
The Synchronization of Periodic Routing Messages

Sally Floyd and Van Jacobson,*

Lawrence Berkeley Laboratory,

One Cyclotron Road, Berkeley CA 94720,

floyd@ee.lbl.gov, van@ee.lbl.gov

Abstract

The paper considers a network with many apparently-

independent periodic processes and discusses one method

by which these processes can inadvertently become synchro-

nized. In particular, we study the synchronization of periodic

routing messages. We give examples of the harmful effect of

these synchronized updates on other network traffic, and of-

fer guidelines on how to avoid inadvertent synchronization.

Using simulations and analysis, we study the process of syn-

chronization and show that the transition from unsynchro-

nized to synchronized traffic is not one of gradual degrada-

tion but is instead a very abrupt ‘phase transition’: in general,

the addition of a single router will convert a completely un-

synchronized traffic stream into a completely synchronized

one. We show that synchronization can be avoided by the

addition of randomization to the traffic sources and quantify

how much randomization is necessary. In addition, we argue

that the inadvertent synchronization of periodic processes

is likely to become an increasing problem in computer net-

works.

1 Introduction

A substantial, and increasing, fraction of the traffic in today’s

computer networks comes from periodic traffic sources; ex-

amples include the periodic exchange of routing messages

between gateways or the distribution of real-time audio or

video. Network architects usually assume that since the

sources of this periodic traffic are independent, the result-

ing traffic will be independent and uncorrelated. E.g., even

though each routing process might generate a packet at fixed,

30 second intervals, the total routing traffic observed at any
point in the network should be smooth and uniform since

*This work was supported by the Director, Office of Energy Research,

Scientific Computing Staff, of the U.S. Department of Energy under Contract

No. DE-AC03-76SFOO098.

Permission to copy without fee all or part of this material is

granted provided that the copiee are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and ita date appear, and notice is given

that copying ie by permission of the Association for Computing

Machinery. To copy otherwise, or to republieh, requires a fee

and/or epecific permission.

SIGCOMM’93 - Ithaca, N. Y., USA /9/93

01993 ACM 0-89791 -619-01931000910033 . ..$1 .50
2-2

the processes are on separate nodes and started with a ran-

dom relative phase. However, many network traffic studies

[Pa93a] [SaAgGuJa92] [Ja92] [BrChClPo93] show that the

total traffic is not uniform but instead is highly synchronized.

This paper argues that the architect’s intuition that inde-

pendent sources give rise to uncorrelated aggregate traffic is

simply wrong and should be replaced by expectations more

in line with observed reality. There is a huge body of re-

search on the tendency of dynamic systems to synchronize

in the presence of weak coupling [B188]. As far back as the

mid-seventeenth century, Huygens noticed that two unsyn-

chronized pendulum clocks would keep in time if hung on

the same wall, synchronized by the barely-perceptible vibra-

tions each induced in the wall. As reported in [B188], syn-

chronization has been studied in electronic circuits, a wide

range of mechanical objects, and biological systems such as

cell populations and communities of fireflies. Most of these

systems exhibit a tendency towards synchronization that is

independent of the physical constants and initial conditions

of the system [En92]. This research suggests that a complex

coupled system, like a modern computer network, evolves to

a state of order and synchronization if left to itself. Where

synchronization does harm, as in the case of highly corre-

lated, bursty routing traffic, it is up to network and protocol

designers to engineer out the order that nature tries to put in.

This paper investigates one means by which independent

sources of periodic traffic can become synchronized. An

analytic model is developed that shares many of the features

observed in real traffic measurements. There are two main

results from this model:

● The transition from unsynchronized to synchronized be-

havior is very abrupt. The traffic does not gradually

‘clump up’ and become more synchronized as network

parameters change. Instead, for each set of protocol pa-

rameters and implementation interaction strengths there

exists a clearly defined transition threshold. If the num-

ber of sources is below the transition threshold, the traf-

fic will almost certainly be unsynchronized and, even if

synchronized by some external forcel it will unsynchro-

nizedover time. Conversely, if the number of sources is

above the threshold, the traffic will almost certainly be

synchronized and, even if placed in an unsynchronized

1E.g., by restarting sfl the routers at the same time because of a power

failure.

#

state by some external force, will evolve to synchro-

nization over time.

The amount of randomness that must be injected to

prevent synchronization is surprisingly large. For ex-

ample, in the Xerox PARC internal network, measure-

ments [De93] show their cisco routers require roughly

300 ms. to process a routing message (1 ms. per route

times 300 routes per update). From the results in Sec-

tion 5, the routers would have to add at lea?sta second

of randomness to their update intervals to prevent syn-

chronization.

There are many examples of unanticipated synchronized

behavior in networks:

● TCP window increawddecrease cycles. A well-known

example of unintended synchronization is the synchroniza-

tion of the window increaseldecrease cycles of separate

TCP connections sharing a common bottleneck gateway

[ZhC190]. This example illustrates that unless we actively

engineer to avoid synchronization, such as by injecting ran-

domness into the network, synchronization is likely to be

the equilibrium state. As an example of injecting random-

ness, the synchronization of window increaseldecrease cy-

cles can be avoided by adding randomization to the gate-

way’s algorithm for choosing packets to drop during periods

of congestion[FJ92]. (This randomization has the advantage

of avoiding other unintended phase effects as well.)

● Synchronization to an external clock. Two processes

can become synchronized with each other simply by both be-

ing synchronized to an external clock. For example, [Pa93a]

shows DECnet traffic peaks on the hour and half-hour inter-

vals; [Pa93b] shows peaks in ftp traffic as several users fetch

the most recent weather map from Colorado every hour on

the hour.

● Client-server models. Multiple clients can become syn-

chronized as they wait for service fi-om a busy or recovering

server. For example, in the Sprite operating system clients

check with the file server every 30 seconds; in an early ver-

sion of the system, when the file server recovered after a

failure, or after a busy period, a number of clients would

become synchronized in their recovery procedures. Because

the recovery procedures involved synchronized timeouts, this
synchronization resulted in a substantial delay in the recovery

procedure [Ba92].

● Periodic routing messages. Unlike the client/server

model or the external clock model, the synchronization of

periodic routing messages involves seemingly-independent

periodic processes. There are many routing protocols where
each router transmits a routing message at periodic intervals.

Assuming that the routers on a network are initially unsyn-

chronized, at first glance it might seem that the periodic mes-

sages from the different routers would remain unsynchro-

nized. This paper explores how initially-unsynchronized

routing messages can become synchronized.

We examine the details of router synchronization to give a

34

concrete example of inadvertent synchronization, to under-

line the necessity of actively designing to avoid synchroniza-

tion, and to emphasize the utility of injecting randomization

as a method of breaking up synchronization. When a par-

ticular instance of synchronization is observed, it is usually

easy to suggest protocol changes that could prevent it. This

misses the point. Synchronization is not a small problem

caused by minor oversights in protocol design. The tendency

of weakly-coupled systems to synchronize is quite strong and

changing a deterministic protocol to correct one instance of

synchronization is likely to make another appear.

In addition, the specific problem of synchronized routing

messages is of considerable practical interest. Synchronized

routing messages put an unnecessary load on the network,

and cause unnecessary delays and dropped packets. (See

Section 2.)

Various forms of periodic traffic are becoming an

increasingly-large component of Internet traffic, This pe-

riodic traffic includes not only routing updates and traffic

resulting from the increasing use of periodic background

scripts by individual users [Pa93a], but realtime traffic (such

as video traffic) that has a periodic structure. Although the

periodic structure of video traffic is generally not affected

by feedback from the network, there are still possibilities for

synchronization. For example, individual variable-bit-rate

video connections sharing a bottleneck gateway and trans-

mitting the same number of frames per second could con-

tribute to a larger periodic traffic pattern in the network. As

periodic traffic increases in the Internet, it becomes increas-

ingly important for network researchers to consider questions

of network synchronization.

We use both simulation and analysis to explore the syn-

chronization of periodic routing messages. The first goal of

the analysis is to examine the role that random fluctuations

in timing play in the synchronization of routing messages.

These random fluctuations contribute to both the formation

of synchronization and to the breaking up of synchronization
after it occurs.

One way to break up synchronization is for each router

to add a (sufficiently large) random component to the period

between routing messages. A second goal of our analysis is

to investigate this explicit addition of a random component to

the routing timer, and to specify the magnitude of the random

component necessary to prevent synchronization.

2 Measurements suggesting synchro-

nization

This section presents measurements of Internet traffic that

demonstrate the harmful consequences of synchronized rout-

ing messages. We began this investigation in 1988 after ob-

serving synchronized routing messages from DECnet’s DNA

Phase IV on our local Ethernet. On this network each DECnet

router transmitted a routing message at 120-second intervals;

within hours after bringing up the routers on the network af-

ter a failure, the routing messages from the various routers

were completely synchronized.

In May 1992, in the course of investigating packet loss

rates in the Internet, we conducted experiments sending runs

of a thousand pings each, at one-second intervals, from

Berkeley and other sites to destiiiations across the Internet.

For all of the runs to destinations at Harvard or MIT, at least

three percent of the ping packets were dropped, regardless of

the time of day. Figure 1 shows a particular run of a thousand

pings from Berkeley to MIT, made at 3:30 AM on Wednes-

day, May 27, 1992; the x-axis shows the ping number and

the y-axis shows the roundtrip time. Dropped packets are

represented by a negative roundtrip time. Figure 2 shows

the autocorrelation function for the roundtrip times in Fig-

ure 1, where the dropped packets are assigned a roundtrip

time of two seconds (higher than the largest roundtrip time

in the experiment). The high autocorrelation for roundtrip

times separated by 89 pings (roughly 90 seconds, because

pings were sent at 1.O1-second intervals) reflects the fact

that at 90-second intervals several successive pings would

be dropped. Further runs of pings to intermediate locations

determined that these packet drops were occurring at the

NEARnet (New England Academic and Research Network)

core routers. Earlier investigation of Internet behavior had

also reported a degradation in service with a 90-second peri-

odicity on paths to MIT [SaAgGuJa92].

These packet drops were reported by the network man-

ager to be caused by synchronized IGRP (the Inter-Gateway

Routing Protocol [He91]) routing updates at the NEARnet

routers [SC92]. The routers were prevented from routing

other packets while the synchronized routing updates were

being processed. The particular problem of periodic packet

losses on NEARnet has since been resolved; the router soft-

ware has been changed so that normal packet routing can be

carried out while the routers are dealing with routing update

messages. Nevertheless, the underlying problem of synchro-

nized routing updates, along with the unnecessarily-heavy

load that these synchronized updates can place on a network,

still remains, on NEARnet and on other networks.

Synchronized routing updates have been demonstrated

with RIP as well as with DECnet and IGRP. Figure 3 shows

audio packet losses during a December 1992 Packet Video

audiocast workshop2 [Ja92]. The x-axis shows the time in

seconds; the y-axis shows the duration of each audio outage

in seconds. The little blips more-or-less randomly spread

along the time axis represent single packet losses. The larger

loss spikes are strongly periodic; they occur every 30 seconds

and last for several seconds at a time. During these events the

packet loss rate ranges from 50 to g5% and there are frequent

single outages of 100-500 ms. These periodic losses are al-

most certainly due to the source-routed (tunneled) multicast

packets competing with routing updates and losing. Because

30 seconds is the default update time for RIP (the Routing

‘For a report on the first such audiocast, see [Ca92].

3.5

o 200 400 6C0 800
Pmg number

Figure 1: Periodic packet losses from synchronized IGRP

routing messages.

q
0;

o 50 100 150 200
Pings

Figure 2: The autocorrelation of roundtrip times.

Information Protocol [He88]), these long intervals of packet

losses are conjectured to result from synchronized RIP rout-

ing updates. In other instances periodic 30-second audio

*,.
1

.

l_llL_
0 100 200 300 400 500 600

Time (seconds)

Figure 3: Periodic packet losses from (conjectured) synchro-
nized RIP routing messages.

packet losses have been conclusively traced to synchronized

RIP routing updates [De93].

3 The Periodic Messages model

This section describes a general model of periodic rout-

ing messages on a network; we call this the Periodic Mes-

sages model. This model wasinitially patterned after DEC-

net’s DNA Phase IV (the DIGITAL Network Architecture)

[VMS88], but other routing protocols that can conform to

this model include EGP (Exterior Gateway Protocol) [M84],

Hello [Mi83], IGRP, and RIP. In these routing protocols, each

router on a network transmits a routing message at periodic

intervals. This ensures that routing tables are kept up-to-date

even if routing update messages are occasionally lost.

The Periodic Messages model behaves as follows:

1. The router prepares and sends a routing message.

2. If the router receives an incoming routing message

while preparing its own outgoing routing message, the router

also processes the incoming routing message.

3. After completing steps 1 and 2, the router sets its timer.

The time until the timer next expires is uniformly drawn from

the interval [TP – T., TP + T,] seconds, where TP is the aver-

age period and T. represents a random component; this could

be a (small) random fluctuation due to unavoidable variations

in operating system overhead or a (larger) fluctuation due to a

random component intentionally added to the system. When

the timer expires, the router goes to step 1.

4. If the router receives an incoming routing message

after the timer has been set, the incoming routing message is

processed immediately. If the incoming routing message is a

“triggered update” caused by a major change in the network

such as the failure of a link, then the router goes to step 1,

without waiting for the timer to expire.

Because the router resets its timer only after processing
its own outgoing routing message and any incoming rout-

ing messages, the timing of one router’s routing messages

can be affected by the routing messages from other nodes.

This gives the weak coupling between routers, allowing the

synchronization of routing messages from several routers,

The Periodic Messages model assumes that the transmis-

sion time for routing messages is zero. The model i~nores

properties of physical networks such as the possibility of

collisions and retransmissions on an Ethernet. The Periodic

Messages model is not intended to replicate the exact be-

havior of periodic routing messages, but to capture some

significant characteristics of that behavior.
RIP and IGRP are TCP/IP internal gateway protocols that

use periodic routing messages. In RIP each router transmits

periodic routing messages every 30 seconds. In IGRP, routers

send routing messages at 90-second intervals.

EGP (Exterior Gateway Protocol) is used in some places

between the NSFNET backbone and its attached regional

networks; EGP routers send update messages every three

minutes.3 In our system, DECnet routers implementing DNA

Phase IV sent routing messages every two minutes. IGRP,

RIP, and DECnet’s DNA Phase IV all incorporate triggered

updates, where routing messages are sent immediately in re-

sponse to a network change such as the removal of a route.

The first triggered update results in a wave of triggered up-

dates from neighboring routers.

Not all implementations of these routing protocols cor-

respond to the Periodic Messages model in this paper. The

RFC for RIP [He88] mentions that when there are many gate-

ways on a single network, there is a tendency for the periodic

routing messages to synchronize. The RFC specifies that in

order to avoid this synchronization, either the routing mes-

sages must be triggered by a clock that is not affected by

the time required to service the previous message, or a small

random time must be added to the 30-second routing timer

each time, though the magnitude of the random time is not

specified. As an example, in some implementations of IGRP

and RIP routers reset their routing timers before the outgo-

ing routing message is prepared, and routers don’ t reset their

routing timers after triggered updates [Li93].

Thus the Periodic Messages model illustrates only one pos-

sible mechanism by which routing messages can become syn-

chronized. Wherever there are interactions between routers,

or between a router and the network, there could exist mech-

anisms that lead to synchronization.

4 Simulations

This section describes simulations of the Periodic Messages

model. These simulations show the behavior of a network

with N routing nodes, for N = 20. In the first set of sim-

ulations the periodic routing messages for the N nodes are

initially unsynchronized; in the second set the periodic mes-

sages are initially clustered. The simulations show that the

behavior of the Periodic Messages system is determined by

the random overhead added to each node’s periodic timer.

As the level of randomization increases, the system’s ability

to break up clusters of synchronized routing messages also

increases.

Definitions: TP, T,, and TC. The time TP is the constant

component of the periodic timer and T. is the magnitude

of the random component. Each router’s routing timer each
round is drawn from the uniform distribution on [TP - Tr, TP +

T.] seconds. Each router requires TC seconds of computation

time to process an incoming or outgoing routing message, ❑

For the simulations in this section, TP is 121 seconds and

T. is 0.11 seconds. The average timer-value of 121 seconds

was chosen to give a minimum timer-value comparable to

the 120-second timer used by the DECnet routers on our

local network. The value of 0.11 seconds for T. was chosen

to model an estimated computation time of 0.1 seconds and

transmission time of 0.01 seconds a router to compute and

3BGP (Border Gateway Protocol), which is ntso used, only requires

routers to send incremental update messages.

36

transmit an outgoing routing message after a timer expiration;

these values are not based on any measurements of actual

networks. Section 5.3 discusses how the results scale with

different values for the various parameters.

/
(826 rounds in all)

I
I I $ I I I

o 20000 40000 60000 80000 100000
Time (seconds)

Figure 4: A simulation showing synchronized routing mes-

sages

1
1 1 1 I 1 1 I

35500 36000 36500 370C0 37500 36000 36500
Time (seconds)

Figure 5: An enlargement of the simulation above.

When a node’s routing timer expires, the node takes T=

seconds to prepare and transmit its routing message. We call

this time the busy period. For each routing message received

while a node is in its busy period, that node’s busy period is

extended by the T. seconds required to process an incoming
routing message.

For simplicity, when node A’s timer expires we assume

that the other nodes are immediately notified that node A

will be sending a routing message. Thus in the simulations,

when node A’s timer expires node A immediately spends

T. seconds preparing and transmitting its routing message,

37

, J

o 20000 40000 60000 80000 100000
Time (seconds)

Figure 6: The cluster graph, showing the largest cluster for

each round.
.

and at the same time the other routing nodes each spend TC

seconds receiving and processing the routing message from

node A. (This assumption most plausibly reflects a network in

which a router’s routing message consists of several packets

transmitted over a T.-second period.)

The first set of simulations investigates the process by

which initially-unsynchronized routing messages become

synchronized. The routing messages for the N nodes are

initially unsynchronized; for each node the transit time for

the first routing message is chosen from the uniform distribu-

tion on [0, TP] seconds. For the simulation in Figure 4, T, is

set to 0.1 seconds. Each jittery line in Figure 4 is composed

of hundreds of points, and each point represents one routing

message sent by a routing node. The x-axis shows the time

in seconds that the routing message was sent, and the y-axis

shows the time-o fset, the time mod T, for T = TP + Tc

seconds. This time-offset gives the time that each routing

message was sent relative to the start of each round.

The simulation in Figure 4 begins with unsynchronized

routing messages and ends with the N=20 routing messages

transmitted at essentially the same time each round. At the

left-hand side of the figure the twenty jittery lines represent

the time-offsets of the transmit times for the twenty nodes. In

the absence of synchronization each router’s timer expires,

on the average, TP + TC seconds after that router’s previous

timer expiration. These successive timer expirations give a

jittery but generally horizontal line for the timer expirations

for a single router. However, as we explain below, when

routers become synchronized this increases the time interval

between successive routing messages from a single router.

At the end of the simulation the routing messages are fully

synchronized, and all of the nodes set their timers at the same

time each round. In this case each router has a busy period

of 20 x TC seconds rather than of TC seconds, increasing the

time interval between successive routing messages.

Figure 5 is an enlargement of a small section of Figure 4.

This figure illustrates the synchronization of routing mes-

sages from two routers; each “x” marks a timer expiration,

and each “0” marks the timer being reset. In the first five
rounds of Figure 5 the two nodes are independent, and each

node sets its timer exactly TC seconds after its previous timer

expires. However, in the sixth round, node A’s timer expires,

say, at time t, and node A begins transmitting its routing

message. Before node A finishes preparing and sending its

routing message, node B’s timer expires; node A has to fin-

ish sending its own routing message and to process node

B’s routing message before it can reset its own timer. These

two tasks take 2TC seconds, so node A resets its timer at

time t + 2TC.

In our model node B also begins processing node A’s rout-

ing message at time t.(Recall that in the simulations, node B

is notified immediately when node A’s timer expires.) While

node B is receiving and processing node A’s routing mes-

sage, node B‘s own timer expires; node B has to prepare its

own outgoing routing message and finish processing node A’s

routing message before resetting its timer. These tasks take

2TC seconds, so node B also resets its timer at time t+ 2TC.

At this point node A and node B are synchronized and we say

that they form a cluste~ node A and node B set their timers at

the same time. The two nodes remain synchronized, setting

their timers at the same time, as long as the timers expire

within T. seconds of each other each round. The cluster

breaks up again when, because of the random component,

node A and node B’s timers expire more than T. seconds

apart.

More generally, a cluster of size i refers to a set of i rout-

ing messages that have become synchronized. Each of the i

nodes in a cluster is busy processing incoming routing mes-
sages and preparing its own outgoing routing message for iTC

seconds after the first timer in the cluster expires. The i nodes

in a cluster reset their timers at the same time.

One way to think of the simulation in Figure 4 is as a

system of N particles, each with some random movement

in a one-dimensional space. For a particle in a lone clus-

ter (a cluster of size one), each timer-offset differs from the

previous round’s timer-offset by an amount drawn from the

uniform distribution on [-T,, +T.] seconds. In Figure 4 the
successive timer-offsets for an unsynchronized routing node

(the movement of a single particle) are represented by a jit-

tery but generally horizontal line.

For particles (or routing nodes) in a cluster of size i, iTC

seconds are spent processing routing messages after the first

timer of the cluster expires; then the nodes in the cluster

all reset their timers, A cluster of i particles moves ahead
a “distance” of roughly (i – 1)TC seconds in each round.

In Figure 4 the movement of a cluster is represented by an

irregular line with positive slope; the larger the cluster, the
steeper the slope. When two clusters meet, the nodes in the

two clusters all reset their timers at the same time; the two
clusters merge, for the moment, into a larger cluster.

As Figure 4 shows, a cluster of i particles can sometimes

break up into two smaller clusters. Even though the i nodes

set their routing timers at the same time, it is possible for one

node’s routing timer to expire more than TC seconds before

any of the other nodes in the cluster, because of the random

component in the timer interval for each node. The break-up

of a cluster can be seen in Figure 5 where a cluster of size

two forms and then breaks up again.

The first part of the simulation in Figure 4 shows small

clusters occasionally forming and breaking up. Towards the

end of the simulation a sufficiently-laxge cluster is formed,

moving rapidly across the space and incorporating all of the

uncluttered nodes that it encounters along its path. A simu-

lation at any point in time can be partially characterized by

the size of the largest cluster of routing messages. Figure 6

shows a cluster-graph of the simulation in Figure 4. The x-

axis shows time and the y-axis shows the size of the largest

cluster in the current round of N routing messages.

Figure 7 shows the cluster graphs from several simulations

that start with unsynchronized routing messages. The param-

eters are the same as the previous simulations, except that the

random component T, ranges from 0.6TC to 1.4TC. Note that

the time scale is different from the cluster graphs on previous

pages; in Figure 7 the simulations run for 107 seconds (115

days) instead of 105 seconds (just over 1 day). As the random

component increases, the simulations take longer and longer

to synchronize, These simulation results are consistent with

simulations of the same model in [Tr92].

These simulations do not specifically include triggered up-

dates, triggered by a change in the network. We can instead

begin our simulations with synchronized routing messages,

which can result from triggered updates. These simulations

are shown in Figure 8; the random component Tr ranges

from 2.32?. to 2.8TC. As the random component increases,

the simulations return more quickly to the unsynchronized

state.

5 The Markov chain model

This section uses a Markov chain model to further explore

the behavior of the Periodic Messages system, The Markov

chain model is used to compute the expected time for the sys-

tem to move from an unsynchronized state to a synchronized

state, and vice versa. This Markov chain model uses several

simplifying assumptions, and therefore only approximates

the behavior of the Periodic Messages model. Nevertheless,

the Markov chain model illustrates some significant proper-

ties of the simulations and of the Periodic Messages model.

PI,] P2,2 P,,, pN,N

8@=%=pN3g P3,2 Pi,i-1 = Pi+l,i
PN,N-1

Figure 9: The Markov chain.

The Markov chain has N states; when the largest cluster

from a round of N routing messages is of size i, the Markov

chain is defined to be in state i. Figure 9 shows the Markov

chain, along with the transition probabilities. The transition

probability pi,j is the probability that aMarkov chain instate i

38

syfwhronizabon after 498 rounds

lo (17 hours)

s
~

G
Go
~,-

P

3

Ill

0 2 4 6 8 1

eO e6 e6 Time ei ii” e?
Tr = 0,6 Tc

Fsynchronization atter 7796 rounds

pi

o 2 4 6 8 t
eO e6 a6 Time e6 S6 e7

Tr = TC

0 2 4 6 6 1
eO e6 e6 ilme e6 e6 e?

Tr=l,4Tc

Figure 7: Simulations starting with unsynchronized updates, for different values for T..

synchmnizabon not broken

I

I synchromzstlon broken after 4,791 rounds
(7 days)

o 2 4 6 8 1 0 2 4 6 6 1

8

w

t
;

c
~o
~-

P
9 synchronization broken after 300 rounds

(10 hours)

m

o 2 4 6 8 1
eo e6 e6 Time e6 & el eO e6 e6 Time e6 G e7 eO e6 e6 Time e6

Tr=23Tc
e6 e7

Tr = 2,5 Tc Tr=28Tc

Figure 8: Simulations starting with synchronized updates, for different values for T..

moves to state j in the next round. The Markov chain model

is based on several simplifying assumptions:

● The first simplifying assumption of the Markov chain

model is that the future behavior of the system depends only

on the current state and is independent of past states. This as-

sumption is clearly not true for the Periodic Messages model,

where the future behavior of the system depends not only on

the size of the largest cluster but on the transmit times of all

of the other routing messages.

● The second simplifying assumption is that the size of

the largest cluster changes by at most one from one round to

the next. Again, this assumption is not strictly accurate; in

the Periodic Messages model it is possible for two clusters

of sizes i and 2 respectively to merge and form a cluster of

size i + 2 in the next round,

● The analysis of the Markov chain model assumes that

except for the largest cluster of size i, all other clusters are

lone clusters of size one; again, this conservative assumption

is not strictly accurate. Given a cluster of size i, the follow-

ing cluster is defined as the cluster that follows the cluster of

size i in time. At each round, we assume that the “distance”
between the largest cluster of size i and the following lone

cluster is given by an exponential random variable with ex-

pectation TP/(iV – i + 1). (This distance is defined as the
wait between the time when the nodes in the cluster of size i

set their timer and the time when the timer expires for the

node in the following lone cluster.) This expected value is

39

based on the average distance between N – i + 1 clusters,

As in the Periodic Messages model, we assume that each

node’s timer expires after a time drawn from the uniform

distribution on [TP - Tr, TP + T,] seconds. For a node in a

cluster of size i, the node takes iTc seconds to process the

incoming and outgoing routing messages in the cluster. In

this section we assume that T, > TC/2; if not, then a cluster

never breaks up into smaller clusters.

The next two sections define the transition probabilities for

the Markov chain. Given these transition probabilities, we

compute the average time for the Markov chain to move from

state 1 to state N, and the average time for the Markov chain to

move from state N back down to state 1. This analysis shows

that when T, is sufficiently large, the Markov chain moves

quickly from a synchronized state to an unsynchronized state.

5.1 Cluster breakup and growth

This section estimates pi,;_ 1, the probability that the Markov

chain moves from state i to state i – 1 in one round. The

second half of this section estimates p;,i+ 1. In the Markov
chain, a cluster of size i can break up to form a cluster of

size i – 1 either by breaking up into a cluster of size one

followed by a cluster of size i – 1, or vice versa. Because the

first of the two cases is more likely, for simplicity we only

consider this case. We say that the first node breaks away

from the head of the cluster.

Thus pi,i_l is the probability that the node whose timer

expires first, node A, transmits its routing message, and the

next timer in the cluster expires more than TC seconds later. In

this case, node A resets its timer before it receives any routing

messages from any of the other i — 1 nodes. Because we

assume that TC < 2T,, there is always a nonzero probability

that a cluster of size i breaks up into smaller clusters.

For i nodes in a cluster, the timers expire at i times uni-

formly distributed in a time interval of length 2Tr. Let L

be the time from the expiration of the first timer until the

expiration of the second of the i timers. From [Fe66, p.22],

()
i

Pi,i.1 = P7’ob.(L > T.) = 1 – * (1)
T

fori >1.

Now we estimate pi,i+l, the probability that the system

moves from state i to state i + 1 in one round. We leave p1,2

as a variable; p1,2 depends largely on T,, the random change

in the timer-offsets from one round to the next.

The probability that a cluster of size two or more incor-

porates additional routing nodes, forming a larger cluster,

depends largely on the fact that larger clusters have larger

average periods that smaller clusters. After some time the

larger cluster “collides” with a smaller cluster, and the two

clusters merge.

For a cluster of size i, each node in the cluster sets its timer

iTC seconds after the first timer in the cluster expires. Each of

the i timer expirations is uniformly distributed in the interval

[TP – T,, TP -t T,]. Given i events uniformly distributed on
the interval [0, 1], the expected value of the smallest event is

l/(i + 1) [Fe66, p.24]. Thus the first of the i timers expires,

on average, TP – T~ (i – 1)/(i + 1) seconds after the timers
are set. The average total period for a node in a cluster of

size i is therefore TP – Tr(i – 1)/(i + 1) + iTC seconds.

In one round the timer-offset for a cluster of size i moves

an average distance of (i – l)TC – Tr (i – 1)/(i + 1) seconds

relative to the timer-offset for a cluster of size one. For

simplicity, in estimating pi,;+ 1 we assume that the timer-

offset for a cluster of size i moves in each round exactly

(i – l)TC – T, (i – 1)/(i + 1) seconds relative to the timer-

offset for a cluster of size one. (This assumption ignores

the somewhat remote possibility that a cluster of size i could

“jump over” a smaller cluster.) What is the probability that,
after one round, the timer-offset for a cluster of size z moves

to within T= seconds of the timer-offset for a cluster of size

one?

The Markov chain model assumes that the distance be-

tween a cluster of size i and the following small cluster is an

exponential random variable with expectation TP /(fV –i+ 1).

Thus for a Markov chain in state i, pi,i+l is the proba-

bility that an exponential random variable with expectation

TP/(iV – i + 1) is less than (i – l)TC – Tr(i – 1)/(i + 1).

For2 < i < N– l, this gives

pi,i+l = 1 – ~-((~-~+1)/~,)((~-:)~.-~r(~-l)/(~ +l)). (’7)

40

For all i, pi,~ = 1 – pi,i_.I – p~,~+l.

5.2 Average time to cluster, and to break up a

cluster

This section investigates the average time for the Markov

chain to move from state 1 to state N, and vice versa.

Definitions: ti,j and f(i). Let ti,j be the expected number

of rounds until the Markov chain moves from state i to state j,

given that the next state after state i is state j. Let ~(i) be

the expected number of rounds until the Markov chain first

enters state i, given that the Markov chain starts in state 1.

We leave ~(2) as a variable. ❑

We give a recursive definition for ~(i). The expected num-

ber of rounds to first reach state i equals the expected num-

ber of rounds to first reach state i – 1, plus the additional

expected number of rounds, after first entering state i – 1,

to enter state i. After state i – 1 is first reached, the

next state change is either to state i – 2, with probability

(Pi- l,i-2)/(Pi-l,i-2 + Pi-l,i), or to state i, with probabil-

ity (Pi-l,i)/(Pi-l,i-2 + pi-l, i). The expected number of
rounds to reach state i, after first entering state i – 2, is

~(i) – f(i – 2). This leads to the following recursive equa-

tion for ~(i):

f(i) = f(i-1)+
Pi–l,i–2

(tt-,,,-2+.f(i) -f(i-2))
Pi–l,i-2 + Pi–l,i

+
Pi-l,i

ti_l,/.
Pi–l,i-2 + Pi–l,i

Thus fore(i) = ti-l,i + (P,– I,; -2/pi–l,i)ti– l,z–2,

f (i) - ~++:--:ip+ f(i– 1) + p;::; 2f(i-2) = c(i).
,

(3)

Equation 3 has the solution 4:

‘(i)=f(2)(1+HE’~
‘Wk)n$ ‘4)

Consider t~,j+1,the expected number of rounds to move

from state j to state j + 1, given that the Markov chain in fact
moves from state j to state j + 1. The equation for tj,j + I is

as follows [FJ93]:

cm

b,j+l = ~ $4%j)c-’Pj,j+l =
Pj,j+l

X=1 (Pj,j-1 +Pj,j+l)2”

4The derivation for this equation is given in [FJ93], This solution could

atso be verified by the reader by substituting the right-hand side of Equation

(4) into Equation (3)

Similarly, the equation for tj,j -1 is as follows:

tj,j_] =
Pj,j–1

(Pj,j-1 + Pj,j+l)2”

Next we investigate the average time for the Markov chain

to move from state N to state 1.

Definitions: g(i). Let g(i) be the expected number of

rounds for the Markov chain to first enter state i, given that

the Markov chain starts in state N.

Thus g(N) = O and

9(0 = 9(~+1)+
Pi+l,i+2

(ti+l,i+2+9(~)-9 (i+2))
Pi+l,i+2 + IJi+l,i

+
Pi+l,l

%’+l,/.
Pi+l,i+2 + Pi+l,i

For d(i) = ti+l,i + (pi+1,i+2/pi+1, i)ti+1,i+2, this gives the

recursive equation

g(i) – ‘i+l’i+2‘Pi+’’ig(i+ 1)+
~ Pi+l,i

-g(i+2) = d(i).

(5)

Equation 5 has the solution below:
.,

The derivation of this equation is similar to that of f(i),

given in [FJ93]. Note that this equation does not depend on

the values of pl,z or of f(2). -

L
, !

o 200000 400000 600000
Time (m seconds) to reach given cluster size, from size 1

(Solid Ihnefrom analysis, dotted lines from simulations)

J

Figure 10: The expected time to reach cluster size i, starting

fr~m cluster size i, for T, = 0.1 seconds.

The solid line in Figure 10 shows ~(i), computed from

Equation 4, for N = 20, TP = 121 seconds, TC = 0.11 sec-

onds, T, = 0.1 seconds, and ~(2) = 19 rounds. (This value

for ~(2) is based both on simulations and on an approximate

analysis that is not given here.) The x-axis shows the time
in seconds, computed as (TP + TC) f(i). The y-axis shows

41

1
I !

.<--------

I I

o 50000 100000 150000 200QO0 250000 300000
Time (mseconds) to reach given cluster size, from size 20

(Solid [ne from analysis, doffed line from simulations)

Figure 11: The expected time to reach cluster size i, starting

fr~m cluster size N, for T. = 0.3 seconds.

the cluster size i; a mark is placed at cluster size i when the

system first reaches that cluster size. The results of twenty

simulations are shown by light dashed lines. Each simulation

was started with unsynchronized routing messages, with the

values for N, TP, Tc, and T. described above; these simula-

tions differ only in the random seed. The heavy dashed line

shows the results averaged from twenty simulations.

The solid line in Figure 11 shows g(i), computed from

Equation 6, for the same parameters for N, TP, and T. as

in Figure 10, and for T, = 0.30 seconds; for the value of

T. in Figure 10, the system takes a long time to unsynchro-

nized,making simulations unrealistic. The heavy dotted line

averages the results from twenty simulations.

Figures 10 and 11 show that the average times predicted

by the Markov chain are two or three times the average times

from the simulations. This discrepancy is not surprising, be-

cause the Markov chain is only a rough approximation of the

behavior of the Periodic Messages system. Aside from the

difference in magnitude, however, the functions predicted

from the Markov chain and computed from the simulations

are reasonably similar. Thus the Markov chain model does

in fact capture some essential properties of the Periodic Mes-

sages system.

5.3 Results from the Markov chain model

This section explores the general behavior of the Markov

chain as a function of the parameter Tv. Figure 12 gives

!(N), from Equation 4, and g(l), from Equation 6, for T,

ranging from zero to 4.5TC, given N = 20, TP = 121 seconds,
and TC = 0.11 seconds. The solid line shows the expected

time for the Markov chain to move from state N to state 1 and

the dashed line shows the expected time for the Markov chain

to move from state 1 to state N. The dashed line was computed

using values for ~(2) based on an approximate analysis that

is not given here; the dotted line shows the expected time for

the Markov chain to move from state 1 to state N computed

using j(2) set to zero. Note that the y-axis is on a log scale,

and ranges from less than 104 seconds (less than three hours)

up to 1012 seconds (over 32 thousand years).

o i 2 3 4
Random Noise Tr (as a multiple of Tc)

(Dotted line = f(N), solid line= g(l))

Figure 12: Expected time to go from cluster size 1 to cluster

size N, and vice versa, as a function of TT.

Figure 12 can be used as a general guide in choosing a

sufficiently large value of T,, given the values for the other

parameters in a system, so that the system moves easily from

state N to state 1 and rarely moves from state 1 back to state N.

The figure shows the regions of low, moderate, and high ran-

domization. In the region of low randomization the system

moves easily from state 1 to state N; in the region of high ran-

domization the system moves easily from state N to state 1. In

the region of moderate randomization the system takes a sig-

nificant period of time to move either from state 1 to state N,

or from state N back to state 1. In the low and moderate re-

gions ~(N) grows exponentially with T.. The “X’ marks on

Figure 12 show simulations that start with unsynchronized

routing messages and the “+” marks show simulations that

start with synchronized routing messages.

Figure 13 shows the same analytical results as in Figure 12

for the number of nodes N ranging from 10 to 30, and for a

range of values for TC. These simulations were performed to

verify that the analytical results predict the simulation results

reasonably accurately for a range of parameters. Because of
time constraints, we ran only one simulation for most sets of

parameters. We ran two simulations for each set of param-

eters for Tr < 0.5TC; for these parameters the time to syn-

chronize depends largely on the time to first forma cluster of

size two, which can be quite different from one simulation to

the next. Simulations with T. = 0.5 are discussed in [FJ93].

The figures show that for a wide range of parameters,

choosing Tr at least ten times greater than TC ensures that

clusters of routing messages will be quickly broken up. For

any range of parameters, choosing Tr as TP /2 should elimi-

nate any synchronization of routing messages. This would be

equivalent to setting the routing timer each time to an amount

.-

.

I
1 I I

o 2 4 6 8
Random Noise Tr (aa a multiple of Tc)

Tc=O01 seconds (N=I O’’’,’-’. N=20’x’,’+’, N=30:’o’).

.
al

3

%

%
..

‘8
%

●

% .* .*.
I I ,

0 2 4 6 6
Random Noise Tr (as a multiple of Tc)

Tc=O.I1 seconds. (N=l 0:’”’,’-’, N=20’x’,’+’, N=30’o’),

Figure 13: Expected time to go from cluster size 1 to cluster

size N, and vice versa, as a function of N and of T..

from the uniform distribution on the interval [0.5TP, 1.5TP]

seconds. This introduces a high degree of randomization

into the system, yet ensures that the interval between routing

messages is never too small or too large.

0

%

predominately

,~ a unsynchromzed
co

~.

$0

;-+
-0

E

jq

00

g predominately
synchronized

2

10 1.5 2.0 25
Random component Tr (as a multlple of Tc)

Figure 14: The fraction of time unsynchronized, as a function

of the random component TV.

One quantity of interest is the fraction of time that the

42

I
predominately

~m unsynchromzed
go
~

g$
\

5 10 15 20 25
Number of nodes

Figure 15: The fraction of time unsynchronized, as a function

of the number of nodes.

Markov chain spends with low cluster sizes. We were only

able to estimate the equilibrium distribution for the Markov

chain by further approximating the transition probabilities.

However, one simple way to estimate the fraction of time

that the Markov chain spends in unsynchronized states is to

compute ~(fV)/(.f(N) + g(l)). Recall that ~(il’) is the ex-

pected number of rounds for the system to move from state 1

to state N; for most of this time the system is largely un-

synchronized. Similarly, g(1) is the expected number of

rounds for the system to move from state N to state 1; for

most of this time the system is largely synchronized. In

Figure 14 the x-axis shows T,; the other parameters are

N = 20, TP = 121 seconds, and Tc = 0.11 seconds. The

y-axis is ~(N)/ (~(N) + g(1)), the estimated fraction of

time for which the system is unsynchronized. As Figure 14

shows, as T. is increased, the system makes a sharp tran-

sition from predominately-synchronized to predominately-

unsynchronized.

Figure 15 shows the estimated fraction of time that the

Markov chain spends with low cluster sizes as a function

of the number N of nodes in the network. The parameters

for this figure are TP = 121 seconds, TC = 0.11 seconds, and

T. = 0.3 seconds. As the number of nodes is increased,

the system makes a sharp transition from predominately-

unsynchronized to predominately-sy nchronized. This cor-

responds in practice to a network that moves from an unsyn-

chronized to a fully synchronized state when one additional

router is added to thes ystem.

6 Conclusions

As the simulations and analysis in this paper demonstrate,

periodic routing messages from a system of routers in a net-
work can easily become synchronized. When the random

component of the routing timer intervals is low, as is probably

the case in the current Internet, an initially-unsynchronized

network can become synchronized fairly quickly. If nodes

add a sufficient random component to the routing timers, this

synchronization can be avoided, and routing messages that

become synchronized as a result of triggered updates can

quickly return to an unsynchronized state. The analysis pro-

vides general guidelines on determining the magnitude of the

random component necessary to avoid synchronization.

Adding a random component to the routing timers is not the

only possible method for discouraging the synchronization of

routing updates. As is suggested in the specifications for RIP,

another possibility is to implement a routing timer where the

time between successive routing messages is not affected by

the time required to service previous timer expirations [He88,

p.23]. Thus, if each router resets its timer immediately after

the timer expires (regardless of its activities when the timer

expires), and if routers don’t reset their timers after triggered

updates, then the process of timer synchronization described

in this paper could be avoided. There are, however, some

drawbacks with this proposal. If all routers have the same

default period, then routers that are initially synchronized

(either by chance, or because routers were restarted at the

same time) will remain synchronized; there is no mechanism

to breakup synchronization if it does occur.

Some methods for discouraging synchronization that

might be technically feasible are unattractive because they

require intervention from the system administrator. This

would include having the system administrator manually set

the routing update intervals for different routers on the same

network to different values. For networks with a small num-

ber of routers, an alternate strategy might be to set the routing

update interval at each router to a different random value.

The consequences of having a slightly-different fixed period

for each router would require further investigation.

There are also approaches that reduce the negative impact

of synchronized routing updates. This includes the imme-

diate response to the synchronized routing updates on the

NEARnet system mentioned in Section 3, which involved

modifying routers so that they can give acceptable perfor-

mance even in the presence of synchronized routing updates.

Nevertheless, synchronized routing updates place an unnec-

essary burden on the network, even assuming that routers

are modified to improve their performance in the presence of

synchronized routing updates. The preferable solution is to

avoid synchronized routing updates in the first place.

The method of adding a random component to the rout-

ing timer is attractive because it provides a prompt break-up

of synchronization, including the synchronization that could

result from triggered updates or from other forms of feed-

back than those described in the Periodic Messages model,

and it does not require manual intervention from the system

administrator. Each routing node would add a random time

to the routing timer each time that the routing timer is set.
Section 5 provides guidelines for choosing the random com-

ponent, In particular, setting the timer each round to a time

from the uniform distribution on the interval [0.5TP, 1.5TPI

seconds would be a simple way to avoid synchronized rout- .

ing messages. Pseudo-random numbers could be stored in

memory or could be efficiently generated by a random num-

43

ber generator [Ca90].

Periodic routing messages are not necessarily the only ex-

ample of synchronized periodic messages in the Internet. Our

“ping” experiments indicate that many periodic processes are

at work in the Internet, in addition to the (now-corrected)

every-90-second packet drops on paths to MIT. More work

is needed in exploring the effects of synchronization in the

Internet. The tendency towards synchronization is likely to

become more relevant in the future, as the Internet carries

more traffic with a strong periodic structure.

7 Acknowledgements

We thank Tony Li, Steven McCanne, Vern Paxson and Lixia

Zhang for their comments on earlier drafts of this paper; we

thank Lixia Zhang for encouraging us to submit this paper

in time for SIGCOMM. Much of the simulation and analy-

sis in this paper was essentially completed some years ago,

after observing synchronized DECnet routing messages in

1988. After a report in 1992 by Professor Agrawala on packet

drop rates in the Internet, mentioning long delays at periodic

90-second intervals on paths to MIT, we reported that we

found a similar problem of packet drops at 90-second inter-

vals on paths to MIT. We thank Dave Clark for contacting

Jeff Schiller about the problem, who reported back that the

problem was related to synchronized IGRP routing messages

in NEARnet. This documentation of the practical problems

caused by synchronized routing messages pushed us to finish

our draft of this paper.

References

[Ba92] Baker, M., private communication, 1992.

[B188] Blekhman, 1.1., Synchronization in Science and

Technology, ASME Press Translations, 1988.

[BrChClPo93] Braun, H., Chinoy, B., Claffy, K., and Poly-

[Ca90]

[Ca92]

[De93]

[En92]

[Fe66]

[FJ92]

ZOS,G., “Analysis and Modeling of Wide-Area Net-

works: Annual Status Report”, CSL, University of

California at San Diego, February 1993.

Carta, D., “Two Fast Implementations of the ‘Mini-

mal Standard’ Random Number Generator”, Com-

mun. ACM, V.33 N. 1, January 1990, p.87-88.
Casner, S., and Deering, S., “First IETF Inter-

net Audiocast”, Computer Communication Review,

V.22 N.3, July 1992, p.92-97.

Deering, S., private communication, 1993.

Engel, E.M.R.A., A Road to Randomness in Phys-
ical Systems, Springer-Verlag, 1992.

Feller, W., An Introduction to Probability Theory

and Its Applications, V 11, John Wiley & Sons,

1966.

Floyd, S., and Jacobson, V., On Traflic Phase Ef

fects in Packet-Switched Gateways, Internetwork-

ing: Research and Experience, V.3 N.3, September

1992, p.115-156.

[FJ93]

[He88]

[He91]

[Ja92]

[Li93]

[Mi83]

[M84]

[Pa93a]

[Pa93b]

Floyd, S., and Jacobson, V., On the Synchronization

of Pen”odic Routing Messages, LBL Tech Report

(available by anonymous ftp from ftp,ee.lbl,gov:

sync* .ps.Z), May 1993.

Hedrick, C., “Routing Information Protocol”, Re-

quest For Comments (RFC) 1058, June 1988.

Hedrick, C. L., “An Introduction to IGRP’, August

1991, available by anonymous ftp from shivs.com

in ldocligrp.ps.Z.

Jacobson, V., Audio losses during yesterday’s

packet video workshop audiocast, Message-ID

92121 12039 .AA24349@rx7.ee.lbl. gov archived in

nic.es.net:ietf. rem-conf, Nov. 11, 1992.

Li, T., private communication, 1993.

Mills, D. L., “DCN Local-Network Protocols”, Re-

quest For Comments (RFC)891, Dec. 1983.

Mills, D.L., “Exterior Gateway Protocol Formal

Specification”, RFC 904, April 1984.

Paxson, V., “Empirically-Derived Analytic Models

of Wide Area TCP Connections”, LBL Tech. Report

LBL-34086, May 1993,

Paxson, V., “Growth Trends in Wide-Area TCP

Connections”, submitted to IEEE Network, 1993.

[SaAgGuJa92] Sanghi, D., Agrawala, A., Gudmundsson,

O., and Jain, B., “Experimental Assessment of End-

to-End Behavior on Internet”, University of Mary-

land Report UMIACS-TR-92-62, June 1992.

[SC92] Schiller, J., private communication, Sept. 1992.

[Tr92] Treese, W., “Self-Synchronization Phenomena in

Computer Networks”, MIT class project, Dec.

1992.

[VMS88] VMS Networking Manual, Version 5.0, AA-

LA48A-TE, Digital Equipment Corporation, May-

nard Massachusetts, April 1988.

[ZhC190] Zhang, L,, and Clark, D., “Oscillating Behavior of

Network Traffic: A Case Study Simulation”, Inter-

networking: Research and Experience, Vol. 1 N.2,

1990, pp. 101-112.

44

