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Abstract— In this paper, we study and characterize the
topology of the Internet at the Autonomous System level.
First, we show that the topology can be described efficiently
with power-laws. The elegance and simplicity of the power-
laws provide a novel perspective into the seemingly uncon-
trolled Internet structure. Second, we show that power-laws
appear consistently over the last 5 years. We also observe
that the power-laws hold even in the most recent and more
complete topology [10] with correlation coefficient above
99% for the degree power-law. In addition, we study the
evolution of the power-law exponents over the 5 year inter-
val and observe a variation for the degree based power-law
of less than 10%. Third, we provide relationships between
the exponents and other topological metrics.

1 Introduction

In this paper, we study the topology of the Internet and
we identify several power-laws. Furthermore, we discuss
multiple benefits from understanding the topology of the
Internet. Our work is motivated by questions like the fol-
lowing “What does the Internet look like?” “Are there any
topological properties that don’t change in time?” “How
will it look like a year from now?” “How can I generate
Internet-like graphs for my simulations?”.

Modeling the Internet topology is an important open
problem despite the attention it has attracted recently.
Paxson and Floyd consider this problem as a major rea-
son why we don’t know how to simulate the Internet [21].
An accurate topological model can have significant impact
on network research. First, we can design more efficient
protocols that take advantage of its topological properties.
Second, we can create more accurate artificial models for
simulation purposes. And third, we can derive estimates
for topological parameters (e.g. the average number of
neighbors within /4 hops) that are useful for the analysis
of protocols and for speculations of the Internet topology
in the future.

In this paper, we propose the use of power-laws to de-
scribe the topology of the Internet at the Autonomous Sys-
tem or interdomain level. Power-laws are expressions of the
form y o< 2%, where a is a constant, z and y are the mea-
sures of interest, and  stands for “proportional to”. Con-
ceptually, our work has three main thrusts: a) defining and
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identifying the power-laws, b) studying their evolution, and
¢) relating power-laws exponents and other graph metrics.
Our work can be summarized in the following points.

First, we identify several power-laws that describe the
distribution of topological metrics such as node degree.
We also show that the three power-laws are tightly related
theoretically. In addition, we introduce a graph metric to
quantify the density of a graph and propose a power-law
approximation of that metric.

Second, we study the evolution of the power-laws be-
tween November 1997 and February 2002. The power-laws
hold for 1253 instances, with good linear fits in log-log
plots; the correlation coefficient of the fit is at least 96%,
typically above 98%. We note that their existence is per-
sistent, and they hold even in the most recent and more
complete topology [10].

Third, we present new and known relationships between
power-laws exponents and other graph metrics. We list
mechanisms that create power-laws, discuss their plausi-
bility and their efficiency in creating graphs for practical
purposes.

Our work in perspective. Power-laws is a first step in un-
derstanding the Internet topology. The evidence of their
existence is too strong to be dismissed as coincidence. We
monitor and analyze the Internet over a period of five
years, during which the size of the network quadrupled.
The contributing sources for the data collection changed
significantly in number and location [41]. Additionally,
we analyzed the more recent and complete topology [10].
These observations exclude by and large the possibility of
the power-laws being the result of coincidence. Therefore,
the power-laws appear as a necessary though not sufficient
condition for a topology to be realistic. There may be more
topological properties of the Internet topology that are not
captured by our power-laws [45, 54].

The rest of this paper is structured as follows. In Sec-
tion 2, we present some definitions and previous work on
measurements and models for the Internet. In Section 3,
we present our Internet instances and provide useful mea-
surements. In Section 4, we present our three observed
power-laws and our power-law approximation. In Section
5, we present the time evolution of the exponent of the
power-laws we presented in the previous section. In Sec-
tion 6, we present the models used to generate power-law
graphs. In Section 7, we conclude our work and discuss
future directions.



2 Background and Previous Work

The Internet can be decomposed into subnetworks that are
under separate administrative authorities. These subnet-
works are called domains or Autonomous Systems. This
way, the topology of the Internet can be studied at two
different granularities. At the router level, we represent
each router by a node [43]. At the inter-domain level,
each domain is represented by a single node [22] and each
edge is an inter-domain interconnection. The study of the
topology at both levels is equally important. The Internet
community develops and employs different protocols inside
a domain and between domains. An intra-domain protocol
is limited within a domain, while an inter-domain protocol
runs between domains treating each domain as one entity.
Here, we focus on the autonomous system level and repre-
sent the topology of the Internet by an undirected graph.

Definition

An undirected graph.

Number of nodes in a graph.

Number of edges in a graph.

The diameter of the graph.

Degree of node v.

Average degree of the nodes of a graph:
d=2FE/N

Symbol

/& = = Q

Table 1: Definitions and symbols.

Network analysis before power-laws. Before 1999, the
metrics that were used to evaluate network models were
mainly the node degree and the distances between nodes.
Given a graph, the degree of a node is defined as the num-
ber of edges incident to the node (see Table 1). The dis-
tance between two nodes is the number of edges along the
shortest path between the two nodes. Most studies report
minimum, maximum, and average values and plot the de-
gree and distance distribution. We denote the number of
nodes of a graph by N, the number of edges by E, and the
diameter of the graph by d. Using these metrics Govindan
and Reddy [22] study the growth of the inter-domain topol-
ogy of the Internet between 1994 and 1995. The graph is
sparse with 75% of the nodes having degrees less or equal
to two. Pansiot and Grad [43] study the topology of the
Internet in 1995 at the router level. The distances they re-
port are approximately two times larger compared to those
of Govindan and Reddy.

For graph generation purposes, Waxman introduced a
popular network model [55]. The link creation probabilities
depend upon the Euclidean distance between the nodes.
This model was successful in representing small early net-
works such as the ARPANET. As the size and the com-
plexity of the network increased more detailed models were
needed [16] [8]. Zegura et al. [60] reviewed these generation
methods using a more expansive set of metrics, including
some that are driven by uses, like multicast routing. Based
on the limitations they found, they introduced a compre-

hensive model that includes several previous models.

Power-laws: a ubiquitous presence. Pareto was among
the first to introduce power-laws in 1896 [44]. He used
power-laws to describe the distribution of income where
there are few very rich people, but most of the people
have a low income. Another classical law, the Zipf law
[61], was introduced in 1949, for the frequencies of the En-
glish words and the population of cities. Power-laws have
been found in numerous diverse fields spanning geological,
natural, sociological, and biological systems. Some inter-
esting examples of power-law distributions are the movie
actor collaboration network [7], the human respiratory sys-
tem [34], automobile networks [19], the size and location
of earthquakes, stock-price fluctuations [6], the web of hu-
man sexual contacts [17], biological cellular networks [25],
the scientific citation network [50]. More details about the
historical aspects of power-laws can be found by Mitzen-
macher [38] and an extensive presentation of power-laws
in many diverse fields in Reka [3].

Network analysis using power-laws. More recently, power-
laws have been observed in communication networks. First,

power-laws have been observed in network traffic [56][30][46][13].

In addition, the topology of the World Wide Web [4, 28]
can be described by power-laws. Furthermore, power-laws
describe the topology of peer-to-peer networks [39] and
properties of multicast trees [12, 47, 57, 37]. Among these
properties, the Chuang-Sirbu law states that the size of
the multicast tree follows a power-law with respect to the
number of group members with exponent 0.8.

Our initial work [20] on power-laws has generated sig-
nificant follow-up work. Various researchers verified our
observations with different datasets[24, 23, 33]. In addi-
tion, significant work has been devoted in understanding
the origin [36], and generating power-law topologies [35,
36, 42, 26, 54, 58]. We discuss these approaches for gener-
ating power-laws in section 6. More recently, several works
have focused on describing the topology in a qualitatively
way [53, 31, 32, 52].

3 Our Internet Instances

In this section, we present the Internet instances we study
in our work. We use topologies from two sources. First, we
use the Oregon routeviews project [41]. The information
is collected by a route server from BGP![49] routing tables
of multiple geographically distributed BGP routers. This
is the only archival repository we could find in order to
study the evolution of the topology. However, the Oregon
data does not identify all possible links between ASs [10].
For this reason, we use a second data set from 2001 [10],
which is the superset of Oregon and several other routing
repositories. This data is currently considered as the most
comprehensive AS topology although it is almost certainly
not complete. Unfortunately, there is a limited number
of these instances, which span only 9 weeks, starting from

1BGP stands for the Border Gateway Protocol, and is the inter-domain
routing protocol.
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Figure 1: The growth of the Internet: the number of do-
mains versus time between the end of 1997 until the start
of 2002.

March 2001, and thus does not lend itself to an evolution
study.

The Oregon dataset contains 1253 daily instances. These
instances span an interval of 1600 days, more than five
years, from 8th of November 1997 till 28th of February
2002. Note that we filter the data to remove incomplete
data files that they do not represent correctly the topol-
ogy. We identify and remove the instances that have less
than 50% of the nodes found in the previous instance. For
example, we removed the reported topology on the 29th of
August 1999, which has 103 nodes, while the files on the
previous and next day have more than 5600 nodes. Among
the 1253 instances, we selected the instance of May 26th
2001 to demonstrate the power-laws, so that we can com-
pare the results we have with the more complete topology.
For the rest of this paper, we will refer to the instance from
Oregon as Oregon, and the instance which represents the
more complete topology as Multi respectively.

Note that the remaining 1252 instances, also follow the
power-laws. Furthermore, the size of the topology in the
five-year period quadrupled (see figure 1). The change is
significant, and it ensures that our instances, reflect differ-
ent snapshots of an evolving network.

4 Power-Laws of the Internet

In this section, we observe three power-laws of the Inter-
net topology. We propose and measure graph properties,
which demonstrate a regularity that is unlikely to be a co-
incidence. The exponents of the power-laws can be used
to characterize graphs. In addition, we introduce a graph
metric that is tailored to the needs of the complexity anal-
ysis of protocols. The metric reflects the density or the
connectivity of nodes, and we offer a rough approximation
of its value through a power-law. Finally, using our ob-
servations and metrics, we identify a number of interesting

Symbol | Definition

Dy

The Complementary Cumulative Dis-
tribution Function or CCDF, of a de-
gree, is the percentage of nodes that
have degree greater than the degree d.

Ty The rank of a node, v, is its index in
the order of decreasing degree.

The number of pairs of nodes is the to-
tal number of pairs of nodes within less
or equal to h hops, including self-pairs,
and counting all other pairs twice.

The average number of nodes in a
neighborhood of A hops.

A The eigenvalue of an NzN matrix A:
X : X € RV\{0} and AX = \X.

1 The order of A\; in the sorted sequence
A1 > Ag... > Ay of the eigenvalues of
a matrix.

Table 2: Novel definitions and their symbols.

relationships between important graph parameters.

The goal of our work is to find metrics that quantify
topological properties and describe concisely skewed data
distributions. Previous metrics, such as the average de-
gree, fail to do so. First, metrics that are based on mini-
mum, maximum and average values are not good descrip-
tors of skewed distributions; they miss a lot of information
and probably the “interesting” part that we would want to
capture. Second, the plots of the previous metrics are dif-
ficult to quantify, and this makes difficult the comparison
of graphs.

To express our power-laws, we introduce several graph
metrics that we show in Table 2. We define Dy to be
the complementary cumulative distribution function of a
degree, d, which is the percentage of nodes that have degree
greater than the degree d. If we sort the nodes in decreasing
degree sequence, we define rank, r,, to be the index of
the node in the sequence, while ties in sorting are broken
arbitrarily. We define the number of pairs of nodes P(h) to
be the total number of pairs of nodes within less or equal
to h hops, including self-pairs, and counting all other pairs
twice. The use of this metric will become apparent later.
We also define NN(h) to be the average number of nodes in
a neighborhood of h hops. Finally, we recall the definition
of the eigenvalues of a graph, which are the eigenvalues of
its adjacency matrix.

We use linear regression to fit a line in a set of two-
dimensional points [48]. The technique is based on the
least-square errors method. The validity of the approxi-
mation is indicated by the correlation coeflicient which is
a number between —1.0 and 1.0. For the rest of this pa-
per, we use the absolute value of the correlation coefficient,
ACC. An ACC value of 1.0 indicates perfect linear corre-



lation, i.e., the data points are exactly on a line.

4.1 The rank exponent R

In this section, we study the degrees of the nodes. We
sort the nodes in decreasing order of degree, d,, and plot
the (r,,d,) pairs in log-log scale. The plots are shown in
figure 2. The measured data is represented by points, while
the solid line represents the least-squares approximation.

A striking observation is that the plots are approximated
well by linear regression. The correlation coefficient is 0.97
for the Oregon, and 0.978 for the Multi topology. This
leads us to the following power-law and definition.

Power-Law 1 (rank exponent) Given a graph,
the degree, d,, of a node v, is proportional to the
rank of the node, r,, to the power of a constant, R:

R

dy X T,

Definition 1 Let us sort the nodes of a graph in decreasing
order of degree. We define the rank exponent, R, to be the
slope of the plot of the degrees of the nodes versus the rank
of the nodes in log-log scale.

Intuitively, Power-Law 1 reflects a principle of the way
domains connect; the linearity observed in 1253 graph in-
stances is unlikely to be a coincidence.

Extended Discussion - Applications. We can es-
timate the proportionality constant for Power-Law 1, if
we require that the minimum degree of the graph is m
(dy = m). This way, we can refine the power-law as fol-
lows.

Lemma 1 In a graph where Power-Law 1 holds, the de-
gree, d,, of a node v, is a function of the rank of the node,
ry and the rank exponent, R, as follows

m R

dv:ﬁ Ty

Proof.

We can estimate the proportionality constant, C, for
Power-Law 1, if we require that the degree of the N-th
node is m, dy = m.

dy = CNR =
C = m/N® (1)

We combine Power-Law 2 with Equation 1, and conclude
the proof. [ |

Finally, using lemma 1, we relate the number of edges
with the number of nodes and the rank exponent.

Lemma 2 In a graph where Power-Law 1 holds, the num-
ber of edges, E, of a graph can be estimated as a function
of the number of nodes, N, and the rank exponent, R, as

follows:
1 1

~ 1-—
2(R+1) ( NR+1 )
Proof. The sum of all the degrees for all the ranks is equal

to two times the number of edges, since we count each edge
twice.

E N

N
2E = » d, =
ry=1
N N
2E = ) (n/NF=/NRY r} =
ry=1 ry=1
1 N
~ W/l ros dry (2)

In the last step, above we approximate the summation
with an integral. Calculating the integral concludes the
proof. [ |

Note that Lemma 2 can give us the number of edges as a
function of the number of nodes for a given rank exponent.
For an additional discussion on estimates using this formula
see [20].

4.2 The Degree exponent D

In this section, we study the distribution of the degree of
the nodes. We plot the D, versus the degree d in log-
log scale in figure 3. The major observation is that the
plots are approximately linear. The correlation coefficient
is 0.996 for the Oregon and 0.991 for the Multi topology.
As in the previous power-law, the slope of the exponent
is different, something which is expected since the Multi
topology has many more links. Note that in [10] they argue
that this power-law doesn’t hold for the Multi topology,
without trying to approximate it using linear regression.
Their conclusion is arguable, since we have a correlation
coefficient of 0.991. Again as in the last power-law we
checked to see if the power-law holds for all the instances
we had. We found that the power-law holds for all the
instances, and the correlation coefficient was always higher
than 0.99. This leads us to the following power-law and
definition.

Power-Law 2 (degree exponent)

Given a graph, the CCDF, Dy, of an degree, d, is
proportional to the degree to the power of a constant,
D:

DdO(dD

Definition 2 We define the degree exponent, D, to be the
slope of the plot of the Cumulative degree of the degrees
versus the degrees in log-log scale.

The intuition behind this power-law is that the distribu-
tion of the degree of Internet nodes is not arbitrary. The
qualitative observation is that degrees range over several
orders of magnitude in a scale-invariant way. As a result,
there is a non-trivial probability of finding nodes with very
high degree. Our power-law manages to quantify this ob-
servation with the degree exponent. This way, we can test
the realism of a graph with a simple numerical comparison.
If a graph does not follow Power-Law 2, or if its degree ex-
ponent is considerably different from the real exponents, it
probably does not represent a realistic topology.
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Comment. Note that the degree power-law that we present Multi topology the rank slope is 0.89. Using the above for-

here is different than the one presented in our earlier work
[20]. They both refer to the same distribution and their dif-
ference is that the previous power-law uses the probability
distribution function?, while the power-law here uses the
cumulative distribution function. As a result, the expo-
nents of the different power-laws differ approximately by
one. Theoretically, the difference should be exactly one,
since the cumulative distribution can be obtained by in-
tegrating the probability distribution. In practice, we see
that the difference is not equal to one, due to approxima-
tions like the use of curve-fitting to find the slope. The
cumulative distribution is preferable since it can be esti-
mated in a statistically robust way.

The relationship of the rank and degree power-laws. Both
the rank and the degree power-laws characterize the degree
distribution from different angles. It can be shown that the
exponents of the two power-laws are related [61] [11][29].
More specifically, in a perfect power-law distribution, the

slope of the rank power-law is equal to R = %. For the

2The actual law stated that: The frequency, fq of a degree, d, is pro-
portional to the degree to the power of a constant, D, where the frequency,
fa, of a degree is the number of nodes with degree d.

mula and the degree slope, we find the rank slope to be
equal to 0.81. This discrepancy can be attributed to mea-
surement imperfections and inaccuracies. In this regard,
we think that it is useful to report both exponents when
characterizing a topology.

4.3 The eigen exponent &

In this section, we identify properties of the eigenvalues of
our Internet graphs. Recall that the eigenvalues of a graph
are the eigenvalues of its adjacency matrix. We plot the
eigenvalue \; versus ¢ in log-log scale for the first 100 eigen-
values. Recall that ¢ is the order of \; in the decreasing se-
quence of eigenvalues. The result is shown in figure 4. The
eigenvalues are shown as points in the figures, and the solid
lines are approximations using a least-squares fit. Similar
observations with equally high correlation coefficients were
observed for all the other instances. We observe that the
plots are practically linear with a correlation coefficient of
0.996 for both plots. The eigen exponent is —0.477 for the
Oregon and —0.447 for the Multi topology.

It is rather unlikely that such a canonical form of the
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Figure 4: The plot of the hundred largest eigenvalues for the Oregon and Multi topologies.

eigenvalues is purely coincidental, and we therefore con-
jecture that it constitutes an empirical power-law of the
Internet topology.

Power-Law 3 (eigen exponent) Given a graph,
the eigenvalues, \;, are proportional to the order, 1,
to the power of a constant, &:

/\iO(ig

Definition 3 We define the eigen exponent, £, to be the
slope of the plot of the sorted eigenvalues versus their order
in log-log scale.

Eigenvalues are fundamental graph metrics. There is a
rich literature that proves that the eigenvalues of a graph
are closely related to many basic topological properties
such as the diameter, the number of edges, the number
of spanning trees, the number of connected components,
and the number of walks of a certain length between ver-
tices, as we can see in [14]. All of the above suggest that
the eigenvalues intimately relate to topological properties
of graphs. However, it is not trivial to explore the nature
and the implications of this power-law.

The relationship of the degree and the eigenvalue power-
laws. A surprising relationship exists between the two
exponents: the eigenvalue exponent is approximately the
half of the degree exponent. In more detail, Mihail et al.
[40] show that if the degrees di,...,d, of graph follow a
power-law, then the non-increasing sequence of the largest
eigenvalues \; has the following one to one correspondence:
i = V/d;. It is worth noting that this is an asymptotic limit
of the eigenvalues. If we take the logarithm of the previ-
ous equation, it follows that the two exponents differ by a
factor of two. In practice, the exponents obey adequately
the mathematical relationship, although the match is nat-
urally not perfect. For example, the degree exponent for
the Oregon topology is 1.12, and the eigenvalue exponent
0.47 which yields a ratio of 0.52 instead of 0.5.

4.4 The hop-plot exponent H

In this section, we quantify the connectivity and distances
between the Internet nodes in a novel way. We choose to
study the size of the neighborhood within some distance,
instead of the distance itself. Namely, we use the total
number of pairs of nodes P(h) within A hops, which we
define as the total number of pairs of nodes within less or
equal to h hops, including self-pairs, and counting all other
pairs twice.

In figure 5, we plot the number of pairs P(h) as a func-
tion of the number of hops h in log-log scale. The data is
represented by points. We want to describe the plot by a
line in least-squares fit, for h < 4, shown as a solid line
in the plots. We approximate the first 4 hops in the inter-
domain graphs. The correlation coefficient is 0.9765 and
0.9784 for the Oregon and Multi topology respectively.

Unfortunately, four points is a rather small number to
verify or disprove a linearity hypothesis experimentally.
However, even this rough approximation has several useful
applications as we show later in this section. It is worth
mentioning that Philips et al. [47] state that the neigh-
borhood growth is exponential and not a power-law. In
figure 6, we plot again the number of pairs in log-lin for
the Multi topology. We approximate the first four hops
and found a correlation coefficient of 0.918 which is much
lower than the previous correlation. From this, it seems
that we can approximate the hopplot better with a power-
law than with an exponential function.

Approximation 1 (hop-plot exponent) The to-
tal number of pairs of nodes, P(h), within h hops, is
proportional to the number of hops to the power of a
constant, H.:

h<é

P(h) < h™,

Definition 4 Let us plot the number of pairs of nodes,
P(h), within h hops versus the number of hops in log-log
scale. For h < §, we define the slope of this plot to be the
hop-plot exponent, H.
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Extended Discussion - Applications. We can refine
Approximation 1 by calculating its proportionality con-
stant. Let us recall the definition of the number of pairs,
P(h). For h =1, we consider each edge twice and we have
the self-pairs, therefore: P(1) = N +2 E. We demand
that Approximation 1 satisfies the previous equation as an
initial condition.

Lemma 3 The number of pairs within h hops is

h<é
h>9

ch™,
oy = {5

where ¢ = N + 2 E to satisfy initial conditions.

In networks, we often need to reach a target without
knowing its exact position [51] [9]. In these cases, selecting
the extent of our broadcast or search is an issue®. On the
one hand, a small broadcast may not reach our target. On
the other hand, an extended broadcast creates too many
messages and takes a long time to complete. Ideally, we
want to know how many hops are required to reach a “suf-
ficiently large” part of the network. In our hop-plots, a
promising solution is the intersection of the two asymptote
lines: the horizontal one at level N2 and the asymptote
with slope H. We calculate the intersection point using
Lemma 3, and we define:

Definition 5 (effective diameter) Given a graph with
N nodes, E edges, and H hop-plot exponent, we define the
effective diameter, dcf, as:

N2 1/H
bop = | ———
! <N+2E>

Intuitively, the effective diameter can be understood as
follows: any two nodes are within d.; hops from each other
with high probability. We verified the above statement ex-
perimentally. The effective diameters of our inter-domain

3This problem has direct practical importance. The Internet has a
built in mechanism for limiting the number of hops a packets makes. The
time-to-live field of a packet is a counter that is decreased at each hop
until it reaches zero, at which point the packet is not forwarded further.

graphs was slightly over four. Rounding the effective diam-
eter to four, approximately 80% of the pairs of nodes are
within this distance. The ceiling of the effective diameter
is five, which covers more than 95% of the pairs of nodes.
The above confirms that the effective diameter manages to
capture the majority of the distances. Furthermore, it ar-
gues indirectly that the hopplot exponent as a metric seems
useful.

An advantage of the effective diameter is that it can be
calculated easily, when we know N, and H. Recall that we
can calculate the number of edges from Lemma 2. There-
fore, given estimates the hop-plot and rank-plot exponents,
we can calculate the effective diameter of future Internet
instances of a given size [20].

Furthermore, we can estimate the average size of the
neighborhood, NN(h), within h hops using the number of

pairs P(h). Recall that P(h) — N is the number of pairs
without the self-pairs.
P(h)
NN(h) = ——= -1 3

Using Equation 3 and Lemma 3, we can estimate the
average neighborhood size.

Lemma 4 The average size of the neighborhood, NN(h),
within h hops as a function of the hop-plot exponent, H,
for h <6, is

c

NN(h):NhH—l,h>()

where ¢ = N 4+ 2 E to satisfy initial conditions.

The average neighborhood is a commonly used parame-
ter in the performance of network protocols. Our estimate
is an improvement over the commonly used estimate that
uses the average degree [59] [51] which we call average-
degree estimate:

NN'(h) =d (d —1)"!

In figure 7, we plot the actual and the two estimates
of the average neighborhood size versus the number of



hops using an instance from 1998. The superiority of the
hop-plot exponent estimate is apparent compared to the
average-degree estimate. The discrepancy of the average-
degree estimate can be explained if we consider that the
estimate does not comply with the real data; it implicitly
assumes that the degree distribution is uniform. In more
detail, it assumes that each node in the periphery of the
neighborhood adds d — 1 new nodes at the next hop. Our
data shows that the degree distribution is highly skewed,
which explains why the use of the hop-plot estimate gives
a better approximation.

The most interesting difference between the two esti-
mates is qualitative. The average degree based estimate
considers the neighborhood size exponential in the number
of hops. Our estimate considers the neighborhood as an
‘H-dimensional sphere with radius equal to the number o
hops, which is a novel way to look at the topology of a
network. Our data suggests that the hop-plot exponent-
based estimate gives a closer approximation compared to
the average-degree-based metric.

5 The Persistence of Power-Law Ex-

ponents

We examine the evolution of power-law exponents in the
five year span from November 1997 till February 2002. We
want to stress that the main observation is that the power-
laws hold for every instance. The evolution of the slope is
a secondary issue.

The evolution of rank exponent R. In figure 8, we exam-
ine the time evolution of the slope of the rank exponent.
We plot the rank exponent versus the day that the instance
of the graph was collected. The rank exponent R power-
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Figure 6: Approximating the hop-plot with an exponential
function. This is a linear-logarithmic plot of the number
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Figure 11: The evolution of the slope of the hop-plot ex-
ponent

law holds for all the instances, over a period of five years.
The correlation coefficient of the law seems to decrease over
time and for the last instance it is close to 0.9654. This
indicates that the rank exponent, for the topologies from
Oregon, should be treated with care in the future. How-
ever, we see in figure 2, that for the more complete topology
we have a higher correlation coefficient.

The evolution of degree slope D. We study the slope of
the cumulative degree exponent and its evolution in time.
In figure 9, we plot the degree exponent versus time. The
degree exponent power-law holds for all the instances with
a correlation coefficient always higher than 0.99. We ob-
serve from the graph that the slope is between —1.12 and
—1.22, i.e. a variation of less than 9%.

The evolution of eigen exponent £. In figure 10, we plot
the time evolution of the eigen exponent. The power-law
holds for all the instances we have measured. As we can see
from the graph the value of the eigen exponent decreases
for the first 150 instances and then it starts to rise again
for the rest of the instances. We do not have an intuitive

hops 11-08-1997 | 02-28-2002
1 0.08% 0.04%
2 8.86% 8.09%
3 43.40% 46.64%
4 80.99% 84.76%
) 96.70% 97.46%
6 99.65% 99.71%

Table 3: The size of the neighborhood of a node (as per-
centage of the total) as a function of the hops (radius of
neighborhood).

explanation for this behavior. Note that the eigenvalues of
a graph does not depend on the way the nodes are enumer-
ated.

The evolution of hop-plot exponent. In figure 11, we plot
the time evolution of the hop-plot exponent’s slope. The
power-law holds for all the instances with a correlation co-
efficient always higher than 0.97. We observe that the value
of slope increases steadily. The initial value of the hop-plot
exponent is 4.6 and for the latest instance is 5.7.

Understanding the hop-plot increase. As we saw, the
network size increases significantly, while the distances be-
tween nodes increase very little. In table 3, we list the
percentage of nodes that we can reach as a function of the
number of hops, or the neighborhood of a node within h
hops. We compare two graph instances, the 8th November
of 1997 and our last instance the 28th of February 2002.
Although the size of the graph quadrupled, we reach ap-
proximately the same percentage of nodes with the same
number of hops. In absolute numbers, the number of nodes
we can reach in 6 hops increased from approximately 3000
to 13000.

6 The Generation Of Power-laws

Why would such an uncontrolled* entity like the Internet
follow any statistical regularities? Note that the high cor-
relation coefficients rule out the possibility of pure coin-
cidence. Intrigued by the previous question, and by the
appearance of power-laws in many diverse fields, many sci-
entists have tried to find the mechanism responsible for the
creation of power-law graphs.

In this section, we will first give a small review of the
most popular models that try to explain the appearance of
power-laws in networks. Later we will briefly describe the
status on the graph generation tools.

Scale-free networks. A very elegant growth model has
been proposed by Barabasi and Reka. In their original

4The term uncontrolled refers to the fact that the Internet is not gov-
erned by a central authority, and it’s growth and design is driven by many
different optimization goals, such as financial, business and performance
related.



work [7], their model states that the scale-free nature roots
in two mechanism, the addition of new nodes, and their
preferential attachment. Their model grows a graph by
adding nodes. The probability of a new node connecting
with node 7 of degree d; is proportional to its degree: Z‘:ii e
J
where " d; is the sum of the degrees of all current nodes.
In a more recent work, the same authors propose a more
general model that includes generation of edges between
existing nodes and rewiring [2], that is the removal of one
edge and the creation of another between existing nodes.
An extensive review on variations of the original idea that
include more parameters can be found in [3].

There exists a number of real data studies based on the
growth model proposed by Barabasi. In [10], they con-
clude that this theoretical model is not supported by the
real data. Instead they mention that rewiring occurs infre-
quently, and that new nodes express a greater preference
for nodes with large degree than is represented by the sim-
ple linear preference model. On the other hand, in [3, 58]
and in [5] the authors show that the addition of nodes and
edges follows the linear preferential model. This is contro-
versial and more work is needed to compare the different
approaches used.

Heuristically Optimized Trade-offs In [18], Fabrikant et
al. propose “a simple and primitive model of Internet
growth”. In their model the power-law distributions root
from the Internet growth in which two objectives are op-
timized simultaneously. The connection costs (last mile),
and transmission delays measured in hops. Their model
works as follows, they use a unit square plane, where nodes
arrive and their place is chosen uniformly at random. Each
node attaches itself on one of the previous nodes. They
use two metrics in order to choose where the node should
attach. The first metric is the Euclidean distance d;; be-
tween the new node ¢ and a node j. This metric captures
the “last mile” costs. The second metric is a measure of the
centrality of a node j h;, if the new node attached to node
j. This shows how close is the node to the center, and
they mention that this captures the operation costs due
to communication delays. Node i chooses to connect with
node j that minimizes the weighted sum min;<;ad;; + h;,
where a is used to change the relative importance of the
two objectives.

Highly Optimized Tolerance. In [27], Carlson et al.
propose that power-laws are the result of an optimiza-
tion, either through natural selection or engineering design,
to provide robust performance despite uncertain environ-
ments. Regarding the Internet they mention that the sur-
vivability built in the Internet and its protocols can be the
cause of the power-laws.

Topology Generators. The introduction of power-laws
[20] brought a revision of the graph generation models in
the networking community. The power-laws can be used
as one question in the “qualifying exam” for the realism of
a graph. The early generators failed when tested against
power-laws, so after that a number of new generators was
proposed [35, 36, 42, 26, 54, 58].

There are two kinds of graph generation tools. In the
first one we have the tools that take the power-laws as
given and they don’t attempt to emulate the process that
leads to a power-law [26, 1, 42]. In the second category,
[35, 36, 54, 58] we have generators which try to capture
the actual process that governs the creation of power-laws.
All of them use variations of the preferential attachment
model, described in [7, 2].

In the most recent effort [54], Bu et al. proposed a new
generator that generates more realistic Internet topologies.
Furthermore, they use additional metrics found in small
world networks [15]. They show that previous generators
fail in some of these new criteria. They show that by de-
viating from the linear preferential model by giving higher
preferentiality to high degree nodes, they generate more
realistic topologies.

7 Conclusions

In this paper, we propose power-laws as a tool to describe
the Internet topology and examine their persistence in time.
The power-laws capture concisely the highly skewed distri-
butions of the graph properties. Finally, we show how these
exponents relate to each other and how they relate to other
topological properties.

We note the persistence of power-laws in time: they ap-
pear in more than 1200 daily instances over the span of
more than five years from 1997 till 2002. In this interval,
the network underwent significant changes in size (400%)
and rate of growth. The monitoring infrastructure changed
and evolved as well. This suggests that the appearance of
power-laws is unlikely to be a coincidence or an artifact.
An orthogonal but also striking observation is that some
of the exponents did not change more than 10%. Fur-
thermore, the power-laws seem to hold even in the most
complete topology, which combines multiple sources. In
fact, some of the power-laws hold with higher correlation
coefficients in this data set.

Some additional observations can be summarized in the
following points:

e Power-law exponents are a more efficient way to de-
scribe the highly-skewed graph metrics compared to
average values of real graphs.

e We propose the number of pairs, P(h), within h hops,
as a metric of the density of the graph and approxi-
mate it using the hop-plot exponent, H.

e We derive formulas that link the exponents of our
power-laws with graph metrics such as the number of
nodes, the number of edges, and the average neighbor-
hood size.

e Using power-laws we obtain better intuition, for ex-
ample we can see that the network becomes denser by
observing the hop-plot exponent.

Apart from their theoretical interest, our power-laws have
practical applications. First, our power-laws can assess the
realism of synthetic graphs, and enhance the validity of
simulations. Second, they can help analyze the average-



case behavior of network protocols. For example, we can
estimate the message complexity of protocols using our es-
timate for the neighborhood size. Third, the power-laws
can help answer “what-if” scenarios like “what will be the
diameter of the Internet, when the number of nodes dou-
bles?” “what will be the number of edges then?”

FUTURE WORK. The topological power-laws presented
here form a critical step towards understanding and model-
ing the Internet. However, there are several open questions.
First, we would like to explore further the meaning and
the value of the exponents. We believe that such analysis
could reveal interesting inter-plays and trade-offs between
the forces that govern the creation of the topology. Second,
the power-laws alone may not be sufficient in describing the
topology in all its complexity. For example, we would like
to develop more structural properties that will quantify the
topology in a way that is easier to visualize. The goal of
this direction is to develop a simple and intuitive model for
the Internet topology.
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