback: The previous algorithm—
the satisfaction-based Interest acceptance—divides the avail-
able forwarding tokens among all interfaces in proportion
to their Interest satisfaction ratios. An alternate algorithm
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Fig. 4. Satisfaction-based pushback example

Pseudocode 4 Satisfaction-based pushback
1: ◃ Same init, InData and Timeout functions as in Pseudocode 1
2: ∀f ∈ interfaces : L′

f ← Lf ◃ Per-incoming interface Interest limit
3: ◃ Announcement from the neighbor
4: function INLIMITS(InInterface in, Limit L′)
5: Lin ← L′

6: function ANNOUNCELIMITS ◃ E.g., every second
7: for each outgoing interface out do
8: for each incoming interface in do
9: L′

in = Lout × (1− Uin/Fin)
10: AnnounceLimit(in, L′

in)

for proportional token distribution without overreaction is to
enable and enforce explicit Interest limit for each incoming
interface, where the value of the limit depends directly on the
interface’s Interest satisfaction ratio. Routers need to announce
these limits to their downstream neighbors, ensuring that any
Interest forwarded from the downstream router is allowed to
get through, resulting in genuine Interest satisfaction statistics.

The formal definition of the satisfaction-based pushback
algorithm is presented in Pseudocode 4, while Fig. 4 illustrates
how the algorithm will work in our example in Fig. 1.
Assuming an initial token bucket limit L = 10 and the current
satisfaction ratio for router A is 50% for eth1 and 0% for
eth0, and for router B the ratio is 30% for eth0, each node
will set and announce the following incoming interface limit
L′:

1) router B will set and announce the incoming interface
limit L′ = 3;

2) router A, after receiving announcement from B will
readjust its incoming interface limits to L′

eth1 = 1.5
and L′

eth0 = 0; and
3) both legitimate users and adversaries may either obey or

ignore the announced limit, which will in any case be
enforced by router A.

The zero limit for the adversary’s link implies that router
A is temporarily not willing to accept any Interests from this
interface until the statistics decay to an appropriate level (recall
Fig. 3). At the next iteration of the satisfaction-based pushback
algorithm, a legitimate user will be able to gradually improve
the statistics on both routers A and B as all Interests from the
user will get through and return Data, eventually resulting in a
full allowance (L′ = L = 10) in the links between the routers
A and B, and the user and router A.

We note that while in the description of the satisfaction-
based pushback algorithm we explicitly used “outgoing” and
“incoming” interfaces, all interfaces can be both incoming and
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outgoing. Thus, it may not be entirely clear which outgoing
limit Lout (line 9 in the algorithm) should be used to calculate
the incoming limit Lin. To overcome this problem, in our ac-
tual implementation we enforced separate incoming/outgoing
interface limits for each individual FIB entry. That is, for each
FIB entry we set a separate Interest limit for each incoming
interface (L′fib

in ) based on the sum of FIB entry limits for each
outgoing interface L =

∑
Lfib
out.

Both satisfaction-based Interest acceptance and satisfaction-
based pushback algorithms are forms of a well-known push-
back mechanism [9], but with several core differences. First,
we are suppressing (pushing back) unwanted requests for
data, not actual data itself. Second, differentiating between
good and bad Interests is based on the traffic symmetry
principle of NDN. Finally, both intelligent attack mitigation
algorithms can be deployed at all times without degrading
network performance even when there are no active attackers.

V. EVALUATION OF INTEREST FLOODING MITIGATION
METHODS

In this section, we present an in-depth evaluation study,
aiming to quantify the effectiveness of all our Interest flood-
ing attack mitigation methods. We used the open-source
ndnSIM [10] package, which implements NDN protocol stack
for NS-3 network simulator (http://www.nsnam.org/), to run
simulations for a variety of network topologies and scenarios.
We extended ndnSIM with our three mitigation algorithms—
token bucket with per interface fairness, satisfaction-based In-
terest acceptance, and satisfaction-based pushback—and eval-
uated the effectiveness of each algorithm independently.

The metric we choose to quantify the effectiveness of
our algorithms is the percentage of satisfied Interests for
legitimate users. This metric corresponds to the quality of
service experienced by legitimate users when the network is
under attack. In other words, if the network implements a
mitigation method X and a high percentage of user-expressed
Interests are satisfied even while the network is under attack,
then one can conclude that method X is highly effective at
mitigating the attack.

In our experiments, we assumed that legitimate users ex-
press Interests at constant average rates with randomized time
gap between two consecutive Interests, where the random
number for the gap follows a uniform distribution. We believe
that this traffic pattern provides a reasonable approximation of
traffic mix from all network users without excessive buffering.
To quantify the behavior of our mitigation strategies under a
worst-case attack scenario, we assumed that all the attackers
send junk Interests as fast as they can. Further, no Interest—
including legitimate ones—can be satisfied from caches. We
also configured routers for single-path Interest forwarding and
there is only one single-homed producer for the prefix under
attack.

We ran our simulations on two different network
topologies—a smaller binary tree topology and a much larger
ISP-like topology. We use a binary tree topology as it rep-
resents one of the worst cases to defend against Interest

Legitimate users 
and attackers

Links, sharing different portions of 
legitimate and malicious Interest traffic

All links are
10 Mbps
with delays 
from 1 to 10ms Data producer

Fig. 5. Small-scale binary tree topology

flooding DDoS attacks. The larger ISP topology reflects how
our mitigation methods would perform when deployed on
the real Internet. Again, to study the performance of our
mitigation strategies under a range of conditions, we varied
the percentage of attackers in the network—the values ranged
from 6% attackers to over 50% attackers in the network. We
set the delay and data size parameters for the Interest limit
calculation (formula 1) to a fixed value for every node in the
simulated topology. In particular, for the small-scale binary
tree topology, we set delay to 80 ms, while for the large-scale
ISP topology we set it to 330 ms (the order of the largest
RTT). The data size is 1100 bytes for all simulation runs and
topologies.

A. Small-scale evaluations

In Fig. 5, we depict the binary-tree topology that we used for
our initial experiments. Legitimate users as well as attackers
were placed on leaf nodes (top row of red nodes) as shown
in the figure. There are 16 end users (both legitimate and
attackers) in this topology, each expressing Interests that are
routed towards a single data producer, placed at the root of
the tree. Each link in this topology is assigned a bandwidth of
10 Mbps and a randomized propagation delay ranging from 1
to 10 ms.

1) Effectiveness of the three mitigation algorithms: Our
goal is to compare the effectiveness of each mitigation method
and quantify the percentage of Interests satisfied for all le-
gitimate users while the network is under attack. For each
mitigation algorithm, we perform 10 independent simulation
runs, where we randomly choose 7 client nodes to represent
adversaries while the remaining 9 client nodes represent le-
gitimate users. In each run we simulate a 10-minute attack
window (total simulation time was 30 minutes, with attack
starting at the 10-minute mark). We plot the minimum and
maximum range for observed Interest satisfaction percentages
for all legitimate users aggregated across the 10 simulation
runs as a function of time for each mitigation algorithm in
Fig. 6. Token bucket with per-interface fair queuing performs
the worst, while satisfaction-based pushback performs the best,
with almost a 100% satisfied Interests for all legitimate users.

a) Token bucket with per interface fairness: We observe
a successful DDoS attack, where 40% attackers succeed in
significantly shutting down the remaining 60% legitimate
users—a mere 15% of their Interests are satisfied by Data from
the producer. Contrary to expectations, the 60% legitimate
users do not receive at least 60% of network resources. As
described in the previous section, the key limitation of this
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Fig. 6. Interest satisfaction ratio as a function of time for binary-tree topology
with 7 attackers and 9 legitimate users

algorithm is that it still admits Interests from attackers and
causes congestion and packet drops near the victim.

b) Satisfaction-based Interest acceptance: The effec-
tiveness of this algorithm stems from the fact that routers can
differentiate and limit malicious Interests into the network.
The observed periodic dips in the Interest satisfaction ratios
of legitimate users in Fig. 6 is a direct result of Interest
satisfaction rate statistics decaying with time. The 50-second
period approximately corresponds to the selected exponential
decaying parameter α = e1.0/30.0, which decays statistics
to 1/e of the initial value within 30 seconds and to ≈20%
within 50 seconds. When Interests from attackers start to get
readmitted, they cause degradation of statistics on routers close
to the producer (i.e., routers that observe mixed traffic from
legitimate and malicious users). Consequently, this degradation
reduces the probability of legitimate Interests getting through
(see Section IV-A1) until malicious Interests are “pushed
back” again to the edge.

c) Satisfaction-based pushback: In our simulations, this
mitigation algorithm was able to effectively shut down attack-
ers and ensure that almost all the Interests from legitimate
users are satisfied. We observe a sharp dip in the satisfaction
ratio curve at the start of the attack as it takes a few seconds
for all routers to be fully aware of the attack. However,
recovery is quick as malicious Interests start to time out
and explicit Interest limit announcements start to succeed in
containing malicious Interests close to the attacker. Till then,
the network, for a short period of time (under 10 seconds
for all simulation runs), fails to provide 100% service for
legitimate users. Once the malicious Interests are effectively
shut down, all Interests from legitimate users are satisfied.
Unlike the satisfaction-based Interest acceptance scenario, we
do not observe any periodic dips in the satisfaction curve,
as the pushback algorithm effectively guarantees that once an
Interest is admitted, it will likely be routed all the way to the
data producer.

2) Network reaction to varying number of attackers: Our
next goal is to study the effectiveness of our mitigation
algorithms as a function of increasing adversaries in the
network. To this end, we vary the percentage of attackers in
the topology from 6% to over 50%. Since the total number
of end users in the topology is constant, as the number of
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Fig. 7. Average Interest satisfaction ratios for the first minute of the
experiment as a function of increasing attackers in the network

attackers increases, the number of legitimate users decreases.
All other parameters and experimental setup are consistent
with the previous experiment. As before, for each mitigation
algorithm, we perform 10 independent simulation runs.

In Fig. 7 we present the Interest satisfaction ratio for
legitimate users aggregated over the 10 simulation runs for
the first minute of the attack. The results are as expected—for
all three mitigation algorithms, as the percentage of attackers
in the network increases, the lower is the Interest satisfaction
ratio for legitimate users. In the case of token bucket with
per-interface fairness algorithm, just 3 attackers can halve
the quality of service for the remaining 13 legitimate users.
While the two intelligent attack mitigation algorithms also
show a decline in service quality as the percentage of attackers
increases, this decline is much more gradual and marginal. In
the case of satisfaction-based pushback algorithm, during the
first minute of the attack over 90% of Interests from legitimate
users are satisfied even if 50% of end nodes are malicious.

B. Large scale simulations

In this section, we investigate the behavior of our mitigation
strategies under a more realistic, large-scale network topology.
The ISP-like topology we used is based on a modified version
of Rocketfuel’s AT&T topology [11]. We extracted the largest
connected component comprising of 562 nodes from this
original topology and separated the nodes into three categories:
clients, gateways, and backbones. Nodes having degree less
than four were classified as clients (344 red nodes as shown
in Fig. 9), nodes directly connected to clients were classified
as gateways (109 green nodes), and the remaining nodes
were classified as backbones (109 blue nodes). We assigned
bandwidth and delay values to links based on their type—
both values are random numbers within the respective ranges
as shown in Table I. We experimented with placing the data
producer at both a gateway node as well as backbone node,
which we randomly picked for each simulation run. Similar to
the binary tree topology experiments, we fixed the number of
malicious nodes at approximately 40% (140 out of 344 client
nodes in the topology) and randomly picked these nodes for
each simulation run. We conducted 10 simulation runs for each
mitigation algorithm, with the attack duration spanning a 5-
minute interval.

In Fig. 9, we summarize our results aggregated over all
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Fig. 8. Internet-like topology: 344 client routers (red), 109 gateway routers
(green), 109 backbone routers (blue)

TABLE I
LARGE-SCALE TOPOLOGY LINK BANDWIDTH AND DELAY RANGES

Link type Delay Bandwidth
Min Max Min Max

Backbone–Backbone 5 ms 10 ms 40 Mbps 100 Mbps
Gateway–Backbone, 5 ms 10 ms 10 Mbps 20 MbpsGateway–Gateway
Client–Gateway 10 ms 70 ms 1 Mbps 3 Mbps

simulations runs for each mitigation algorithm for the scenario
where the data producer is placed at a gateway node. We ob-
serve similar results for the data producer placed at a backbone
node as well. Unlike the binary-tree topology experiments,
we observe that both the token bucket with per interface
fairness and satisfaction-based Interest acceptance have poor
performance, while the satisfaction-based pushback is still the
most effective algorithm. Interest satisfaction percentage for
legitimate users are close to 30%, 25%, and 100% respectively
for these mitigation methodologies.

Satisfaction-based Interest acceptance algorithm, which was
very effective for binary-tree topology, is completely ineffec-
tive when deployed in a larger and more realistic topology.
For the duration of the attack, legitimate users experience
poor quality of service with only 25% of their Interests being
satisfied and continue to experience degraded service long after
the attack has stopped. This poor performance, as detailed in
Section IV-A1, is due to the fact that each router on the path
makes an independent, uncoordinated decision on whether to
forward or drop an Interest. In the case of a large topology,
with much higher average hop count, Interest packets from
legitimate users have a very low probability of reaching the
data producer, resulting in poor Interest satisfaction statistics
and further penalization of new Interests from them.

All our evaluations leave us to conclude that among the
three techniques we tested under various topology and attacker
concentrations, the satisfaction-based pushback is the most
promising one in mitigating Interest flooding attacks.

C. Limitations

This paper is a first step in understanding the impact of
Interest flooding attacks in NDN and exploring the solution
space. To design our mitigation algorithms we exploit two key
features of NDN architecture, namely routers maintaining state
about the Interests they have forwarded and Data traffic taking
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Fig. 9. Satisfaction ratio dynamics during the attack for large-scale topology
with 40% attackers)

the reverse path of the Interest traffic. We test the efficacy of
our algorithms by simulating them on both a simple binary-
tree topology, as well as a more realistic ISP-based topology
designed to provide insights of our algorithms’ behavior when
deployed on a real network. While our results are promising
and show a great potential in mitigating Interest flooding
DDoS attacks, there are certain limitations which should be
addressed in future research.

First, in our evaluations we used a simple and static attacker
model—attackers send junk Interests as fast as possible. In
future work, we plan to explore the impact of models where the
attackers are more sophisticated and dynamically adapt their
behavior and Interest sending patterns based on the network
reaction. Second, we assumed that Interests are not satisfied
by an intermediate router’s cache and always forwarded all the
way to the producer. In future, we plan to study the impact
of Interest flooding attacks in more realistic scenarios with
multi-path routing enabled, more realistic traffic patterns, and
the presence of in-network caches.

VI. RELATED WORK

As a new Internet architecture proposal, Named Data Net-
working has attracted a limited attention from the security
community. Lauinger [12] showed several possible attacks
against some specific design choices implemented in CCNx
software (http://www.ccnx.org/); in particular [12] explored
the issue of user privacy, assuming users are concentrated on
the same edge router only and one can obtain complete knowl-
edge of cached content. Wählisch et al. [13] explore security
and stability threats in the general area of information-centric
networks (ICN), using CCNx software as an example. While
this work aims to generalize findings for all ICNs, it largely
does not go beyond the current design choices of CCNx. In this
paper we follow the suggestions by Gasti et al. [14] and utilize
the properties provided by the NDN architecture to mitigate
DDoS attacks, and tackle the Interest flooding problem as
a first step in this direction. More specifically our attack
mitigation design relies on NDN’s stateful forwarding plane
that allows us to maintain statistics on unsatisfied Interests.
Similar approaches are also explored by Yi et al. [5], [6],
[15] and Rozhnova et al. [16] to facilitate NDN network
performance.
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The general area of mitigating denial of service attacks
is amongst the hottest topics in recent years. The most
relevant works to this paper are the solutions to brute force
IP packet flooding, such as DDoS detection techniques [17],
[18], methods of pushing back malicious traffic to edges
using various filtering techniques [9], [19], [20], [21], [22],
[23], [24], overlay-based filtering [25], [26], [27], various
ticketing systems with conditional admission of traffic in to
the network [28], [29], [30], [31], [32], [33], and systems that
attempt to use approximate IP traffic symmetry to estimate
and filter out malicious traffic [34], [35], [36]. Identifying
malicious traffic requires establishing certain state at routers,
and the above mentioned solutions differ in the specifics
on what state to use and how to establish it. By design
NDN’s forwarding plane keeps per packet state at every router,
the finest granularity state to support any and all mitigation
solutions—we simply take full advantage of this state to
develop desired solutions.

VII. CONCLUSION

NDN being a newly proposed future Internet architecture,
it is important to address its resilience in face of DDoS
attacks. As an initial step in understanding the DDoS threats
in NDN, we first examined a specific instance of DDoS
attacks—namely, Interest flooding—and the severe service
degradation such an attack may cause to legitimate users. We
then leveraged the key features of the NDN architecture to
design, develop, and evaluate three mitigation strategies. We
performed detailed simulations on a range of topologies to
quantify the effectiveness of our algorithms. The most effec-
tive algorithm—satisfaction-based pushback—was successful
in almost completely shutting down the attackers, so that they
cause little or no service impact to legitimate users.

NDN’s stateful forwarding plane enables a number of
desired functions, such as loop-free, multipath data delivery,
built-in multicast, scalable content delivery, effective flow
balance (i.e., congestion avoidance), and robust recovery from
network failures, that people have attempted to install in IP
networks [5], [6]. Although this useful per-packet state can
be abused to launch attacks, the demonstrated success of
satisfaction-based pushback algorithm serves as evidence that
one can indeed utilize the per packet state built into each NDN
router to enable effective DDoS mitigation as well.
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