
Prev Contents Next

htons(), htonl(), ntohs(), ntohl()
Convert multi-byte integer types from host byte order to network byte order

Prototypes

#include <netinet/in.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

Description

Just to make you really unhappy, different computers use different byte orderings internally
for their multibyte integers (i.e. any interger that's larger than a char.) The upshot of this is
that if you send() a two-byte short int from an Intel box to a Mac (before they became Intel
boxes, too, I mean), what one computer thinks is the number 1, the other will think is the
number 256, and vice-versa.

The way to get around this problem is for everyone to put aside their differences and agree
that Motorola and IBM had it right, and Intel did it the weird way, and so we all convert our
byte orderings to "big-endian" before sending them out. Since Intel is a "little-endian"
machine, it's far more politically correct to call our preferred byte ordering "Network Byte
Order". So these functions convert from your native byte order to network byte order and
back again.

(This means on Intel these functions swap all the bytes around, and on PowerPC they do
nothing because the bytes are already in Network Byte Order. But you should always use them
in your code anyway, since someone might want to build it on an Intel machine and still have
things work properly.)

Note that the types involved are 32-bit (4 byte, probably int) and 16-bit (2 byte, very likely
short) numbers. 64-bit machines might have a htonll() for 64-bit ints, but I've not seen it.
You'll just have to write your own.

Anyway, the way these functions work is that you first decide if you're converting from host
(your machine's) byte order or from network byte order. If "host", the the first letter of the
function you're going to call is "h". Otherwise it's "n" for "network". The middle of the
function name is always "to" because you're converting from one "to" another, and the
penultimate letter shows what you're converting to. The last letter is the size of the data, "s"
for short, or "l" for long. Thus:

htons() host to network short

https://www.gta.ufrj.br/ensino/eel878/sockets/fcntlman.html
https://www.gta.ufrj.br/ensino/eel878/sockets/index.html
https://www.gta.ufrj.br/ensino/eel878/sockets/inet_ntoaman.html


htonl() host to network long

ntohs() network to host short

ntohl() network to host long

Return Value

Each function returns the converted value.

Example

uint32_t some_long = 10;
uint16_t some_short = 20;

uint32_t network_byte_order;

// convert and send
network_byte_order = htonl(some_long);
send(s, &network_byte_order, sizeof(uint32_t), 0);

some_short == ntohs(htons(some_short)); // this expression is true

Prev Contents Next

https://www.gta.ufrj.br/ensino/eel878/sockets/fcntlman.html
https://www.gta.ufrj.br/ensino/eel878/sockets/index.html
https://www.gta.ufrj.br/ensino/eel878/sockets/inet_ntoaman.html

