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Abstract—We deduce key design features behind the YouTube
video delivery system by building a distributed active measure-
ment infrastructure, and collecting and analyzing a large volume
of video playback logs, DNS mappings and latency data. We
find that the design of YouTube video delivery system consists
of three major components: a “flat” video id space, multiple
DNS namespaces reflecting a multi-layered logical organization
of video servers, and a 3-tier physical cache hierarchy. We also
uncover that YouTube employs a set of sophisticated mechanisms
to handle video delivery dynamics such as cache misses and load
sharing among its distributed cache locations and data centers.

I. INTRODUCTION
Given the traffic volume, geographical span and scale of

operations, the design of YouTube’s content delivery infras-
tructure is perhaps one of the most challenging engineering
tasks. Before Google took over YouTube and subsequently
re-structured the YouTube video delivery infrastructure, it
was known that YouTube employed several data centers in
US [1] and used third-party content delivery networks to
stream videos to users. While it is widely expected that
Google has incorporated the YouTube delivery system into
its own infrastructure in the past few years, little is known
how Google has re-designed and re-structured the YouTube
video delivery infrastructure to meet the rapidly growing user
demands as well as performance expectations. This paper
attempts to “reverse-engineer” the YouTube video delivery
system through large-scale measurement, data collection and
analysis. The primary goal of our study is to understand the
design principles underlying Google’s re-structuring of the
YouTube video delivery system. Understanding YouTube is
important for future content providers and content delivery
system designers, because YouTube video delivery system
represents one of the “best practices” in Internet-scale content
delivery system. Additionally, because of the significant vol-
ume of traffic that YouTube generates, this reverse-engineering
work also helps Internet service providers to understand how
YouTube traffic might impact their traffic patterns.
The rest of the paper is organized as follows. We describe

the measurement infrastructure and collected data in Section II.
In Section III, Section IV and Section V we present details
regarding how we derive our findings, including the analysis
performed, the methods used, and additional experiments
conducted to verify the findings. We conclude the paper in
Section VI.

This work is supported in part by the NSF grants CNS-0905037, CNS-
1017092 and CNS-1017647.

RelatedWork.Most existing studies of YouTube mainly focus
on user behaviors or the system performance. The authors in
[2], [4] examined the YouTube video popularity distribution,
popularity evolution, and its related user behaviors. The au-
thors in [5] investigate the YouTube video file characteristics
and usage patterns such as the number of users, requests, as
seen from the perspective of an edge network.
In [1], Adhikari et al. uncover the YouTube data center

locations, and infer the load-balancing strategy employed by
YouTube at the time. In [7], the authors examine data col-
lected from multiple networks to uncover the server selection
strategies YouTube uses. To the best of our knowledge, our
work is the first study that attempts to reverse engineer
the current YouTube video delivery system to understand its
overall architecture.

II. MEASUREMENT AND DATA
We developed a distributed active measurement and data

collection platform consisting of 471 PlanetLab nodes that
are distributed at 271 geographical dispersed sites and 843
open recursive DNS servers located at various ISPs and
organizations. We also developed an emulated YouTube Flash
video player in Python which performs the two-stage process
involved in playing back a YouTube video: In the first stage,
our emulated video player first connects to the YouTube’s
website to download a web page, and extracts the URL
referencing a Flash video object. In the second stage, after
resolving the DNS name contained in the URL, our emulated
video player connects to the YouTube Flash video server thus
resolved, and follows the HTTP protocol to download the
video, and records a detailed log of the process. In addition,
our emulated YouTube Flash video player can be configured
to use an open recursive DNS server (instead of the default
local DNS server of a PlanetLab node) for resolving YouTube
DNS names. This capability enables us to use the 843 open
recursive DNS servers as additional vantage points.
We adopt a multi-step process to collect, measure, and

analyze YouTube data. First, we crawl the YouTube web-
site from geographically dispersed vantage points using the
PlanetLab nodes to collect a list of videos, record their view
counts and other relevant metadata, and extract the URLs
referencing the videos. Second, we feed the URLs referencing
the videos to our emulated YouTube Flash video players,
download and “playback” the Flash video objects from the 471
globally distributed vantage points, perform DNS resolutions
from these vantage points, and record the entire playback
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processes including HTTP logs. This yields a collection of
detailed video playback traces. Third, using the video playback
traces, we extract all the DNS name and IP address mappings
from the DNS resolution processes, analyze the structures
of the DNS names, and perform ping latency measurements
from the PlanetLab nodes to the IP addresses, and so forth.
Furthermore, we also extract the HTTP request redirection
sequences, analyze and model these sequences to understand
YouTube redirection logic.
YouTube Videos and View Counts. We started by first
crawling the YouTube homepage (www.youtube.com) from
geographically dispersed vantage points using the PlanetLab
nodes. We parsed the YouTube homepage to extract an initial
list of (unique) videos and the URLs referencing them. Using
this initial list as the seeds, we performed a breadth-first
search: we crawled the web-page for each video from each
PlanetLab node, and extracted the list of related videos; we
then crawled the web-page for each related video, and ex-
tracted the list of its related videos, and so forth. We repeated
this process until each “seed” video yielded at least 10, 000
unique videos (from each vantage point). The above method
of collecting YouTube videos tends to be biased towards
popular videos (at various geographical regions). To mitigate
this bias, we take multiple steps. First, we add our own short
empty videos to the list. We also search YouTube for different
keywords and add to our list only those videos that have very
small view counts. After all these steps, we have a list of 434K
videos (including their video ids, the (most recent) view-count
and other relevant information).
Video Playback Traces and HTTP Logs. Using the list of
videos we collected, we fed the URLs referencing the videos
to our emulated YouTube Flash video players to download
and “playback” the Flash video objects from the 471 globally
distributed vantage points. We recorded the entire playback
process for each video at each vantage point. This includes,
among other things, the DNS resolution mappings, all the
URLs, HTTP GET requests and the HTTP responses involved
in the playback of each video.

III. VIDEO ID SPACE & NAMESPACE MAPPING

YouTube references each video using a unique “flat” video
id, consisting of 11 literals. We refer to the collection of
all video ids as the video id space. While we find that the
literals in the first 10 positions can be one of the following
64 symbols: {a-Z, 0-9, , -}, only 16 of these 64 symbols
appear in the 11th (last) position. Therefore, while the size
of the YouTube video id space is 6411, the theoretical upper
bound on the number of videos in YouTube is 63 11× 16, still
an astronomical number. Analyzing the 434K video ids in our
list, we find that they are uniformly distributed in the video id
space.
As we show in Table I and elaborate further in Section IV,

YouTube employs a number of DNS namespaces. Only DNS
names belonging to the lscache namespace are generally
visible in the URLs contained in the YouTube webpages; DNS
names belonging to other namespaces only appear in URLs in

subsequent HTTP redirection requests (see Section V-C). We
find that each video id is always mapped to a fixed hostname,
out of the 192 possible names (logical servers) in the lscache
namespace, regardless of location and time. For example, a
video identified using the video id MQCNuv2QxQY always
maps to v23.lscache1.c.youtube.com lscache name from all
the PlanetLab nodes at all times. Moreover, when redirection
happens, each video id is always mapped to a fixed hostname
(out of 192 names) in the nonxt or tccache namespace, and to
a fixed hostname (out of 64 names) in the cache or altcache
namespace. Moreover, we find that this fixed mapping from
the video id space to anycast namespaces makes sure that the
number of video ids that map to each anycast hostname are
nearly equally distributed. To demonstrate this, we plot the
number of video ids that map to each of the lscache hostnames
in Figure 1. We see that there are approximately equal number
of videos mapped to each of the lscache hostnames.

IV. CACHE NAMESPACES & HIERARCHY
YouTube defines and employs a total of 5 anycast names-

paces as well as two sets of unicast hostnames of the formats
(rhost and rhostisp), respectively. Based on our datasets, these
anycast and unicast names are resolved to a collection of
nearly 6, 000 IP addresses (“physical” video cache servers)
that are distributed across the globe. Table I provides a
summary of these namespaces, the number of IP addresses
and locations they map to, and so forth.
We find that the 5 anycast and 2 unicast namespaces map

essentially to the same set of IP addresses: about 93% of the
5, 883 IP addresses have a (unique) unicast name associated
with them. Second, 80% of the IP prefixes come from ad-
dresses assigned to Google/YouTube, while the remaining 20%
of the prefixes coming from address space assigned to other
ISPs such as Comcast and Bell-Canada (hereafter referred to as
non-Google addresses/prefixes). The former have the unicast
names of the form rhost, whereas the latter rhostisp. Clearly,
the unicast names indicate that Google/YouTube have video
caches co-located within other ISP networks (referred to as
non-Google locations) as well as within its own (referred to
as Google locations). The 3-letter city code provides a hint as
to where the corresponding YouTube cache is located (at the
granularity of a city or metro-area). To geo-locate and classify
those IP addresses that do not have an associated unicast
name in our datasets and to further validate the geo-locations
of YouTube video caches, we conduct pair-wise round-trip
measurements from each PlanetLab node to all of the YouTube
IP addresses. Using these measurements as well as the round
trip delay logs in the collected video playback traces, we
perform geo-location clustering similar to the approach used
by GeoPing [6]. This yields a total of 47 cache locations.
We plot them (including both Google and non-Google cache
locations) on a world map in Figure 4.
Based on the HTTP redirection sequences, there is a clear

hierarchy among the 5 anycast namespaces, as shown in
Figure 2: A video server mapped to a lscache hostname (in
short, a lscache server) may redirect a video request to the
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Fig. 1. Number of videos mapped to each
lscache hostname.

rhostrhost

rhost

rhost

rhostisp

lscache
(Non-Google)

tccache

cachealtcache

nonxt (Google) lscache
(Google)

Primary

Secondary

Tertiary

Fig. 2. YouTube namespace hierarchy and
redirection order. Fig. 3. YouTube Architectural Design.

TABLE I
YOUTUBE Anycast (FIRST FIVE) AND Unicast (LAST TWO) NAMESPACES.

DNS namespace format # hostnames # IPs # prefixes # locations any/uni-cast
lscache v[1-24].lscache[1-8].c.youtube.com 192 4, 999 97 38 anycast
nonxt v[1-24].nonxt[1-8].c.youtube.com 192 4, 315 68 30 anycast

tccache tc.v[1-24].cache[1-8].c.youtube.com 192 636 15 8 anycast
cache v[1-8].cache[1-8].c.youtube.com 64 320 5 5 anycast

altcache alt1.v[1-24].cache[1-8].c.youtube.com 64 320 5 5 anycast
rhost r[1-24].city[01-16][s,g,t][0-16].c.youtube.com 5, 044 5, 044 79 37 unicast

rhostisp r[1-24].isp-city[1-3].c.youtube.com 402 402 19 13 unicast

Fig. 4. Geographical distribution of YouTube Video Cache Locations.

corresponding tccache server, or directly to the corresponding
cache server, but never the other way around. Based on
these analyses, we deduce that the YouTube cache locations
are organized into a 3-tiered hierarchy: there are roughly
primary cache locations geographically dispersed across the
world (most are owned by Google, some are co-located within
ISP networks); there are 8 secondary and 5 tertiary cache
locations in US and Europe and owned by Google only. We
discuss each tier below in more details below.
• Primary Video Caches. The lscache anycast namespace

consisting of 192 hostnames of the form v[1-24].lscache[1-
8].c.youtube.com plays a key role in YouTube video delivery.
These names are the ones that appear in the host name part
of the URLs embedded in the HTML pages generated by
YouTube web servers when users access the YouTube website.
We note that the lscache namespace maps to both Google
and non-Google primary cache locations. The nonxt anycast
namespace, also consisting of 192 hostnames of the form
v[1-24].nonxt[1-8].c.youtube.com, maps to a subset of the IP

addresses that the lscache namespace maps: namely, only those
IP addresses belonging to Google (and thus with the unicast
hostnames in the rhost namespace).
• Secondary Video Caches. The tccache anycast names-

pace, consisting of 192 hostnames of the form tc.v[1-
24].cache[1-8].c.youtube.com, maps to a set of 636 IP ad-
dresses belonging to Google only. These IP addresses are
mostly disjoint from the 4, 999 IP addresses that the lscache
and nonxt namespaces map to, with a small number of
exceptions. They all have a unique rhost unicast hostname,
and are distributed at only 8 locations.
• Tertiary Video Caches. The cache and altcache

anycast namespaces, both consisting of 64 hostnames
of the form v[1-8].cache[1-8].c.youtube.com and alt1.v[1-
8].cache[1-8].c.youtube.com and respectively, map to the same
small set of 320 IP addresses belonging to Google only. These
IP addresses all have a unique rhost unicast hostname, and are
distributed at only 5 locations.

V. VIDEO DELIVERY DYNAMICS
In this section we present our key findings on the mech-

anisms and strategies employed by YouTube to service user
requests, perform dynamic load-balancing and handle potential
cache misses. These are achieved via a combination of (coarse-
grained) DNS resolution and a clever and complex mix of
background fetch, HTTP re-directions and additional rounds
of DNS resolutions.
Experimental Methodology. We divide the videos into two
sets: i) hot videos which have a very high number of view
counts (at least 2 million views); and ii.) cold videos which
have fewer than 100 view counts. We randomly select a video
from both hot and cold sets and play them one by one,
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while the delay between two consecutive playback requests
is modelled as a Poisson process with inter-arrival rate of
10 seconds. For each video playback request, we record the
detailed logs including timestamps, redirection URLs (if any)
and the IP addresses of the servers involved. In particular, we
also examine the time difference between the time our client
receives ACK for the HTTP GET request and the time the
client sees the first packet of the HTTP response.

A. Locality-aware DNS Resolution
To characterize the granularity of locality-aware resolutions,

we conduct the following analysis. For each PlanetLab node,
we rank all 38 YouTube primary cache locations in the increas-
ing order of round trip network delay and assign each YouTube
location a rank in this order. Next, we consider the lscache
hostname-to-IP addresses mappings and calculate how they
are distributed with respect to the rank of the corresponding
YouTube location for the given PlanetLab node. In Figure 5
we plot the number of PlanetLab nodes which have at least
one of lscache hostnames mapped to an ith rank YouTube
location. As seen in this figure, more than 150 PlanetLab
nodes have at least one of the IP addresses at the closest
YouTube location. Using our DNS mapping data collected
over several months, we also investigate whether YouTube
adjusts the number of IP addresses mapped to each lscache
hostname over time to, say, adapt to the changing loads at
particular cache locations or regions of users. We create a
temporal matrix of DNS name to IP address mapping matrix
for each lscache hostname, where each row in the matrix
represents the mappings of the hostname at a given time from
all the PlanetLab nodes. Analysis of this matrix reveals two
interesting aspects of the way YouTube DNS servers resolve
anycast hostnames to IP addresses. First, we see that the
hostname to IP address mappings may change over time.
Based on how these mappings changed for PlanetLab nodes,
we can put them into two distinct groups. In the first group of
PlanetLab nodes, the mappings change during a certain time of
the day, and the pattern repeats every day. In the second group,
the set of IP addresses remains the same over time. Figure 6
provides an illustration: the top panel shows an example of
the first group, while the bottom panel an example of the
second group. In this figure: the X-axis represents the time
which is divided in the intervals of 5 minutes each, and the
Y-axis represents the mapped IP address. In the top panel,
at the ple1.dmcs.p.lodz.pl PlanetLab node, one hostname is
mapped to a fixed IP address (belonging to the Frankfurt cache
location) most of the time during the day; however, during the
certain hours of the day we see a large number of distinct IP
addresses for the same hostname. In the bottom panel, one
hostname is always mapped to one of the two IP addresses
(belonging to the Taipei cache location).

B. Handling Cache Misses via Backend Fetching
To handle cache misses, YouTube cache servers use two

different approaches: (a) fetching content from the backend
data center and delivering it to the client, or (b) redirecting the

client to some other servers. We study the difference between
the time the client receives the ACK for the GET request
and the time that it receives the first packet for the HTTP
response. We call this difference “fetch-time”. This “fetch-
time” indicates the time the server took after sending the ACK
for the request and before it started sending the response. In
our analysis, we can clearly put the fetch-times in two groups:
few milliseconds and tens of milliseconds.
We find that when the cache server redirects the client the

fetch-time is very small, generally about 3ms. We also see
about the same fetch-time for most of the hot videos when
the server actually serves the video. For most of the cold
videos when they are not redirected, this lag is much higher,
typically in tens of milliseconds and vary depending upon
cache location. An example of the distribution is presented
in Figure 7 which shows the distribution of fetch-times of one
Google YouTube cache server observed from a fixed vantage
point. There is a clear gap between the shorter and longer fetch
times. We deduce that large fetch-time is the time it takes for
the cache server to fetch the content from some backend data
center (cf. [3]).

C. HTTP Redirections Dynamics
The video redirection logs reveal that HTTP redirections

always follow a specific namespace hierarchy, as shown in Fig-
ure 2. Our analysis of video redirection logs also reveals that
redirection probability highly depends on the popularity of the
video. However, there were no significant evidences to show if
the factors such as the location of the YouTube cache and time
of the day influence the redirection probability. In Figure 8
we demonstrate how redirection probability is distributed for
hot and cold at both Google and Non-Google locations. In
these figures, x-axis represents the IP prefixes for the YouTube
primary cache servers, which is sorted based on the region
and then based upon the size of each location. The y-axis
represents the probability of redirection to another namespace.
As seen in Figure 8(a), at Non-Google locations, cold videos
have much higher probability of being redirected to nonxt
namespace than for the hot videos. In particular, around
5% of the requests to hot videos experience redirections as
compared to more than 24% for the cold videos. Similarly, at
Google cache locations, most of the requests to cold videos are
redirected to cache hostnames (see Figure 8(b)). It indicates
that these redirections are primarily done to handle cache
misses by redirecting the users to the third tier directly. On
the other hand, the redirection probability to tccache and rhost
hostnames does not depend on the popularity of the video.
As we see in Figure 8(c), the probability of redirection for
hot and cold videos to rhost namespace is very similar at all
the Google cache locations. Moreover, a closer inspection of
redirection logs revealed that redirection rhost hostnames is
used to redirect the user to a different physical server at the
same location, which is more than 99% of all the redirections
to rhost namespace. This indicates that YouTube performs a
very fine grained load balancing by redirecting the users from
possibly a very busy server to a less busy server at the same
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Fig. 5. Locality aware DNS mappings for anycast
hostnames.
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Fig. 8. Comparison of redirection probabilities.

location.

D. Delay due to Redirections
YouTube’s use of HTTP redirections comes with a cost.

In general, when the client is redirected from one server to
another, it adds to the time before the client can actually start
the video playback. There are three sources of delay due to
redirections. First, each redirect requires the client to start a
new TCP connection with a different server. Second, the client
may need to resolve the hostname it is being redirected to.
And finally, since the client is being redirected from a nearby
location, the final server that actually delivers the video might
be farther away from it which will add more delay in the video
download time. To account for all these sources of delays and
to compensate for the differences in video sizes, we analyze
the total time spent to download 1MB of video data starting
from the time the client sends HTTP GET requests to the
first lscache server for a video. We refer to this time as video
initialization time.
Figure 9 shows the CDF plot for the video initialization time

observed by one of the PlanetLab nodes. As seen in this figure,
HTTP redirection used by YouTube servers add a significant
overhead to the video initialization time. In particular, our
results show that on an average HTTP redirections increase
the video initialization time by more than 33% in comparison
to video initialization time when there are no redirections.

VI. SUMMARY
In this paper we reverse-engineer the YouTube video de-

livery system by building a globally distributed active mea-
surement platform and deduced the key design features of the
YouTube video delivery system. While Google’s YouTube

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Video Initialization Time (in Second)

cd
f

planetlab3.cs.surrey.sfu.ca (Surrey, Canada)

 

 

No Redirection
Redirection

Fig. 9. An example distribution of video initialization time.

video delivery system represents an example of the “best prac-
tices” in the design of a large-scale content delivery system, its
design also poses several interesting and important questions
regarding alternative system designs, cache placement, content
replication and load balancing strategies.
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